JP3588133B2 - Prostaglandin E1 analog - Google Patents

Prostaglandin E1 analog Download PDF

Info

Publication number
JP3588133B2
JP3588133B2 JP25618593A JP25618593A JP3588133B2 JP 3588133 B2 JP3588133 B2 JP 3588133B2 JP 25618593 A JP25618593 A JP 25618593A JP 25618593 A JP25618593 A JP 25618593A JP 3588133 B2 JP3588133 B2 JP 3588133B2
Authority
JP
Japan
Prior art keywords
compound
group
nmr
cdcl
neat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25618593A
Other languages
Japanese (ja)
Other versions
JPH0725847A (en
Inventor
史衛 佐藤
武宏 天野
一弥 亀尾
亨 田名見
賢 武藤
直哉 小野
准 五藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisho Pharmaceutical Co Ltd
Original Assignee
Taisho Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisho Pharmaceutical Co Ltd filed Critical Taisho Pharmaceutical Co Ltd
Priority to JP25618593A priority Critical patent/JP3588133B2/en
Publication of JPH0725847A publication Critical patent/JPH0725847A/en
Application granted granted Critical
Publication of JP3588133B2 publication Critical patent/JP3588133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は新規なプロスタグランジンE類縁体に関する。
【0002】
【従来の技術】
プロスタグランジン(以下、PGと略称する。)は微量で種々の重要な生理作用を発揮することから、従来より医薬への応用を意図して天然PG及び夥しい数のその誘導体の合成と生物活性の検討が行なわれている。
その中でもPGEは、細胞保護作用、酸分泌抑制作用などの特徴ある作用を 有していることが知られており、このため多数のPGE類縁体が消化性潰瘍治 療薬として検討されてきた。このうち、PGEの13,14位の二重結合を三 重結合に変えた13,14−ジデヒドロPGE類縁体としては、13,14− ジデヒドロPGE メチルエステル(特開昭52−100446号公報)、6 −ヒドロキシ−13,14−ジデヒドロPGE(米国特許第4,131,73 8号)が知られており、また、特開昭52−100446号公報、米国特許第4,160,101号及び米国特許第4,249,016号に記載の一般式で示される化合物にω鎖の末端にフェノキシ基を有する13,14−ジデヒドロPGE類縁体が包含されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来知られているPGE類縁体は生体内での代謝が速く、従 って効果が持続しないという欠点がある。また、従来のPGE類縁体は下痢を 初めとした副作用を誘発するため、高い用量で投与できず、十分な効果を挙げることができないという欠点があった。
本発明の目的は、従来知られているPGE類縁体よりも選択的で強力な抗潰 瘍作用を有し、かつ持続性に優れた新規なPGE類縁体を提供することにある 。
【0004】
【課題を解決するための手段】
本発明者らは鋭意研究を進めた結果、13,14位に3重結合を有し、かつω鎖の末端位にフェノキシ基を有し、さらに2,3位に2重結合または3重結合を有するある特定のPGE類縁体が前記課題を解決できることを見いだし、本発 明を完成した。
すなわち、本発明は、式
【0005】

Figure 0003588133
【0006】
[式中、Aはビニレン基またはエチニレン基を示し、Rは水素原子、炭素原子 数1〜8個のアルキル基、炭素原子数3〜8個のシクロアルキル基または置換基を有する炭素原子数3〜6個のシクロアルキル基を示し、Rは水素原子、ハロ ゲン原子、トリフルオロメチル基、炭素原子数1〜4個のアルキル基、炭素原子数1〜4個のアルコキシ基、フェニル基または「ハロゲン原子で置換されたフェニル基」を示し、RおよびRはそれぞれ水素原子、ハロゲン原子、トリフルオロメチル基、炭素原子数1〜4個のアルキル基または炭素原子数1〜4個のアルコキシ基を示す。]で表されるプロスタグランジンE類縁体及びその塩であ る。
【0007】
本発明において、炭素原子数1〜8個のアルキル基とは、直鎖状または分枝鎖状のものをいい、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、イソペンチル基などである。置換基を有する炭素原子数3〜6個のシクロアルキル基とは、炭素原子数1〜4個のアルキル基の1個〜3個で置換された炭素原子数3〜8個のシクロアルキル基をいうが、2−ノルボルニル基
【0008】
Figure 0003588133
【0009】
や、1−アダマンチル基
【0010】
Figure 0003588133
【0011】
のようにシクロアルキル基を置換するアルキル基が環を形成して多環式炭化水素になっていてもよい。
式(I)の化合物の塩とは、式(I)においてRが水素原子の化合物の場合の、ナトリウム、カリウム、アルミニウムなどの金属との塩あるいはトリアルキルアミンなどの有機アミンとの塩である。
【0012】
本発明においては、RないしRが水素原子であり、かつRがメチル基、
t−ブチル基またはシクロヘキシル基である化合物が好ましい。
式(I)の化合物は、例えば以下に挙げる方法により容易に製造できる。
【0013】
Figure 0003588133
【0014】
Figure 0003588133
【0015】
(反応式中、RおよびRは同一または異なって水酸基の保護基を示し、R
は水素原子を除くRであり、R、R、R、Aおよびnは前記と同意義で
ある。
ここで、水酸基の保護基とはプロスタグランジンの分野で通常用いられるものであり、例えばt−ブチルジメチルシリル基、トリエチルシリル基、フェニルジメチルシリル基、テトラヒドロピラニル基、テトラヒドロフラニル基、メトキシメチル基、エトキシエチル基、ベンジル基などである。)
▲1▼すなわち、まず、佐藤らの方法[ジャーナル・オブ・オーガニック・ケミストリー(J.Org.Chem.),第53巻,第5590ページ(1988年)]により公知である式(II)の化合物に、式(III)で表される有機アルミニ ウム化合物0.8〜2.0当量を−10〜30℃、好ましくは0〜10℃で不活性溶媒(例えばベンゼン、トルエン、テトラヒドロフラン、ジエチルエーテル、塩化メチレン、n−ヘキサンなど)中で反応させることにより立体特異的に式(IV)の化合物が得られる。
ここで、式(III)の有機アルミニウム化合物は、例えば以下の方法にて調製 できる。
【0016】
Figure 0003588133
【0017】
(反応式中、R、R、RおよびRは前記と同意義である。)
すなわち、式(VIII)で表されるアルコール化合物をオキザリルクロリドを用いDMSO中にて反応しアルデヒドとした後、ピリジン中にてマロン酸と縮合、脱炭酸反応を行い次いで、生成物をメタノール中硫酸にてエステル化反応を行ない式(IX)の化合物を得る。
次に、式(IX)の化合物のメチルエステル部をジイソブチルアルミニウムハイドライドにて還元しアルコールとした後、2重結合部を酸化してエポキシ化合物とする。ここで、酸化剤としては過酸化水素、過酢酸、m−クロロ過安息香酸等が使用できるが、L(+)−酒石酸ジイソプロピルを用いt−ブチルハイドロパーオキシドとジクロロメタン中、−20℃にて反応することにより立体選択的に酸化し最終的に光学活性体(R体)[式(IIIa)の化合物]に導くこともでき る。得られたエポキシ化合物は、更にメタンスルホニル化し、塩化リチウムと置換反応を行い式(X)の化合物を得る。
式(X)の化合物はテトラヒドロフラン中−70℃にてn−ブチルリチウムと反応させ、生成するアセチレン誘導体の水酸基を保護することにより式(XI)の化合物に導くことができる。
式(XI)の化合物は、nブチルリチウムと反応した後にジエチルアルミニウムクロリドと反応すると式(III)の化合物が調製される。
【0018】
▲2▼次に、式(IV)の化合物を、式(V)で表される有機銅化合物0.5〜4当量およびクロロトリメチルシラン0.5〜4当量と不活性溶媒(例えばテトラヒドロフラン、ジエチルエーテル、塩化メチレン、トルエン、n−ヘキサンなど)中、−78〜40℃で反応させ、式(VI)の化合物とする。
ここで、式(V)の有機銅化合物は、式
I−(CHn−1−A−COOR (XII)
(式中、R、Aおよびnは前記と同意義である。)で表されるヨウ素化合物か ら、公知の方法[P.Knochelら,ジャーナル・オブ・オーガニック・ケミストリー,第53巻,第2390ページ(1988年)]により調製できる。すなわち、式(XII)のヨウ素化合物を、例えば1,2−ジブロモメタン、クロ ロトリメチルシラン、ヨウ素などで活性化された亜鉛0.8〜5当量と、不活性溶媒(例えばテトラヒドロフラン、ジエチルエーテル、n−ヘキサン、n−ペンタン、ジオキサンなど)中で反応させることにより式
IZn−(CHn−1−A−COOR
(式中、R、Aおよびnは前記と同意義である。)で表される有機亜鉛化合物 へと誘導する。この際、必要に応じて加熱してもよい。加熱温度は溶媒の沸点にもよるが、通常30〜150℃、好ましくは40〜80℃である。得られた有機亜鉛化合物を、−50〜10℃にて、シアン化銅(1〜2.5当量)、塩化リチウム(2〜5当量)を含む前記不活性溶媒中で反応させることにより、式(V)の有機銅化合物を得ることができる。
【0019】
▲3▼次いで、式(VI)の化合物を、無機酸(例えば塩酸の水溶液)または有機酸もしくはそのアミン塩(例えばp−トルエンスルホン酸、p−トルエンスルホン酸ピリジン塩など)を用い、有機溶媒(例えばアセトン、メタノール、エタノール、イソプロパノール、ジエチルエーテルあるいはこれらの混合溶媒など)中、0〜40℃にて加水分解することにより、立体選択的に式(VII)の化合物が得 られる。
【0020】
▲4▼最後に、式(VII)の化合物の水酸基の保護基をプロスタグランジンの分野 における通常の方法を用いて脱保護し、式(I)においてRが水素原子以外の 基である本発明の化合物[式(Ia)の化合物]を得る。
【0021】
▲5▼式(I)においてRが水素原子である本発明の化合物[式(Ib)の化合 物]は、式(Ia)の化合物のうち、Rが炭素原子数1〜6個のアルキル基で ある化合物[これを(Ic)の化合物とする。]のエステル部分を加水分解することにより得ることができる。
加水分解は、(Ic)の化合物を、リン酸緩衝液、トリス−塩酸緩衝液などの緩衝液中、必要に応じて有機溶媒(アセトン、メタノール、エタノールなどの水と混和するもの)を用いて酵素と反応させることにより行う。
使用する酵素としては、微生物が生産する酵素(例えばキャンディダ属、シュードモナス属に属する微生物が生産する酵素)、動物の臓器から調製される酵素(例えばブタ肝臓やブタ膵臓より調製される酵素)などであり、市販の酵素で具体例を挙げると、リパーゼVII(シグマ社製,キャンディダ属の微生物由来)、 リパーゼAY(天野製薬社製,キャンディダ属の微生物由来)、リパーゼMF(天野製薬社製,シュードモナス属の微生物由来)、PLE−A(天野製薬社製,ブタ肝臓より調製)、エステラーゼ(シグマ社製,ブタ肝臓より調製)、リパーゼII(シグマ社製,ブタ膵臓より調製)、リポプロテインリパーゼ(東京化成工業社製,ブタ膵臓より調製)などである。
酵素の使用量は、酵素の力価及び基質[(Ic)の化合物]の量に応じて適宜選択すればよいが、通常は基質の0.1〜20倍重量部である。
反応温度は、25〜50℃、好ましくは30〜35℃である。
【0022】
本発明の化合物は、経口的にまたは非経口的に(例えば静脈内、直腸内、膣内)投与することができる。経口投与の剤型としては、例えば錠剤、顆粒剤、カプセル剤などの固形製剤、溶液剤、脂肪乳剤、リポソ−ム懸濁剤などの液体製剤を用いることができる。この経口投与製剤として用いる場合には、α,β,もしくはγ−シクロデキストリンまたはメチル化シクロデキストリン等と包接化合物を形成させて製剤化することもできる。静脈内投与の製剤としては、水性または非水性溶液剤、乳化剤、懸濁剤、使用直前に注射用溶媒に溶解して使用する固形製剤等を用いることができる。また、直腸内投与の製剤としては坐剤、膣内投与の製剤としてはペッサリ等の剤型を用いることができる。投与量は0.1〜100μgであり、これを1日1〜3回に分けて投与する。
【0023】
【発明の効果】
本発明の化合物は、後記試験例から明らかなように、強い胃粘膜保護作用、胃酸分泌抑制作用を有し、しかもその持続性が優れている。また、本発明化合物は、EP受容体への選択性が高いので、副作用が少なく、確実な薬理作用を示す 用量でPGで最も問題となっている下痢も殆ど誘発しないことから、消化性潰瘍を治療する医薬として有用である。
【0024】
以下、本発明の効果を試験例により具体的に説明する。なお、各試験例中の化合物1とは、後記実施例に示した化合物番号である。
試験例1[胃酸分泌抑制作用試験]
ウィスター系雄性ラット(体重250〜300g)を1群2匹(対照群だけは5匹)として使用した。ウレタン麻酔下に胃内灌流用のカニューレを胃内に装着し、0.9%生理食塩水を灌流用ポンプで胃内を灌流した。少量のエタノールに溶解して生理食塩水で希釈した薬物(投与量は表1に示した)を大腿静脈内に投与し、その5分後にヒスタミンを同様にして投与した。ヒスタミンによって分泌された胃酸は自動滴定装置(pHstat)により0.02規定の水酸化ナトリウムで中和滴定され、その消費量を胃酸分泌量とした。その結果を表1に示す。
【0025】
【表1】
Figure 0003588133
【0026】
試験例2[胃粘膜保護作用試験]
ウィスター系雄性ラット(体重180〜200g)を1群7〜8匹として使用した。ラットを18時間絶食絶水後、少量のエタノールに溶解して生理食塩水で希釈した薬物(投与量は表1に示した)を経口投与し、その30分後に0.6規定の塩酸1mlを経口投与した。塩酸投与60分後、エーテル麻酔下に胃を摘出し、胃粘膜病変の長さを測定した。その結果を表2に示す。
【0027】
【表2】
Figure 0003588133
【0028】
試験例3[EP受容体に対する選択性の検討試験]
EP受容体に対する選択性の検討試験はBritish Journal of Pharmacology, 第105巻,第271〜278ページ(1992年)に記載の文献に従って行った(EP受容体は下痢に関係することが報告されており、また、EP受容体は胃酸分泌 作用に関係していることが報告されている。)。
a.EP受容体への作用検討〈モルモット摘出回腸収縮作用試験〉
試験方法は、British Journal of Pharmacology,第11巻,第379〜395ページ(1956年)に従って行った。
ハートレー系雄性モルモットを使用した。回腸縦走筋を摘出し、マグヌス管(クレブス溶液,37℃,30ml)に懸垂し、混合ガス通気下約1gの張力を負荷し、被験薬による回腸平滑筋の収縮を等長的に記録した。
実験結果は、被験薬を10−6Mとなるようにマグヌス管内に加えた時の回腸の収縮をアセチルコリン(ACh)の10−6Mを加えた時の回腸の収縮高を100%とし て収縮率で表した。
この結果を表3に示す。
【0029】
【表3】
Figure 0003588133
【0030】
注)−は未測定
この結果より、PGEはEP受容体に作用するが、本発明化合物は作用しないことがわかった。
【0031】
b.EP受容体への作用検討〈癌化肥満細胞由来P815細胞における受容体結合 試験〉
P815細胞は、Biochemical Pharmacology,第30巻,第1325〜1332ページ(1981年)記載の文献により、EP受容体を有することが知られている。本試験はこ の文献に従って行った。
P815細胞を腹腔内に前投与したマウスの腹水から得られたP815細胞(10個/ ml)を用い、[H]PGE(2nM)をリガンドとして、受容体結合実験を行った。実験結果は、被験薬物(10−9M)のリガンドの結合を阻害する割合で示した。
この結果を表4に示す。
【0032】
【表4】
Figure 0003588133
【0033】
注)−は未測定
この結果より、本発明化合物はEP受容体を介する作用は極めて弱いことが わかった。
【0034】
c.EP受容体への作用検討〈[14C]アミノピリン蓄積抑制作用試験〉
試験方法は、Acta Physiol. Scand., 第96巻,第150〜159ページ(1976年)に従って行った。
日本白色系雄性ウサギを使用した。麻酔下にウサギの胃を摘出後、酵素処理により胃粘膜壁細胞を単離した。壁細胞(3×10個)に[14C]アミノピリン( AP)、被験薬(10−5M)及びヒスタミン(10−5M)を添加し、20分間インキュベーション(37℃)を行い、細胞内に取り込まれた[14C]AP量をシンチレーションカウンターを用い測定した。
実験結果は、ヒスタミン刺激による[14C]AP蓄積量に対する被験薬の抑制作用を抑制率で表した。この結果を表5に示す。
【0035】
【表5】
Figure 0003588133
【0036】
なお、表3〜表5中の化合物番号は後記実施例において示したものであり、対照A,対照B,対照C及び対照Dは次の構造を有する化合物である。
【0037】
【表6】
Figure 0003588133
【0038】
以上の結果、本発明化合物はEP受容体に対し選択的に作用することが認め られた。従って、本発明化合物は効力が強く、副作用の少ない抗潰瘍剤となりうる。
【0039】
【実施例】
以下、実施例を挙げて本発明をさらに詳細に説明する。
注)化合物の命名中、例えば「17,18,19,20−テトラノル」のように「ノル」とは、その位置の炭素鎖がないことを意味する(例の場合だと17〜20位の炭素鎖がないことを意味する。)。
製造例1
(3R)−3−(t−ブチルジメチルシロキシ)−4−フェノキシ−1−ブチン[式( XI )の化合物のひとつ]の製造
(1)オキザリルクロリド(48.0ml,0.55mol)の塩化メチレン300ml溶液にアルゴン気流下、−30℃でジメチルスルホキシド(39.0ml,0.55mol)の塩化メチレン60ml溶液を加え5分間同条件下で攪拌した。ついで、2−フェノキシエタノール(69.1g,0.50mol)の塩化メチレン溶液350mlを同条件下で加え15分間同条件下で攪拌した後、トリエチルアミン(245ml,1.75mol)を同条件下で加え0℃まで2時間かけて昇温した。これに水750mlを加え有機層を分離した後、水層を塩化メチレンで抽出し、有機層を合わせて塩酸水溶液、飽和重曹水および飽和食塩水で洗浄した。有機層を乾燥、濃縮して粗生成物のフェノキシアセトアルデヒド67.5gを得た。
【0040】
(2)上記(1)で得た化合物67.5g、ピリジン(40.4ml,0.50mol)およびマロン酸(52.0g,0.50mol)の混合物を100℃で1時間、140℃で1時間加熱攪拌した後室温に冷却した。反応液を塩酸で酸性にしエーテル抽出し、エーテル層を水酸化ナトリウム水溶液で抽出し、エーテル洗浄し、水層を塩酸で酸性とした後エーテル抽出し、有機層を飽和食塩水で洗浄した。有機層を乾燥、濃縮して(2E)−4−フェノキシ−2−ブテン酸を28.2g得た。
H−NMR(DMSO−d,200MHz)δppm;4.77(dd,J=2.0Hz,4.2Hz,2H),6.03(dt,J=2.0Hz,15.8Hz,1H),6.90〜7.04(m,3H),6.95(dt,J=4.2Hz,15.8Hz,1H),7.24〜7.40(m,2H),12.41(s,1H)
IR(KBr):3435,2894,2685,2593,1701,1660,1598,1588,1500,1445,1425,1387,1316,1286,1250,1208,1180,1095,1073,1027,941,927,757cm−1
【0041】
(3)上記(2)で得た化合物(28.2g)のメタノール150ml溶液に濃硫酸を触媒量加え室温で7時間攪拌した後、濃縮し飽和重曹水を加え酢酸エチル抽出し、有機層を水および飽和食塩水で洗浄した。有機層を乾燥、濃縮して(2E)−4−フェノキシ−2−ブテン酸 メチルエステル27.9gを得た。
H−NMR(CDCl,200MHz)δppm;3.76(s,3H),4.70(dd,J=2.1Hz,4.1Hz,2H),6.21(dt,J=2.1Hz,15.8Hz,1H),6.85〜7.03(m,3H),7.09(dt,J=4.1Hz,15.8Hz,1H),7.23〜7.40(m,2H)
IR(neat):2952,1728,1666,1600,1589,1496,1437,1384,1310,1279,1244,1196,1174,1093,1030,968,840,756,692cm−1
【0042】
(4)上記(3)で得た化合物(61.8g,0.322mol)のエーテル350ml溶液にジイソブチルアルミニウムハイドライド(1.5M,トルエン溶液,473ml,0.708mol)をアルゴン気流下−40℃で滴下した後、15分間攪拌した。氷冷下、塩酸で酸性とし不溶物を濾去し、濾液を塩酸、水、飽和重曹水および飽和食塩水で洗浄した。有機層を乾燥、濃縮して得られた粗生成物を減圧蒸留して(2E)−4−フェノキシ−2−ブテン−1−オール44.0gを得た。
bp 107〜109℃/0.69〜0.85mmHg
H−NMR(CDCl,200MHz)δppm;1.49(s,1H),4.15〜4.24(m,2H),4.48〜4.61(m,2H),5.88〜6.12(m,2H),6.86〜7.01(m,3H),7.22〜7.35(m,2H)
IR(neat):3351,2866,1599,1587,1495,1461,1384,1303,1243,1174,1089,1030,1009,990,755,692cm−1
【0043】
(5)粉末のモレキュラシーブス4A(25.7g)およびチタンテトライソプロポキシド(16.0ml,53.6mmol)の塩化メチレン390mlの混合物にアルゴン気流下、−20℃でL−(+)−酒石酸ジイソプロピルエステル(13.8ml,64.3mmol)を滴下し、同条件下で30分間攪拌した。次いで、この混合物に上記(4)で得た化合物(44.0g,268mmol)の塩化メチレン214ml溶液を加え、−20℃で1時間攪拌した。この混合物を−30℃に冷却し、t−ブチルハイドロパーオキシド(2.8M,塩化メチレン溶液,172ml,482mmol)を55分間かけて滴下し、滴下終了後−20℃で18時間攪拌しジメチルスルフィド(43.1ml,587mmol)を加えて、さらに同温度で3時間攪拌した。次いで酒石酸水溶液(10%)29.2mlを加え室温で1時間、フッ化ナトリウム188gを加えて1時間、セライト107gおよびエーテル300mlを加えて1時間それぞれ攪拌した。濾過、濃縮して得られた油状物112gをさらにエーテル342mlに溶解し水酸化ナトリウム水溶液(1N,167ml)を加え室温で1.5時間攪拌した後、有機層を分離し、水層をエーテル抽出した。有機層を合わせて飽和食塩水で洗浄、乾燥、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン:酢酸エチル=7:3)で精製して(2S,3S)−2,3−エポキシ−4−フェノキシ−1−ブタノール40.6gを得た。
H−NMR(CDCl,200MHz)δppm;1.54〜1.84(
m,1H),3.20〜3.27(m,1H),3.38〜3.46(m,1H),3.65〜3.81(m,1H),3.73〜4.10(m,1H),4.04(dd,J=5.3Hz,11.2Hz,1H),4.26(dd,J=3.1Hz,11.2Hz,1H),6.86〜7.03(m,3H),7.23〜7.36(m,2H)
IR(neat):3401,2926,2872,1733,1600,1588,1495,1245,1084,1038,757,693cm−1
【0044】
(6)上記(5)で得た化合物(40.6g,0.225mol)およびメシルクロリド(19.2ml,0.248mol)の塩化メチレン280ml溶液にトリエチルアミン(37.6ml,0.270mol)を氷冷下で滴下した。滴下後、室温で30分間攪拌し水、飽和重曹水および飽和食塩水で洗浄した。有機層を乾燥、濃縮して(2S,3S)−2,3−エポキシ−1−メシロキシ−4−フェノキシブタン56.7gを得た。
H−NMR(CDCl,200MHz)δppm;3.09(s,3H),3.33〜3.44(m,2H),4.00〜4.61(m,4H),6.86〜7.04(m,3H),7.23〜7.39(m,2H)
【0045】
(7)上記(6)で得た化合物(56.1g,0.217mol)および塩化リチウム(18.4g,0.434mol)のN,N−ジメチルホルムアミド217ml溶液をアルゴン気流下、55℃で2.5時間加熱攪拌した。冷却後、水100mlおよび飽和食塩水300mlを加え酢酸エチル:ヘキサン(1:1)で抽出し、有機層を飽和食塩水で洗浄した。有機層を乾燥、濃縮して(2S,3S)−1−クロロ−2,3−エポキシ−4−フェノキシブタン38.7gを得た。
H−NMR(CDCl,200MHz)δppm;3.27〜3.37(m,2H),3.63(d,J=5.1Hz,2H),4.05(dd,J=4.8Hz,11.3Hz,1H),4.23(dd,J=2.9Hz,11.3Hz,1H),6.86〜7.02(m,3H),7.23〜7.34(m,2H)
IR(neat):2924,1588,1489,1451,1426,1389,1334,1308,1295,1244,1233,1180,1156,1140,1084,1032,1013,922,868,815,761,738cm−1
【0046】
(8)上記(7)で得た化合物(32.4g,0.163mol)のテトラヒドロフラン160ml溶液にn−ブチルリチウム(2.5M,ヘキサン溶液,196ml,0.489mol)をアルゴン気流下、−70℃で滴下した。滴下後、同条件下で30分間攪拌し飽和塩化アンモニウム水溶液200mlを加え酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した。有機層を乾燥、濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン:酢酸エチル=17:3)で精製して(3R)−3−ヒドロキシ−4−フェノキシ−1−ブチン23.1gを得た。
H−NMR(CDCl,200MHz)δppm;2.53(d,J=2.3Hz,1H),2.56(d,J=5.4Hz,1H),4.03〜4.21(m,2H),4.70〜4.83(m,1H),6.88〜7.04(m,3H),7.23〜7.36(m,2H)
IR(neat):3412,3282,2940,2865,2126,1602,1589,1499,1456,1327,1309,1295,1254,1173,1082,1049,969,895,752,693,674cm−1
【0047】
(9)上記(8)で得た化合物(23.1g,0.142mol)およびイミダゾール(19.3g,0.284mol)のN,N−ジメチルホルムアミド140ml溶液に氷冷下、t−ブチルジメチルクロロシラン(25.6g,0.170mol)を加えた。室温で一夜攪拌した後、飽和重曹水650mlにあけ室温で15分間攪拌し、ヘキサン:酢酸エチル=4:1で抽出し、有機層を飽和重曹水および飽和食塩水で洗浄した。有機層を乾燥、濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン:エーテル=49:1)で精製し、さらに減圧蒸留して標記化合物35.9gを得た。
bp 108〜110℃/0.97mmHg
H−NMR(CDCl,200MHz)δppm;0.13(s,3H),0.17(s,3H),0.92(s,9H),2.45(d,J=2.2Hz,1H),3.99〜4.13(m,2H),4.68〜4.79(m,1H),6.86〜7.00(m,3H),7.21〜7.34(m,2H)
IR(neat):3308,2955,2930,2885,2858,2120,1601,1589,1497,1473,1389,1362,1302,1250,1173,1120,1051,965,838,781,754,691cm−1
【0048】
製造例2
(3RS)−3−(t−ブチルジメチルシロキシ)−4−(4’−フルオロフェノキシ)−1−ブチン
製造例1と同様にして標記化合物を得た。
bp 86.0〜87.5℃/0.30〜0.36mmHg
H−NMR(CDCl,200MHz)δppm;0.13(s,3H),0.16(s,3H),0.91(s,9H),2.45(d,J=2.2Hz,1H),3.95〜4.10(m,2H),4.15〜4.75(m,1H),6.79〜7.03(m,4H)
IR(neat):3308,2956,2931,2886,2859,2121,1603,1508,1473,1390,1362,1295,1253,1221,1119,1049,1008,964,828,781,757,667cm−1
【0049】
製造例3
(3RS)−3−(t−ブチルジメチルシロキシ)−4−(4’−クロロフェノキシ)−1−ブチン
製造例1と同様にして標記化合物を得た。
bp 113.5〜117.0℃/0.29〜0.30mmHg
H−NMR(CDCl,200MHz)δppm;0.12(s,3H),0.16(s,3H),0.91(s,9H),2.46(d,J=2.1Hz,1H),3.96〜4.10(m,2H),4.71(ddd,J=6.9Hz,5.0Hz,2.1Hz,1H),6.80〜6.88(m,2H),7.19〜7.26(m,2H)
IR(neat):3306,2955,2930,2885,2858,2121,1598,1583,1493,1472,1387,1362,1287,1250,1171,1119,1046,1008,964,838,781,666,567,506cm−1
【0050】
製造例4
(3RS)−3−(t−ブチルジメチルシロキシ)−4−(4’−メチルフェノキシ)−1−ブチン
製造例1と同様にして標記化合物を得た。
bp 110.0〜116.5℃/0.25〜0.26mmHg
H−NMR(CDCl,200MHz)δppm;0.14(s,3H),0.18(s,3H),0.93(s,9H),2.29(s,3H),2.45(d,J=2.1Hz,1H),3.97〜4.11(m,2H),4.73(ddd,J=7.0Hz,5.0Hz,2.1Hz,1H),6.78〜6.85(m,2H),7.04〜7.11(m,2H)
IR(neat):3309,3032,2955,2930,2885,2858,2120,1615,1587,1512,1472,1386,1362,1292,1249,1177,1119,1052,1007,965,838,781,744,666,571,509cm−1
【0051】
製造例5
(3RS)−3−(t−ブチルジメチルシロキシ)−4−(4’−トリフルオロメチルフェノキシ)−1−ブチン
製造例1と同様にして標記化合物を得た。
【0052】
H−NMR(CDCl,200MHz)δppm;0.13(s,3H),0.17(s,3H),0.91(s,9H),2.47〜2.48(m,1H),4.11(d,J=5.7Hz,2H),4.71〜4.78(m,1H),6.93〜7.03(m,2H),7.50〜7.60(m,2H)
IR(neat):3311,2956,2932,2887,2860,2122,1617,1592,1520,1474,1331,1311,1260,1164,1122,1071,1011,965,837,782,668,639cm−1
【0053】
製造例6
(3R)−3−(t−ブチルジメチルシロキシ)−4−(3’−トリフルオロメチルフェノキシ)−1−ブチン
製造例1と同様にして標記化合物を得た。
bp 98.5〜101.8℃/0.58〜0.60mmHg
H−NMR(CDCl,200MHz)δppm;0.13(s,3H),0.17(s,3H),0.91(s,9H),2.47(d,J=2.2Hz,1H),4.03〜4.15(m,2H),4.68〜4.79(m,1H),7.05〜7.44(m,4H)
IR(neat):3311,2956,2932,2887,2860,2122,1594,1494,1450,1391,1331,1298,1253,1170,1131,1067,1049,968,879,839,783,698,659cm−1
【0054】
製造例7
(3RS)−3−(t−ブチルジメチルシロキシ)−4−(4’−メトキシフェノキシ)−1−ブチン
製造例1と同様にして標記化合物を得た。
bp 122.0〜124.0℃/0.21〜0.22mmHg
H−NMR(CDCl,200MHz)δppm;0.13(s,3H),0.16(s,3H),0.92(s,9H),2.45(d,J=2.2Hz,1H),3.76(s,3H),3.99(dd,J=9.8Hz,7.4Hz,1H),4.04(dd,J=9.8Hz,5.0Hz,1H),4.70(ddd,J=7.0Hz,4.9Hz,2.0Hz,1H),6.77〜6.89(m,4H)
IR(neat):3293,2954,2931,2886,2858,2120,1593,1510,1465,1388,1362,1290,1234,1182,1118,1052,1007,965,826,781,739,668cm−1
【0055】
製造例8
(3RS)−3−(t−ブチルジメチルシロキシ)−4−(4’−ビフェニルオキシ)−1−ブチン
製造例1と同様にして標記化合物を得た。
bp 164.0〜166.0℃/0.30〜0.31mmHg
H−NMR(CDCl,200MHz)δppm;0.15(s,3H),0.18(s,3H),0.93(s,9H),2.32(d,J=2.2Hz,1H),3.97〜4.18(m,2H),4.70〜4.82(m,1H),6.93〜7.05(m,2H),7.24〜7.64(m,7H)
IR(neat):3306,3033,2955,2930,2885,2858,2120,1610,1585,1520,1489,1472,1454,1410,1390,1362,1292,1270,1251,1187,1176,1119,1052,1006,965,834,812,781,763,698,668cm−1
【0056】
実施例1
(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE メチルエステル(化合物1)の製造
(1)製造例1で得た化合物(1.55g,5.60mmol)をトルエン17.2mlに溶解し、アルゴン気流下、0℃でn−ブチルリチウム(2.5M,ヘキサン溶液,2.1ml,5.16mmol)を加え、同温度で20分間攪拌した。この溶液に0℃でジエチルアルミニウムクロリド(0.94M,ヘキサン溶液,6.4ml,6.02mmol)を加え、室温まで昇温後20分間攪拌した。この溶液に室温で(4R)−2−(N,N−ジエチルアミノ)メチル−4−(t−ブチルジメチルシロキシ)シクロペント−2−エン−1−オン(0.25M,トルエン溶液,17.2ml,4.30mmol)を加え、20分間攪拌した。反応液をヘキサン(42ml)−飽和塩化アンモニウム水溶液(42ml)−塩酸水溶液(3N,12ml)の混合液に攪拌しながら注いだ後、有機層を分離し、水層をヘキサン抽出し、有機層を合わせて飽和重曹水および飽和食塩水で洗浄した。有機層を乾燥、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン:酢酸エチル=50:1)で精製して(3R,4R)−2−メチレン−3−[(3’R)−3’−(t−ブチルジメチルシロキシ)−4’−フェノキシブタ−1’−イニル]−4−(t−ブチルジメチルシロキシ)シクロペンタン−1−オン1.07gを得た。
H−NMR(CDCl,200MHz)δppm;0.11(s,3H),0.12(s,3H),0.15(s,6H),0.90(s,9H),0.91(s,9H),2.33(dd,J=18.0Hz,7.7Hz,1H),2.72(dd,J=18.0Hz,6.5Hz,1H),3.50〜3.60(m,1H),3.97〜4.09(m,2H),4.23〜4.35(m,1H),4.73〜4.83(m,1H),5.56(dd,J=2.7Hz,0.6Hz,1H),6.15(d,J=3.1Hz,1H),6.85〜7.00(m,3H),7.21〜7.34(m,2H)
IR(neat):2955,2930,2886,2858,2241,1737,1643,1601,1589,1497,1472,1389,1362,1288,1251,1114,1050,1007,975,838,780,754cm−1
【0057】
(2)アルゴン気流下、−60℃において(E)−5−カルボメトキシ−4−ペンテニル亜鉛(II)ヨージド(0.69M,テトラヒドロフラン溶液,4.6ml,3.17mmol)にシアン化銅(I)・2塩化リチウム(1.0M,テトラヒドロフラン溶液,3.98ml,3.98mmol)を加え同温度で15分間攪拌した。この溶液に−60℃で上記(1)で得た化合物(796mg,1.59mmol)のジエチルエーテル5.6mlの溶液とクロロトリメチルシラン(0.36ml,2.86mmol)を加え、攪拌しながら約1.5時間かけて0℃まで昇温した。反応液に飽和塩化アンモニウム水溶液36mlを加え、ヘキサン抽出した。有機層を飽和重曹水および飽和食塩水で洗浄後、乾燥、濃縮して得られた残渣を2−プロパノール(6.4ml)−ジエチルエーテル(1.6ml)に溶解し、p−トルエンスルホン酸ピリジン塩(20mg,0.080mmol)を加え室温で一夜攪拌した。反応液にヘキサン10mlを加え、飽和重曹水および飽和食塩水で洗浄後、乾燥、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン:酢酸エチル=19:1)で精製して(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE メチルエステル 11,15−ビス( t−ブチルジメチルシリルエーテル)522mgを得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.11(s,3H),0.13(s,3H),0.14(s,3H),0.89(s,9H),0.91(s,9H),1.18〜1.86(m,6H),2.08〜2.30(m,3H),2.17(dd,J=18.4Hz,7.3Hz,1H),2.58〜2.76(m,1H),2.67(dd,J=18.4Hz,6.9Hz,1H),3.72(s,3H),3.94〜4.10(m,2H),4.30(dd,J=13.6Hz,6.8Hz,1H),4.68〜4.79(m,1H),5.81(dt,J=15.7Hz,1.5Hz,1H),6.83〜7.04(m,4H),7.22〜7.36(m,2H)
IR(neat):2952,2931,2887,2858,2238,1748,1727,1658,1601,1589,1497,1463,1362,1251,1173,1116,1048,1007,977,940,838,780,755,692,670cm−1
【0058】
(3)上記(2)で得られた化合物(520mg,0.827mmol)のアセトニトリル27.6ml溶液にフッ化水素酸水溶液(46%)6.2mlを氷冷下で加え、同温度で2時間攪拌した。反応液を飽和重曹水200mlにあけ酢酸エチル抽出し、有機層を飽和重曹水および飽和食塩水で洗浄し、乾燥、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン:酢酸エチル=1:1)で精製して標記化合物270mgを得た。
H−NMR(CDCl,300MHz)δppm;1.38〜1.86(m,6H),2.13〜2.31(m,3H),2.23(dd,J=18.5Hz,9.1Hz,1H),2.65(ddd,J=11.4Hz,8.3Hz,1.8Hz,1H),2.76(ddd,J=18.5Hz,7.6Hz,1.3Hz,1H),2.85(d,J=3.5Hz,1H),3.06(d,J=5.2Hz,1H),3.71(s,3H),4.08(dd,J=9.6Hz,6.9Hz,1H),4.14(dd,J=9.6Hz,4.0Hz,1H),4.28〜4.40(m,1H),4.75〜4.84(m,1H),5.82(dt,J=15.7Hz,1.4Hz,1H),6.88〜7.04(m,4H),7.24〜7.35(m,2H)
IR(neat):3412,2933,2861,2241,1744,1723,1656,1600,1588,1496,1456,1438,1385,1291,1246,1174,1080,1044,988,910,756,693cm−1
【0059】
実施例2
(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE の製造
実施例1で得た化合物(205mg,0.512mmol)のアセトン5.13mlおよび水5.13mlの溶液をリン酸緩衝液(10mM,pH=7)92.3mlに溶解し、リパーゼVII(2.05g)を加え、30℃で一夜攪拌した 。室温で食塩を加え塩析し酢酸エチル抽出し、乾燥、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製して標記化合物153mgを得た。
H−NMR(CDCl,300MHz)δppm;1.32〜1.85(m,6H),2.17〜2.32(m,3H),2.23(dd,J=18.6Hz,9.2Hz,1H),2.64(ddd,J=11.4Hz,8.3Hz,1.8Hz,1H),2.75(ddd,J=18.6Hz,7.3Hz,1.3Hz,1H),2.80〜4.40(br,3H),4.08(dd,J=9.6Hz,6.8Hz,1H),4.14(dd,J=9.6Hz,3.9Hz,1H),4.29〜4.39(m,1H),4.80(ddd,J=6.8Hz,3.9Hz,1.8Hz,1H),5.82(dt,J=15.6Hz,1.4Hz,1H),6.90〜7.10(m,4H),7.25〜7.34(m,2H)
IR(neat):3392,2931,2861,2242,1740,1696,1652,1600,1588,1496,1456,1417,1291,1245,1173,1080,1045,984,885,756,693cm−1
【0060】
実施例3
(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE n−ブチルエステルの製造
(1)実施例1(1)及び(2)と同様にして(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE n−ブチルエステル 11,15−ビス(t−ブチルジメチルシリルエ ーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.11(s,3H),0.13(s,3H),0.14(s,3H),0.88〜0.98(m,3H),0.89(s,9H),0.91(s,9H),1.24〜1.83(m,10H),2.08〜2.32(m,3H),2.17(dd,J=18.3Hz,7.2Hz,1H),2.58〜2.75(m,1H),2.67(ddd,J=18.3Hz,6.5Hz,1.1Hz,1H),3.94〜4.07(m,2H),4.12(t,J=6.6Hz,2H),4.24〜4.36(m,1H),4.68〜4.80(m,1H),5.81(dt,J=15.7Hz,1.5Hz,1H),6.84〜7.02(m,4H),7.22〜7.33(m,2H)
IR(neat):2956,2931,2858,2240,1748,1723,1656,1601,1589,1497,1464,1385,1362,1251,1174,1117,1049,1007,978,838,780,755cm−1
【0061】
(2)実施例1(3)と同様にして標記化合物を得た。
H−NMR(CDCl,300MHz)δppm;0.94(t,J=7.4Hz,3H),1.31〜1.86(m,10H),2.05〜3.10(br,2H),2.23(dd,J=18.5Hz,9.2Hz,1H),2.58〜2.82(m,3H),2.64(ddd,J=11.4Hz,8.2Hz,1.7Hz,1H),2.75(dd,J=18.5Hz,7.3Hz,1H),4.08(dd,J=9.7Hz,7.0Hz,1H),4.12(t,J=6.7Hz,2H),4.13(dd,J=9.7Hz,4.1Hz,1H),4.28〜4.39(m,1H),4.76〜4.83(m,1H),5.81(dt,J=15.7Hz,1.4Hz,1H),6.90〜7.03(m,3H),6.94(dt,J=15.7Hz,6.9Hz,1H),7.25〜7.35(m,2H)
IR(neat):3419,2934,2872,2242,1746,1717,1653,1600,1588,1496,1456,1386,1246,1175,1080,1045,985,885,756,693cm−1
【0062】
実施例4
(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE t−ブチルエステル(化合物2)の 製造
(1)実施例1(1)及び(2)と同様にして(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE t−ブチルエステル 11,15−ビス(t−ブチルジメチルシリルエ ーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.11(s,3H),0.13(s,3H),0.14(s,3H),0.89(s,9H),0.91(s,9H),1.23〜1.84(m,6H),1.48(s,9H),2.05〜2.33(m,3H),2.17(dd,J=18.3Hz,7.3Hz,1H),2.58〜2.75(m,1H),2.67(ddd,J=18.3Hz,6.9Hz,1.3Hz,1H),3.94〜4.07(m,2H),4.24〜4.37(m,1H),4.70〜4.79(m,1H),5.73(dt,J=15.6Hz,1.5Hz,1H),6.84(dt,J=15.6Hz,6.9Hz,1H),6.85〜7.00(m,3H),7.23〜7.35(m,2H)
IR(neat):2931,2858,2241,1748,1714,1654,1601,1589,1497,1472,1463,1391,1368,1289,1251,1157,1118,1049,1007,979,838,780,755cm−1
【0063】
(2)実施例1(3)と同様にして標記化合物を得た。
H−NMR(CDCl,300MHz)δppm;1.40〜1.86(
m,6H),1.48(s,9H),2.11〜2.31(m,3H),2.23(dd,J=18.6Hz,9.2Hz,1H),2.65(ddd,J=11.3Hz,8.2Hz,1.8Hz,1H),2.76(ddd,J=1.3Hz,7.3Hz,18.6Hz,1H),4.09(dd,J=9.6Hz,6.8Hz,1H),4.14(dd,J=9.6Hz,4.1Hz,1H),4.28〜4.39(m,1H),4.76〜4.83(m,1H),5.74(dt,J=15.6Hz,1.5Hz,1H),6.84(dt,J=15.6Hz,7.0Hz,1H),6.90〜7.03(m,3H),7.24〜7.35(m,2H)
IR(neat):3413,2978,2933,2862,2242,1746,1713,1651,1600,1589,1497,1456,1393,1369,1318,1246,1158,1081,1046,986,851,756,693cm−1
【0064】
実施例5
(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE シクロヘキシルエステル(化合物3 )の製造
(1)実施例1(1)及び(2)と同様にして(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE シクロヘキシルエステル 11,15−ビス(t−ブチルジメチルシリ ルエーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.11(s,3H),0.13(s,3H),0.14(s,3H),0.89(s,9H),0.91(s,9H),1.20〜1.96(m,16H),2.12〜2.26(m,3H),2.17(dd,J=18.3Hz,7.3Hz,1H),2.60〜2.74(m,2H),3.95〜4.08(m,2H),4.25〜4.35(m,1H),4.71〜4.78(m,1H),4.80(quint,J=4.8Hz,1H),5.79(dt,J=15.6Hz,1.5Hz,1H),6.85〜7.00(m,4H),7.23〜7.33(m,2H)
IR(neat):2932,2858,2240,1748,1718,1655,1601,1589,1497,1472,1464,1251,1175,1119,1045,1021,978,940,838,780,754,691,670cm−1
【0065】
(2)実施例1(3)と同様にして標記化合物を得た。
H−NMR(CDCl,300MHz)δppm;1.18〜1.91(m,16H),2.13〜2.30(m,3H),2.23(dd,J=18.5Hz,9.1Hz,1H),2.30〜3.06(br,2H),2.65(ddd,J=11.4Hz,8.3Hz,1.8Hz,1H),2.75(ddd,J=18.5Hz,7.3Hz,1.2Hz,1H),4.08(dd,J=9.6Hz,6.9Hz,1H),4.14(dd,J=9.6Hz,4.0Hz,1H),4.30〜4.38(m,1H),4.74〜4.84(m,2H),5.80(dt,J=15.6Hz,1.5Hz,1H),6.88〜7.02(m,4H),7.27〜7.33(m,2H)
IR(neat):3419,2937,2860,2241,1744,1714,1653,1600,1588,1497,1455,1374,1246,1175,1080,1044,1020,989,912,756,693,510cm−1
【0066】
実施例6
(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE シクロペンチルエステルの製造
(1)実施例1(1)及び(2)と同様にして(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE シクロペンチルエステル 11,15−ビス(t−ブチルジメチルシリ ルエーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.12(s,3H),0.13(s,3H),0.14(s,3H),0.90(s,9H),0.91(s,9H),1.18〜1.97(m,14H),2.08〜2.28(m,3H),2.18(dd,J=18.2Hz,7.3Hz,1H),2.59〜2.76(m,1H),2.67(ddd,J=18.2Hz,6.9Hz,1.3Hz,1H),3.99(dd,J=9.6Hz,6.8Hz,1H),4.05(dd,J=9.6Hz,5.3Hz,1H),4.24〜4.36(m,1H),4.75(ddd,J=6.8Hz,5.3Hz,1.7Hz,1H),5.15〜5.25(m,1H),5.78(dt,J=15.6Hz,1.5Hz,1H),6.82〜7.00(m,4H),7.19〜7.35(m,2H)
IR(neat):2954,2931,2885,2858,2240,1748,1717,1655,1601,1589,1497,1472,1464,1362,1251,1163,1115,1006,1049,978,838,780,754,691,670cm−1
【0067】
(2)実施例1(3)と同様にして標記化合物を得た。
H−NMR(CDCl,400MHz)δppm;1.37〜1.93(m,14H),2.14〜2.29(m,3H),2.22(dd,J=18.5Hz,9.2Hz,1H),2.50〜3.70(br,2H),2.64(ddd,J=11.4Hz,8.3Hz,1.8Hz,1H),2.75(ddd,J=18.5Hz,7.3Hz,1.0Hz,1H),4.06(dd,J=9.6Hz,6.9Hz,1H),4.17(dd,J=9.6Hz,3.9Hz,1H),4.34(ddd,J=9.2Hz,8.3Hz,7.3Hz,1H),4.79(ddd,J=6.9Hz,3.9Hz,1.8Hz,1H),5.15〜5.23(m,1H),5.78(dt,J=15.7Hz,1.4Hz,1H),6.86〜7.02(m,4H),7.25〜7.33(m,2H)
IR(neat):3412,2938,2872,2242,1745,1713,1652,1600,1588,1497,1455,1367,1325,1289,1246,1165,1081,1045,992,756,693cm−1
【0068】
実施例7
(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE イソプロピルエステルの製造
(1)実施例1(1)及び(2)と同様にして(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE イソプロピルエステル 11,15−ビス(t−ブチルジメチルシリル エーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.11(s,3H),0.13(s,3H),0.14(s,3H),0.89(s,9H),0.91(s,9H),1.18〜1.90(m,6H),1.26(d,J=6.2Hz,6H),2.08〜2.28(m,3H),2.16(dd,J=18.3Hz,7.2Hz,1H),2.59〜2.75(m,1H),2.67(ddd,J=18.3Hz,6.8Hz,1.4Hz,1H),3.93〜4.09(m,2H),4.22〜4.36(m,1H),,4.75(ddd,J=6.8Hz,5.2Hz,1.6Hz,1H),5.04(sept,J=6.2Hz,1H),5.79(dt,J=15.6Hz,1.4Hz,1H),6.82〜7.01(m,4H),7.20〜7.35(m,2H)
IR(neat):2931,2886,2858,2241,1748,1718,1655,1601,1589,1497,1472,1374,1362,1251,1175,1112,1050,979,838,780,755,692,670cm−1
【0069】
(2)実施例1(3)と同様にして標記化合物を得た。
H−NMR(CDCl,200MHz)δppm;1.25(d,J=6
.2Hz,6H),1.40〜1.90(m,6H),2.12〜2.34(m,3H),2.30(dd,J=18.6Hz,9.2Hz,1H),2.35〜2.75(br,2H),2.64(m,1H),2.75(ddd,J=18.6Hz,7.4Hz,1.1Hz,1H),4.07(dd,J=9.6Hz,6.4Hz,1H),4.15(dd,J=9.6Hz,4.2Hz,1H),4.26〜4.42(m,1H),4.79(ddd,J=6.4Hz,4.2Hz,1.8Hz,1H),5.04(sept,J=6.2Hz,1H),5.79(dt,J=15.6Hz,1.5Hz,1H),6.82〜7.07(m,4H),7.23〜7.38(m,2H)
IR(neat):3413,2981,2935,2862,2242,1745,1713,1653,1600,1588,1497,1456,1374,1290,1246,1176,1109,1081,1046,990,756,693cm−1
【0070】
実施例8
(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE 2,4−ジメチル−3−ペンチルエ ステルの製造
(1)実施例1(1)及び(2)と同様にして(2E)−16−フェノキシ−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE 2,4−ジメチル−3−ペンチルエステル 11,15−ビス(t−ブ チルジメチルシリルエーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.12(s,3H),0.14(s,3H),0.15(s,3H),0.87(d,J=6.6Hz,6H),0.89(d,J=6.6Hz,6H),0.90(s,9H),0.91(s,9H),1.15〜1.81(m,6H),1.92(oct,J=6.6Hz,2H),2.10〜2.29(m,3H),2.17(dd,J=18.1Hz,7.3Hz,1H),2.58〜2.79(m,1H),2.67(dd,J=18.1Hz,8.1Hz,1H),3.96〜4.09(m,2H),4.30(dd,J=13.8Hz,7.0Hz,1H),4.64(t,J=6.0Hz,1H),4.69〜4.80(m,1H),5.84(dt,J=15.4Hz,1.2Hz,1H),6.83〜7.03(m,4H),7.20〜7.34(m,2H)
IR(neat):2960,2931,2858,2240,1748,1718,1655,1601,1589,1497,1464,1386,1371,1250,1174,1116,1049,1006,979,939,837,779,754,691,670cm−1
【0071】
(2)実施例1(3)と同様にして標記化合物を得た。
H−NMR(CDCl,300MHz)δppm;0.87(d,J=6.6Hz,6H),0.88(d,J=6.6Hz,6H),1.36〜1.90(m,6H),1.92(oct.J=6.6Hz,2H),2.16〜2.30(m,3H),2.23(dd,J=18.5Hz,9.2Hz,1H),2.48(br s,2H),2.64(ddd,J=11.4Hz,8.3Hz,1.8Hz,1H),2.75(ddd,J=18.5Hz,7.3Hz,1.2Hz,1H),4.08(dd,J=9.6Hz,6.9Hz,1H),4.14(dd,J=9.6Hz,4.2Hz,1H),4.28〜4.39(m,1H),4.64(t,J=6.6Hz,1H),4.79(ddd,J=6.9Hz,4.2Hz,1.8Hz,1H),5.84(dt,J=15.6Hz,1.5Hz,1H),6.89〜7.06(m,4H),7.25〜7.34(m,2H)
IR(neat):3401,2966,2933,2875,2242,1746,1715,1652,1600,1589,1496,1463,1387,1371,1246,1175,1134,1080,1046,989,934,902,755,692,593cm−1
【0072】
実施例9
(2E,15RS)−16−(4’−フルオロフェノキシ)−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE メチ ルエステルの製造
(1)製造例1で得た化合物の代わりに製造例2で得た化合物を用い、実施例1(1)と実質的に同様にして(3R,4R)−2−メチレン−3−[(3’RS)−3’−(t−ブチルジメチルシロキシ)−4’−(4”−フルオロフェノキシ)ブタ−1’−イニル]−4−(t−ブチルジメチルシロキシ)シクロペンタン−1−オンを得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.11(s,3H),0.13(s,3H),0.14(s,3H),0.90(s,9H),0.91(s,9H),2.34(dd,J=18.0Hz,7.7Hz,1H),2.72(dd,J=18.0Hz,6.6Hz,1H),3.51〜3.59(m,1H),3.93〜4.06(m,2H),4.23〜4.34(m,1H),4.72〜4.80(m,1H),5.56(d,J=2.4Hz,1H),6.15(d,J=3.1Hz,1H),6.78〜7.03(m,4H)
IR(neat):2955,2931,2887,2858,2242,1737,1645,1508,1473,1389,1363,1293,1253,1222,1117,1048,1007,976,950,908,838,780,755,671,513cm−1
【0073】
(2)(1)で得た化合物を用い、実施例1(2)と実質的に同様にして(2E,15RS)−16−(4’−フルオロフェノキシ)−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE メチルエステ ル 11,15−ビス(t−ブチルジメチルシリルエーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.09(s,3H),0.11(s,3H),0.12 and 0.13(s,3H),0.14(s,3H),0.89(s,9H),0.91(s,9H),1.32〜1.88(m,6H),2.09〜2.28(m,3H),2.18(dd,J=18.4Hz,7.3Hz,1H),2.61〜2.74(m,2H),3.72(s,3H),3.92〜4.05(m,2H),4.28〜4.35(m,1H),4.68〜4.76(m,1H),5.81(dt,J=15.7Hz,1.5Hz,1H),6.79〜7.02(m,5H)
IR(neat):2953,2931,2858,2241,1748,1728,1659,1507,1472,1464,1437,1362,1253,1210,1116,1046,1007,977,838,780,754,670,513cm−1
【0074】
(3)(2)で得た化合物を用い、実施例1(3)と実質的に同様にして標記化合物を得た。
H−NMR(CDCl,300MHz)δppm;1.36〜1.86(m,6H),2.15〜2.31(m,3H),2.24(dd,J=18.6Hz,9.0Hz,1H),2.64(br s,1H),2.66(ddd,J=10.6Hz,8.5Hz,1.6Hz,1H),2.76(ddd,J=18.6Hz,7.3Hz,1.2Hz,1H),2.93(br s,1H),3.72(s,3H),4.03(dd,J=9.5Hz,7.0Hz,1H),4.09(dd,J=9.5Hz,3.9Hz,1H),4.31〜4.40(m,1H),4.75〜4.81(m,1H),5.81(dt,J=15.6Hz,1.5Hz,1H),6.84〜7.03(m,5H)
IR(neat):3426,2935,2862,2242,1744,1724,1657,1508,1438,1250,1208,1084,1044,832,752,515cm−1
【0075】
実施例10
(2E,15RS)−16−(4’−クロロフェノキシ)−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE メチル エステルの製造
(1)製造例1で得た化合物の代わりに製造例3で得た化合物を用い、実施例1(1)と実質的に同様にして(3R,4R)−2−メチレン−3−[(3’RS)−3’−(t−ブチルジメチルシロキシ)−4’−(4”−クロロフェノキシ)ブタ−1’−イニル]−4−(t−ブチルジメチルシロキシ)シクロペンタン−1−オンを得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.11(s,3H),0.14(s,6H),0.90(s,9H),0.91(s,9H),2.34(dd,J=18.0Hz,7.7Hz,1H),2.72(dd,J=18.0Hz,6.6Hz,1H),3.51〜3.58(m,1H),3.95〜4.08(m,2H),4.23〜4.34(m,1H),4.72〜4.80(m,1H),5.55(d,J=2.9Hz,1H),6.15(d,J=3.1Hz,1H),6.78〜6.86(m,2H),7.19〜7.26(m,2H)
IR(neat):2955,2930,2886,2858,2242,1737,1644,1598,1583,1493,1472,1389,1362,1287,1250,1224,1171,1116,1045,1007,975,950,908,838,780,672,506cm−1
【0076】
(2)(1)で得た化合物を用い、実施例1(2)と実質的に同様にして(2E,15RS)−16−(4’−クロロフェノキシ)−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE メチルエステル 11,15−ビス(t−ブチルジメチルシリルエーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.11(s,3H),0.13(s,3H),0.14(s,3H),0.89(s,9H),0.90(s,9H),1.34〜1.88(m,6H),2.10〜2.28(m,3H),2.18(dd,J=18.2Hz,7.2Hz,1H),2.61〜2.74(m,2H),3.72(s,3H),3.92〜4.05(m,2H),4.24〜4.35(m,1H),4.68〜4.76(m,1H),5.82(dt,J=15.6Hz,1.5Hz,1H),6.78〜6.86(m,2H),6.95(dt,J=15.6Hz,7.0Hz,1H),7.19〜7.26(m,2H)
IR(neat):2953,2931,2858,2240,1748,1727,1658,1598,1583,1493,1464,1437,1362,1250,1171,1117,1044,1007,977,838,780,669,507cm−1
【0077】
(3)(2)で得た化合物を用い、実施例1(3)と実質的に同様にして標記化合物を得た。
H−NMR(CDCl,300MHz)δppm;1.36〜1.87(m,6H),2.16〜2.30(m,3H),2.24(dd,J=18.5Hz,9.0Hz,1H),2.24〜2.62(br,2H),2.62〜2.69(m,1H),2.76(ddd,J=18.6Hz,7.3Hz,1.2Hz,1H),3.72(s,3H),4.04(dd,J=9.6Hz,7.0Hz,1H),4.10(dd,J=9.6Hz,3.8Hz,1H),4.30〜4.39(m,1H),4.77〜4.81(m,1H),5.82(dt,J=15.7Hz,1.5Hz,1H),6.84〜6.89(m,2H),6.95(dt,J=15.7Hz,7.0Hz,1H),7.23〜7.28(m,2H)
IR(neat):3426,2936,2861,2241,1741,1724,1657,1597,1583,1494,1438,1374,1283,1245,1173,1091,1043,1007,828,722,668,509cm−1
【0078】
実施例11
(2E,15RS)−16−(4’−メチルフェノキシ)−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE メチル エステルの製造
(1)製造例1で得た化合物の代わりに製造例4で得た化合物を用い、実施例1(1)と実質的に同様にして(3R,4R)−2−メチレン−3−[(3’RS)−3’−(t−ブチルジメチルシロキシ)−4’−(4”−メチルフェノキシ)ブタ−1’−イニル]−4−(t−ブチルジメチルシロキシ)シクロペンタン−1−オンを得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.12(s,3H),0.14(s,6H),0.90(s,9H),0.91(s,9H),2.28(s,3H),2.33(dd,J=18.0Hz,7.7Hz,1H),2.71(dd,J=18.0Hz,6.6Hz,1H),3.51〜3.58(m,1H),3.95〜4.08(m,2H),4.23〜4.34(m,1H),4.72〜4.80(m,1H),5.56(d,J=2.6Hz,1H),6.15(d,J=3.1Hz,1H),6.75〜6.82(m,2H),7.03〜7.11(m,2H)
IR(neat):2955,2930,2886,2858,2241,1737,1644,1615,1587,1512,1472,1389,1362,1291,1250,1223,1177,1117,1051,1007,976,948,908,838,817,780,671,573,509cm−1
【0079】
(2)(1)で得た化合物を用い、実施例1(2)と実質的に同様にして(2E,15RS)−16−(4’−メチルフェノキシ)−2,3,13,14−テトラデヒドロ−17,18,19,20−テトラノル−PGE メチルエステル 11,15−ビス(t−ブチルジメチルシリルエーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.11(s,3H),0.13(s,3H),0.14(s,3H),0.89(s,9H),0.91(s,9H),1.33〜1.88(m,6H),2.09〜2.31(m,3H),2.17(dd,J=18.3Hz,7.2Hz,1H),2.28(s,3H),2.60〜2.73(m,2H),3.72(s,3H),3.92〜4.05(m,2H),4.24〜4.35(m,1H),4.69〜4.76(m,1H),5.81(dt,J=15.6Hz,1.5Hz,1H),6.75〜6.82(m,2H),6.95(dt,J=15.6Hz,6.9Hz,1H),7.04〜7.11(m,2H)
IR(neat):2952,2930,2858,2240,1748,1728,1658,1615,1511,1463,1437,1362,1250,1176,1115,1049,1007,977,839,780,670,510cm−1
【0080】
(3)(2)で得た化合物を用い、実施例1(3)と実質的に同様にして標記化合物を得た。
H−NMR(CDCl,300MHz)δppm;1.36〜1.86(m,6H),1.96〜2.52(br,2H),2.14〜2.32(m,3H),2.23(dd,J=18.5Hz,9.1Hz,1H),2.29(s,3H),2.59〜2.69(m,1H),2.75(dd,J=18.5Hz,7.1Hz,1H),3.72(s,3H),4.01〜4.07(m,1H),4.11(dd,J=9.7Hz,3.9Hz,1H),4.29〜4.38(m,1H),4.75〜4.80(m,1H),5.82(dt,J=15.6Hz,1.5Hz,1H),6.80〜6.86(m,2H),6.95(dt,J=15.6Hz,7.3Hz,1H),7.06〜7.12(m,2H)
IR(neat):3413,3018,2932,2862,2241,1744,1724,1657,1615,1587,1511,1438,1290,1244,1178,1084,1043,986,909,819,756,667,512cm−1
【0081】
実施例12
(2E,15RS)−16−(4’−トリフルオロメチルフェノキシ)−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE メチルエステルの製造
(1)製造例1で得た化合物の代わりに製造例5で得た化合物を用い、実施例1(1)と実質的に同様にして(3R,4R)−2−メチレン−3−[(3’RS)−3’−(t−ブチルジメチルシロキシ)−4’−(4”−トリフルオロメチルフェノキシ)ブタ−1’−イニル]−4−(t−ブチルジメチルシロキシ)シクロペンタン−1−オンを得た。
H−NMR(CDCl,200MHz)δppm;0.11(s,3H),0.12(s,3H),0.14(s,3H),0.15(s,3H),0.90(s,18H),2.34(dd,J=18.0Hz,7.7Hz,1H),2.72(dd,J=18.0Hz,6.6Hz,1H),3.52〜3.59(m,1H),4.02〜4.15(m,2H),4.23〜4.34(m,1H),4.75〜4.83(m,1H),5.55(d,J=2.7Hz,1H),6.16(d,J=3.1Hz,1H),6.92〜6.99(m,2H),7.51〜7.58(m,2H)
IR(neat):2956,2931,2887,2859,2241,1737,1644,1616,1592,1520,1473,1363,1330,1260,1163,1122,1071,1039,1010,975,908,837,780,671,628,594cm−1
【0082】
(2)(1)で得た化合物を用い、実施例1(2)と実質的に同様にして(2E,15RS)−16−(4’−トリフルオロメチルフェノキシ)−2,3,13,14−テトラデヒドロ−17,18,19,20−テトラノル−PGE メ チルエステル 11,15−ビス(t−ブチルジメチルシリルエーテル)を得た。 H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.11(s,3H),0.13(s,3H),0.14(s,3H),0.89(s,9H),0.90(s,9H),1.32〜1.87(m,6H),2.11〜2.28(m,3H),2.18(dd,J=18.2Hz,7.3Hz,1H),2.61〜2.74(m,2H),3.72(s,3H),4.06(d,J=5.4Hz,2H),4.25〜4.35(m,1H),4.72〜4.79(m,1H),5.82(dt,J=15.6Hz,1.5Hz,1H),6.95(dt,J=15.6Hz,7.0Hz,1H),6.90〜6.99(m,2H),7.50〜7.59(m,2H)
IR(neat):2953,2931,2859,2241,1748,1727,1659,1616,1592,1520,1473,1464,1437,1330,1311,1260,1163,1121,1071,1039,1010,977,838,812,780,670,638,595cm−1
【0083】
(3)(2)で得た化合物を用い、実施例1(3)と実質的に同様にして標記化合物を得た。
H−NMR(CDCl,300MHz)δppm;1.38〜1.87(m,6H),2.12〜2.31(m,3H),2.22〜3.18(br,2H),2.24(dd,J=18.5Hz,9.0Hz,1H),2.67(ddd,J=11.4Hz,8.1Hz,1.8Hz,1H),2.77(ddd,J=18.6Hz,7.3Hz,1.2Hz,1H),3.71(s,3H),4.12(dd,J=9.6Hz,6.7Hz,1H),4.17(dd,J=9.6Hz,4.0Hz,1H),4.31〜4.40(m,1H),4.83(ddd,J=6.7Hz,4.0Hz,1.8Hz,1H),5.83(dt,J=15.7Hz,1.5Hz,1H),6.90〜7.03(m,3H),7.54〜7.60(m,2H)
IR(neat):3412,2937,2862,2242,1745,1724,1657,1615,1592,1520,1439,1331,1260,1163,1114,1070,1037,1011,839,758,667,638,595cm−1
【0084】
実施例13
(2E)−16−(3’−トリフルオロメチルフェノキシ)−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE メチ ルエステルの製造
(1)製造例1で得た化合物の代わりに製造例6で得た化合物を用い、実施例1(1)と実質的に同様にして(3R,4R)−2−メチレン−3−[(3’R)−3’−(t−ブチルジメチルシロキシ)−4’−(3”−トリフルオロメチルフェノキシ)ブタ−1’−イニル]−4−(t−ブチルジメチルシロキシ)シクロペンタン−1−オンを得た。
H−NMR(CDCl,200MHz)δppm;0.11(s,3H),0.12(s,3H),0.14(s,3H),0.15(s,3H),0.90(s,18H),2.34(dd,J=18.0Hz,7.8Hz,1H),2.72(dd,J=18.0Hz,6.6Hz,1H),3.52〜3.59(m,1H),4.01〜4.14(m,2H),4.24〜4.35(m,1H),4.76〜4.83(m,1H),5.56(d,J=2.6Hz,1H),6.16(d,J=3.1Hz,1H),7.04〜7.43(m,4H)
IR(neat):2955,2931,2887,2859,2242,1737,1645,1594,1494,1449,1390,1330,1286,1254,1224,1170,1129,1068,1047,1007,976,838,781,748,698,671cm−1
【0085】
(2)(1)で得た化合物を用い、実施例1(2)と実質的に同様にして(2E)−16−(3’−トリフルオロメチルフェノキシ)−2,3,13,14−テトラデヒドロ−17,18,19,20−テトラノル−PGE メチルエステ ル 11,15−ビス(t−ブチルジメチルシリルエーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.11(s,3H),0.13(s,3H),0.15(s,3H),0.89(s,9H),0.90(s,9H),1.32〜1.89(m,6H),2.10〜2.29(m,3H),2.18(dd,J=18.3Hz,7.4Hz,1H),2.61〜2.74(m,2H),3.72(s,3H),3.97〜4.12(m,2H),4.25〜4.36(m,1H),4.72〜4.79(m,1H),5.80(dt,J=15.6Hz,1.5Hz,1H),6.95(dt,J=15.6Hz,7.0Hz,1H),7.03〜7.43(m,4H)
IR(neat):2953,2932,2859,2241,1748,1728,1659,1593,1494,1463,1449,1330,1252,1170,1129,1068,1045,1007,978,880,839,813,781,746,698,670cm−1
【0086】
(3)(2)で得た化合物を用い、実施例1(3)と実質的に同様にして標記化合物を得た。
H−NMR(CDCl,300MHz)δppm;1.37〜1.86(m,6H),2.15〜2.31(m,3H),2.24(dd,J=18.5Hz,9.0Hz,1H),2.36〜3.18(br s,2H),2.66(ddd,J=11.3Hz,8.2Hz,1.8Hz,1H),2.77(ddd,J=18.6Hz,7.3Hz,1.2Hz,1H),3.71(s,3H),4.11(dd,J=9.6Hz,6.8Hz,1H),4.17(dd,J=9.6Hz,4.0Hz,1H),4.32〜4.40(m,1H),4.82(ddd,J=6.8Hz,4.0Hz,1.8Hz,1H),5.82(dt,J=15.6Hz,1.5Hz,1H),6.95(dt,J=15.6Hz,7.1Hz,1H),7.10〜7.44(m,4H)
IR(neat):3426,2937,2242,1741,1726,1658,1593,1494,1451,1375,1331,1285,1243,1168,1127,1098,1068,1045,914,794,749,700,659cm−1
【0087】
実施例14
(2E,15RS)−16−(4’−メトキシフェノキシ)−17,18,1 9,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE メチ ルエステルの製造
(1)製造例1で得た化合物の代わりに製造例7で得た化合物を用い、実施例1(1)と実質的に同様にして(3R,4R)−2−メチレン−3−[(3’RS)−3’−(t−ブチルジメチルシロキシ)−4’−(4”−メトキシフェノキシ)ブタ−1’−イニル]−4−(t−ブチルジメチルシロキシ)シクロペンタン−1−オンを得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.12(s,3H),0.14(s,6H),0.90(s,9H),0.91(s,9H),2.33(dd,J=18.0Hz,7.7Hz,1H),2.71(dd,J=18.0Hz,6.6Hz,1H),3.51〜3.58(m,1H),3.77(s,3H),3.92〜4.06(m,2H),4.23〜4.34(m,1H),4.71〜4.79(m,1H),5.56(d,J=2.7Hz,1H),6.15(d,J=3.1Hz,1H),6.83(s,4H)
IR(neat):2955,2930,2887,2858,2241,1736,1645,1510,1472,1389,1362,1287,1251,1234,1182,1114,1051,1007,975,942,908,838,780,739,671,523cm−1
【0088】
(2)(1)で得た化合物を用い、実施例1(2)と実質的に同様にして(2E,15RS)−16−(4’−メトキシフェノキシ)−2,3,13,14−テトラデヒドロ−17,18,19,20−テトラノル−PGE メチルエステ ル 11,15−ビス(t−ブチルジメチルシリルエーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.11(s,3H),0.14(s,6H),0.89(s,9H),0.91(s,9H),1.32〜1.86(m,6H),2.10〜2.27(m,3H),2.17(dd,J=18.2Hz,7.2Hz,1H),2.60〜2.74(m,2H),3.72(s,3H),3.77(s,3H),3.90〜4.03(m,2H),4.24〜4.35(m,1H),4.67〜4.75(m,1H),5.81(dt,J=15.7Hz,1.5Hz,1H),6.82(s,4H),6.95(dt,J=15.7Hz,6.9Hz,1H)
IR(neat):2952,2931,2858,2239,1748,1727,1658,1509,1464,1438,1362,1251,1234,1110,1050,1007,977,838,780,738,670cm−1
【0089】
(3)(2)で得た化合物を用い、実施例1(3)と実質的に同様にして標記化合物を得た。
H−NMR(CDCl,300MHz)δppm;1.38〜1.86(m,6H),1.90〜3.25(br,2H),2.14〜2.30(m,3H),2.23(dd,J=18.5Hz,9.1Hz,1H),2.58〜2.70(m,1H),2.75(dd,J=18.5Hz,7.3Hz,1H),3.72(s,3H),3.77(s,3H),3.98〜4.04(m,1H),4.08(dd,J=9.6Hz,3.9Hz,1H),4.29〜4.38(m,1H),4.74〜4.79(m,1H),5.82(dt,J=15.7Hz,1.5Hz,1H),6.81〜7.00(m,5H)
IR(neat):3429,2935,2861,2242,1743,1724,1657,1510,1440,1275,1234,1181,1083,1045,828,742,523cm−1
【0090】
実施例15
(2E,15RS)−16−(4’−ビフェニルオキシ)−17,18,19,20−テトラノル−2,3,13,14−テトラデヒドロ−PGE メチル エステルの製造
(1)製造例1で得た化合物の代わりに製造例8で得た化合物を用い、実施例1(1)と実質的に同様にして(3R,4R)−2−メチレン−3−[(3’RS)−3’−(t−ブチルジメチルシロキシ)−4’−ビフェニルオキシブタ−1’−イニル]−4−(t−ブチルジメチルシロキシ)シクロペンタン−1−オンを得た。
H−NMR(CDCl,200MHz)δppm;0.11(s,3H),0.14(s,3H),0.15(s,3H),0.16(s,3H),0.90(s,9H),0.92(s,9H),2.34(dd,J=17.9Hz,7.7Hz,1H),2.72(dd,J=17.9Hz,6.6Hz,1H),3.53〜3.60(m,1H),4.02〜4.15(m,2H),4.25〜4.35(m,1H),4.76〜4.84(m,1H),5.57(d,J=2.7Hz,1H),6.16(d,J=3.0Hz,1H),6.93〜7.00(m,2H),7.28〜7.57(m,7H)
IR(neat):3033,2955,2930,2886,2858,2241,1736,1644,1610,1520,1489,1472,1388,1362,1291,1251,1224,1176,1114,1051,1006,976,941,909,837,780,763,719,698,671,602cm−1
【0091】
(2)(1)で得た化合物を用い、実施例1(2)と実質的に同様にして(2E,15RS)−16−(4’−ビフェニルオキシ)−2,3,13,14−テトラデヒドロ−17,18,19,20−テトラノル−PGE メチルエステル 11,15−ビス(t−ブチルジメチルシリルエーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.13(s,3H),0.14(s,3H),0.16(s,3H),0.90(s,9H),0.92(s,9H),1.34〜1.88(m,6H),2.10〜2.28(m,3H),2.18(dd,J=18.4Hz,7.2Hz,1H),2.61〜2.74(m,2H),3.71(s,3H),3.99〜4.13(m,2H),4.26〜4.37(m,1H),4.73〜4.81(m,1H),5.81(dt,J=15.7Hz,1.5Hz,1H),6.82〜7.02(m,3H),7.29〜7.57(m,7H)
IR(neat):2952,2930,2858,2240,1748,1727,1658,1610,1520,1489,1463,1436,1362,1270,1251,1176,1115,1050,1006,977,837,812,780,764,719,699,670,602cm−1
【0092】
(3)(2)で得た化合物を用い、実施例1(3)と実質的に同様にして標記化合物を得た。
H−NMR(CDCl,300MHz)δppm;1.38〜1.86(
m,6H),2.17〜2.31(m,3H),2.24(dd,J=18.6Hz,9.2Hz,1H),2.63〜2.69(m,1H),2.76(dd,J=18.6Hz,7.4Hz,1H),2.81(br s,1H),3.05(br s,1H),3.71(s,3H),4.12(dd,J=9.6Hz,7.0Hz,1H),4.18(dd,J=9.6Hz,3.9Hz,1H),4.31〜4.40(m,1H),4.79〜4.86(m,1H),5.82(dt,J=15.7Hz,1.5Hz,1H),6.90〜7.03(m,3H),7.28〜7.56(m,7H)
IR(neat):3412,3030,2934,2861,2242,1745,1723,1657,1610,1585,1520,1488,1455,1438,1315,1290,1271,1247,1177,1080,1047,910,836,763,699,667,600,551cm−1
【0093】
実施例16
16−フェノキシ−17,18,19,20−テトラノル−2,2,3,3,13,14−ヘキサデヒドロ−PGE メチルエステル(化合物4)の製造
(1)アルゴン気流下、−60℃において5−カルボメトキシ−4−ペンチニル亜鉛(II)ヨージド(0.64M,テトラヒドロフラン溶液,5.0ml,3.20mmol)にシアン化銅(I)・2塩化リチウム(1.0M,テトラヒドロフラン溶液,4.00ml,4.00mmol)を加え同温度で15分間攪拌した。この溶液に−60℃で実施例1(1)で得た化合物(801mg,1.60mmol)のジエチルエーテル5.6mlの溶液とクロロトリメチルシラン(0.37ml,2.88mmol)を加え、攪拌しながら約1.5時間かけて0℃まで昇温した。反応液に飽和塩化アンモニウム水溶液24mlを加え、ヘキサン抽出した。有機層を飽和重曹水および飽和食塩水で洗浄後、乾燥、濃縮して得られた残渣を2−プロパノール(6.4ml)−ジエチルエーテル(1.6ml)に溶解し、p−トルエンスルホン酸ピリジン塩(20mg,0.080mmol)を加え室温で一夜攪拌した。反応液にヘキサン10mlを加え、飽和重曹水および飽和食塩水で洗浄後、乾燥、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン:酢酸エチル=19:1)で精製して16−フェノキシ−17,18,19,20−テトラノル−2,2,3,3,13,14−ヘキサデヒドロ−PGE メチルエステル 11,15−ビス(t−ブ チルジメチルシリルエーテル)493mgを得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.12(s,3H),0.14(s,3H),0.15(s,3H),0.89(s,9H),0.91(s,9H),1.20〜1.86(m,6H),2.13〜2.39(m,3H),2.18(dd,J=18.2Hz,7.2Hz,1H),2.58〜2.76(m,2H),3.74(s,3H),3.95〜4.08(m,2H),4.23〜4.37(m,1H),4.70〜4.80(m,1H),6.85〜7.02(m,3H),7.22〜7.35(m,2H)
IR(neat):2953,2931,2886,2858,2238,1748,1718,1601,1497,1463,1435,1362,1255,1116,1079,1050,1007,975,838,780,754,692,670cm−1
【0094】
(2)上記(1)で得られた化合物(465mg,0.742mmol)のアセトニトリル24.7ml溶液にフッ化水素酸水溶液(46%)5.6mlを氷冷下で加え、同温度で2時間攪拌した。反応液を飽和重曹水170mlにあけ酢酸エチル抽出し、有機層を飽和重曹水および飽和食塩水で洗浄し、乾燥、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン:酢酸エチル=1:1)で精製して標記化合物247mgを得た。
H−NMR(CDCl,300MHz)δppm;1.48〜1.88(m,6H),2.18〜2.37(m,1H),2.24(dd,J=18.6Hz,9.0Hz,1H),2.33(t,J=6.5Hz,2H),2.67(ddd,J=11.3Hz,8.1Hz,1.8Hz,1H),2.76(ddd,J=18.6Hz,7.3Hz,1.3Hz,1H),2.82(d,J=3.6Hz,1H),2.96(d,J=5.2Hz,1H),3.74(s,3H),4.09(dd,J=9.6Hz,6.9Hz,1H),4.14(dd,J=9.6Hz,4.0Hz,1H),4.30〜4.41(m,1H),4.76〜4.84(m,1H),6.91〜7.06(m,3H),7.25〜7.35(m,2H)
IR(neat):3412,3016,2944,2866,2237,1745,1714,1600,1588,1496,1456,1436,1385,1260,1154,1079,1046,909,755,693,667cm−1
【0095】
実施例17
16−フェノキシ−17,18,19,20−テトラノル−2,2,3,3,13,14−ヘキサデヒドロ−PGE シクロヘキシルエステルの製造
(1)5−カルボメトキシ−4−ペンチニル亜鉛(II)ヨージドの代わりに5−カルボシクロヘキシルオキシ−4−ペンチニル亜鉛(II)ヨージドを用い、実質的に実施例16(1)と同様にして16−フェノキシ−17,18,19,20−テトラノル−2,2,3,3,13,14−ヘキサデヒドロ−PGE シク ロヘキシル エステル 11,15−ビス(t−ブチルジメチルシリルエーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.12(s,3H),0.14(s,3H),0.15(s,3H),0.90(s,9H),0.91(s,9H),1.18〜1.97(m,16H),2.13〜2.38(m,3H),2.18(dd,J=18.2Hz,7.2Hz,1H),2.58〜2.76(m,2H),3.95〜4.08(m,2H),4.23〜4.37(m,1H),4.67〜4.90(m,2H),6.83〜7.00(m,3H),7.21〜7.35(m,2H)
IR(neat):2931,2859,2236,1748,1707,1642,1601,1497,1463,1385,1252,1114,1077,1012,977,838,780,754,692cm−1
【0096】
(2)(1)で得た化合物を用い、実施例16(2)と同様にして標記化合物を得た。
H−NMR(CDCl,300MHz)δppm;1.15〜1.94(m,16H),2.15〜2.82(br,2H),2.22〜2.35(m,1H),2.24(dd,J=18.5Hz,8.9Hz,1H),2.32(t,J=6.5Hz,2H),2.67(ddd,J=10.1Hz,8.1Hz,1.8Hz,1H),2.76(ddd,J=18.7Hz,7.4Hz,1.3Hz,1H),4.09(dd,J=9.6Hz,7.0Hz,1H),4.15(dd,J=9.6Hz,4.1Hz,1H),4.30〜4.40(m,1H),4.75〜4.88(m,2H),6.90〜7.03(m,3H),7.25〜7.35(m,2H)
IR(neat):3401,2938,2861,2235,1745,1703,1600,1496,1455,1385,1253,1174,1077,1045,1012,909,754,692cm−1
【0097】
実施例18
16−フェノキシ−17,18,19,20−テトラノル−2,2,3,3,13,14−ヘキサデヒドロ−PGE t−ブチルエステル(化合物5)の製
(1)5−カルボメトキシ−4−ペンチニル亜鉛(II)ヨージドの代わりに5−カルボt−ブトキシ−4−ペンチニル亜鉛(II)ヨージドを用い、実質的に実施例16(1)と同様にして16−フェノキシ−17,18,19,20−テトラノル−2,2,3,3,13,14−ヘキサデヒドロ−PGE t−ブチルエ ステル 11,15−ビス(t−ブチルジメチルシリルエーテル)を得た。
H−NMR(CDCl,200MHz)δppm;0.10(s,3H),0.12(s,3H),0.13(s,3H),0.15(s,3H),0.89(s,9H),0.91(s,9H),1.20〜1.86(m,6H),1.49(s,9H),2.13〜2.37(m,3H),2.18(dd,J=18.2Hz,7.2Hz,1H),2.58〜2.76(m,2H),3.95〜4.10(m,2H),4.24〜4.37(m,1H),4.70〜4.80(m,1H),6.84〜7.00(m,3H),7.22〜7.34(m,2H)
IR(neat):2953,2931,2858,2237,1748,1708,1601,1589,1497,1472,1463,1385,1370,1277,1256,1162,1116,1078,1050,976,838,809,780,754,692,670cm−1
【0098】
(2)(1)で得た化合物を用い、実施例16(2)と同様にして標記化合物を得た。
H−NMR(CDCl,300MHz)δppm;1.48(s,9H),1.50〜1.86(m,6H),2.20〜2.34(m,1H),2.25(dd,J=18.6Hz,9.0Hz,1H),2.30(t,J=6.5Hz,2H),2.35〜3.10(br,2H),2.68(ddd,J=9.9Hz,8.0Hz,1.8Hz,1H),2.76(ddd,J=18.6Hz,7.3Hz,1.3Hz,1H),4.09(dd,J=9.6Hz,6.5Hz,1H),4.15(dd,J=9.6Hz,4.1Hz,1H),4.30〜4.40(m,1H),4.80(ddd,J=6.7Hz,4.1Hz,1.8Hz,1H),6.90〜7.02(m,3H),7.25〜7.35(m,2H)
IR(neat):3400,2980,2933,2866,2236,1746,1704,1600,1589,1496,1456,1429,1395,1385,1370,1279,1248,1160,1127,1079,1045,844,802,756,693,512cm−1
【0099】[0001]
[Industrial applications]
The present invention relates to a novel prostaglandin E1Related to analogs.
[0002]
[Prior art]
Since prostaglandin (hereinafter abbreviated as PG) exerts various important physiological actions in a very small amount, synthesis and biological activity of natural PG and a large number of its derivatives have been hitherto intended for pharmaceutical applications. Is being considered.
Among them, PGE1Is known to have characteristic actions such as cytoprotective action and acid secretion inhibitory action.1Analogs have been considered as peptic ulcer treatments. Of these, PGE113,14-didehydro PGE in which the double bond at the 13,14 position of the above has been changed to a triple bond1As analogs, 13,14-didehydro PGE1  Methyl ester (Japanese Patent Laid-Open No. 52-100446), 6-hydroxy-13,14-didehydro PGE1(U.S. Pat. No. 4,131,736) is known and described in JP-A-52-140046, U.S. Pat. No. 4,160,101 and U.S. Pat. No. 4,249,016. 13,14-didehydro PGE having a phenoxy group at the end of the ω chain1Analogs are included.
[0003]
[Problems to be solved by the invention]
However, the conventionally known PGE1Analogs have the disadvantage that they are rapidly metabolized in vivo and therefore do not last long. In addition, conventional PGE1Since the analog induces side effects such as diarrhea, it cannot be administered at a high dose, and has a drawback that it cannot provide a sufficient effect.
An object of the present invention is to provide a conventionally known PGE1Novel PGE with more selective and stronger anti-ulcer activity than its analogues and superior durability1To provide analogs.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and as a result, have a triple bond at positions 13 and 14, a phenoxy group at the terminal position of the ω chain, and a double bond or triple bond at positions 2 and 3. Certain PGE with1The present inventors have found that analogs can solve the above problems, and have completed the present invention.
That is, the present invention uses the formula
[0005]
Figure 0003588133
[0006]
Wherein A represents a vinylene group or an ethynylene group;1Represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms having a substituent;2Represents a hydrogen atom, a halogen atom, a trifluoromethyl group, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group or a “phenyl group substituted by a halogen atom”. , R3And R4Represents a hydrogen atom, a halogen atom, a trifluoromethyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, respectively. Prostaglandin E represented by1Analogs and their salts.
[0007]
In the present invention, the alkyl group having 1 to 8 carbon atoms means a linear or branched one, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Examples include an isobutyl group, a t-butyl group, an n-pentyl group, and an isopentyl group. The cycloalkyl group having 3 to 6 carbon atoms having a substituent means a cycloalkyl group having 3 to 8 carbon atoms substituted by 1 to 3 alkyl groups having 1 to 4 carbon atoms. But a 2-norbornyl group
[0008]
Figure 0003588133
[0009]
And a 1-adamantyl group
[0010]
Figure 0003588133
[0011]
And the alkyl group substituting the cycloalkyl group may form a ring to form a polycyclic hydrocarbon.
The salt of the compound of the formula (I) is a salt with a metal such as sodium, potassium or aluminum or a salt with an organic amine such as a trialkylamine when R is a hydrogen atom in the formula (I). .
[0012]
In the present invention, R2Or R4Is a hydrogen atom, and R1Is a methyl group,
Compounds that are t-butyl or cyclohexyl are preferred.
The compound of the formula (I) can be easily produced, for example, by the methods described below.
[0013]
Figure 0003588133
[0014]
Figure 0003588133
[0015]
(In the reaction formula, R5And R6Represents the same or different hydroxyl-protecting groups;7
Is R excluding a hydrogen atom1And R2, R3, R4, A and n are as defined above.
is there.
Here, the hydroxyl-protecting group is one commonly used in the field of prostaglandins, for example, t-butyldimethylsilyl, triethylsilyl, phenyldimethylsilyl, tetrahydropyranyl, tetrahydrofuranyl, methoxymethyl Group, ethoxyethyl group, benzyl group and the like. )
{Circle around (1)} First, a compound of the formula (II) known by the method of Sato et al. [Journal of Organic Chemistry (J. Org. Chem.), Vol. 53, p. 5590 (1988)]. Then, 0.8 to 2.0 equivalents of the organic aluminum compound represented by the formula (III) is added at −10 to 30 ° C., preferably 0 to 10 ° C., in an inert solvent (for example, benzene, toluene, tetrahydrofuran, diethyl ether, Methylene chloride, n-hexane, etc.) to give the compound of formula (IV) stereospecifically.
Here, the organoaluminum compound of the formula (III) can be prepared, for example, by the following method.
[0016]
Figure 0003588133
[0017]
(In the reaction formula, R2, R3, R4And R6Is as defined above. )
That is, an alcohol compound represented by the formula (VIII) is reacted with oxalyl chloride in DMSO to form an aldehyde, and then condensed with malonic acid in pyridine, followed by decarboxylation. The esterification reaction is performed with sulfuric acid to obtain the compound of the formula (IX).
Next, the methyl ester portion of the compound of the formula (IX) is reduced with diisobutylaluminum hydride to form an alcohol, and then the double bond portion is oxidized to obtain an epoxy compound. Here, as the oxidizing agent, hydrogen peroxide, peracetic acid, m-chloroperbenzoic acid and the like can be used, and L (+)-diisopropyl tartrate is used at -20 ° C in t-butyl hydroperoxide and dichloromethane. By reacting, the compound can be stereoselectively oxidized and finally lead to an optically active compound (R form) [compound of formula (IIIa)]. The obtained epoxy compound is further subjected to methanesulfonylation and substitution reaction with lithium chloride to obtain a compound of the formula (X).
The compound of the formula (X) can be converted to the compound of the formula (XI) by reacting the compound of the formula (X) with n-butyllithium in tetrahydrofuran at -70 ° C and protecting the hydroxyl group of the resulting acetylene derivative.
The compound of formula (XI) is reacted with n-butyllithium followed by reaction with diethylaluminum chloride to prepare a compound of formula (III).
[0018]
{Circle around (2)} Next, the compound of formula (IV) is treated with 0.5 to 4 equivalents of the organocopper compound represented by formula (V) and 0.5 to 4 equivalents of chlorotrimethylsilane and an inert solvent (eg, tetrahydrofuran, diethyl (Ether, methylene chloride, toluene, n-hexane, etc.) at −78 to 40 ° C. to give the compound of the formula (VI).
Here, the organocopper compound of the formula (V) is represented by the formula
I- (CH2)n-1-A-COOR7    (XII)
(Where R7, A and n are as defined above. ), A known method [P. Knochel et al., Journal of Organic Chemistry, 53, 2390 (1988)]. That is, an iodine compound of the formula (XII) is prepared by, for example, 0.8 to 5 equivalents of zinc activated with 1,2-dibromomethane, chlorotrimethylsilane, iodine, or the like, and an inert solvent (eg, tetrahydrofuran, diethyl ether, n-hexane, n-pentane, dioxane, etc.)
IZn- (CH2)n-1-A-COOR7
(Where R7, A and n are as defined above. ). At this time, heating may be performed if necessary. The heating temperature depends on the boiling point of the solvent, but is usually 30 to 150 ° C, preferably 40 to 80 ° C. The obtained organozinc compound is reacted at -50 to 10 ° C. in the inert solvent containing copper cyanide (1 to 2.5 equivalents) and lithium chloride (2 to 5 equivalents) to obtain a compound represented by the formula: The organocopper compound (V) can be obtained.
[0019]
{Circle around (3)} Then, the compound of formula (VI) is converted into an organic solvent using an inorganic acid (for example, aqueous hydrochloric acid) or an organic acid or an amine salt thereof (for example, p-toluenesulfonic acid, p-toluenesulfonic acid pyridine salt or the like). Hydrolysis at 0 to 40 ° C. in, for example, acetone, methanol, ethanol, isopropanol, diethyl ether or a mixed solvent thereof gives a compound of formula (VII) stereoselectively.
[0020]
{Circle around (4)} Finally, the hydroxyl-protecting group of the compound of the formula (VII) is deprotected by using a conventional method in the field of prostaglandins.1Is a group of the present invention in which is a group other than a hydrogen atom [compound of formula (Ia)].
[0021]
(5) In the formula (I), R1Is a hydrogen atom [the compound of the formula (Ib)] is a compound of the formula (Ia)7Is an alkyl group having 1 to 6 carbon atoms [this is referred to as a compound of (Ic). ] Can be obtained by hydrolyzing the ester moiety of
Hydrolysis is carried out by using the compound of (Ic) in a buffer such as a phosphate buffer or a Tris-HCl buffer, and, if necessary, using an organic solvent (miscible with water such as acetone, methanol or ethanol). It is performed by reacting with an enzyme.
Enzymes used include enzymes produced by microorganisms (for example, enzymes produced by microorganisms belonging to the genus Candida and Pseudomonas), enzymes prepared from animal organs (for example, enzymes prepared from pig liver and pig pancreas), and the like. Specific examples of commercially available enzymes include Lipase VII (manufactured by Sigma, derived from a microorganism of Candida genus), Lipase AY (manufactured by Amano Pharmaceutical Co., derived from a microorganism of the genus Candida), Lipase MF (Amano Pharmaceutical Co., Ltd.) PLE-A (manufactured by Amano Pharmaceutical Co., prepared from pig liver), Esterase (manufactured by Sigma, prepared from pig liver), Lipase II (manufactured by Sigma, prepared from pig pancreas), Lipo Protein lipase (manufactured by Tokyo Chemical Industry Co., Ltd., prepared from pig pancreas).
The amount of the enzyme used may be appropriately selected depending on the titer of the enzyme and the amount of the substrate [compound of (Ic)], but is usually 0.1 to 20 parts by weight of the substrate.
The reaction temperature is 25 to 50C, preferably 30 to 35C.
[0022]
The compounds of the present invention can be administered orally or parenterally (eg, intravenously, rectally, vaginally). As the dosage form for oral administration, for example, solid preparations such as tablets, granules and capsules, and liquid preparations such as solutions, fat emulsions and liposomal suspensions can be used. When used as an oral administration preparation, the preparation may be formed by forming an inclusion compound with α, β, or γ-cyclodextrin or methylated cyclodextrin. As preparations for intravenous administration, aqueous or non-aqueous solutions, emulsifiers, suspensions, solid preparations to be used by dissolving in a solvent for injection immediately before use, and the like can be used. In addition, formulations for rectal administration include suppositories, and formulations for vaginal administration include formulations such as pessaries. The dose is 0.1 to 100 μg, which is administered once to three times a day.
[0023]
【The invention's effect】
As is clear from the test examples described below, the compound of the present invention has a strong gastric mucosa protective action and a gastric acid secretion inhibitory action, and is excellent in its sustainability. In addition, the compound of the present invention3Since it has high selectivity for the receptor, it has few side effects, and at a dose showing a certain pharmacological action, it hardly induces diarrhea, which is the most problematic in PG, and is therefore useful as a drug for treating peptic ulcer.
[0024]
Hereinafter, the effects of the present invention will be specifically described with reference to test examples. In addition, the compound 1 in each test example is the compound number shown in the below-mentioned Example.
Test Example 1 [Stomach acid secretion inhibitory effect test]
Male Wistar rats (body weight 250-300 g) were used as 2 rats per group (5 rats only in the control group). Under anesthesia with urethane, a cannula for gastric perfusion was attached to the stomach, and 0.9% physiological saline was perfused in the stomach with a perfusion pump. Drugs dissolved in a small amount of ethanol and diluted with physiological saline (the doses are shown in Table 1) were administered into the femoral vein, and 5 minutes later, histamine was similarly administered. Gastric acid secreted by histamine was neutralized and titrated with 0.02 N sodium hydroxide using an automatic titrator (pHstat), and the consumed amount was defined as the amount of gastric acid secreted. Table 1 shows the results.
[0025]
[Table 1]
Figure 0003588133
[0026]
Test Example 2 [Stomach mucosa protective action test]
Male Wistar rats (body weight 180-200 g) were used as 7-8 rats per group. The rats were fasted for 18 hours, then orally administered with a drug dissolved in a small amount of ethanol and diluted with physiological saline (the dose is shown in Table 1), and 30 minutes later, 1 ml of 0.6N hydrochloric acid was added. It was administered orally. Sixty minutes after the administration of hydrochloric acid, the stomach was removed under ether anesthesia, and the length of the gastric mucosal lesion was measured. Table 2 shows the results.
[0027]
[Table 2]
Figure 0003588133
[0028]
Test Example 3 [Evaluation test for selectivity for EP receptor]
A test for examining selectivity for the EP receptor was performed according to the literature described in British Journal of Pharmacology, Vol. 105, pp. 271-278 (1992) (EP2The receptor has been reported to be involved in diarrhea and3The receptor has been reported to be involved in gastric acid secretion. ).
a. EP1Investigation of the effect on the receptor <The guinea pig isolated ileal contraction test>
The test was performed according to the British Journal of Pharmacology, Vol. 11, pp. 379-395 (1956).
Hartley male guinea pigs were used. The longitudinal muscle of the ileum was excised, suspended in a Magnus tube (Krebs solution, 37 ° C., 30 ml), loaded with a tension of about 1 g under aeration of a mixed gas, and the contraction of the ileal smooth muscle by the test drug was recorded isometrically.
The experimental results show that-6The ileal contraction when added into the Magnus tube to reach M is 10% of acetylcholine (ACh).-6The contraction height of the ileum when M was added was expressed as a contraction rate, assuming 100%.
Table 3 shows the results.
[0029]
[Table 3]
Figure 0003588133
[0030]
Note)-is not measured
From this result, PGE2Is EP1It turned out to act on the receptor, but not the compound of the present invention.
[0031]
b. EP2Examination of the effect on the receptor <Receptor binding test in cancerous mast cell-derived P815 cells>
P815 cells can be obtained from EP described in Biochemical Pharmacology, Vol. 30, pp. 1325-1332 (1981).2It is known to have receptors. This test was performed according to this document.
P815 cells (10%) obtained from ascites of mice pre-administered intraperitoneally with P815 cells7/ Ml), and [3H] PGE2A receptor binding experiment was performed using (2 nM) as a ligand. The experimental results indicate that the test drug (10-9M) is shown by the ratio of inhibiting the binding of the ligand of M).
Table 4 shows the results.
[0032]
[Table 4]
Figure 0003588133
[0033]
Note)-is not measured
From these results, the compound of the present invention is EP2Receptor-mediated effects were found to be extremely weak.
[0034]
c. EP3Examination of effects on receptors <14C] Aminopyrine accumulation inhibitory effect test>
The test method is described in Acta Physiol. Scand. 96, pages 150-159 (1976).
Japanese white male rabbits were used. After stomach extraction of the rabbit under anesthesia, gastric mucosal wall cells were isolated by enzyme treatment. Wall cells (3 × 105) To [14C] aminopyrine (AP), test drug (10-5M) and histamine (10-5M) was added, incubation was performed for 20 minutes (37 ° C.), and the cells were taken up into the cells [14C] The amount of AP was measured using a scintillation counter.
The experimental results were based on histamine stimulation [14C] The inhibitory effect of the test drug on the amount of accumulated AP was represented by the inhibition rate. Table 5 shows the results.
[0035]
[Table 5]
Figure 0003588133
[0036]
In addition, the compound numbers in Tables 3 to 5 are shown in Examples described later, and Control A, Control B, Control C and Control D are compounds having the following structures.
[0037]
[Table 6]
Figure 0003588133
[0038]
As a result, the compound of the present invention is EP3It was found to act selectively on the receptor. Therefore, the compounds of the present invention are potent and can be antiulcer agents with few side effects.
[0039]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Note) In the nomenclature of the compound, "nor" such as "17,18,19,20-tetranor" means that there is no carbon chain at that position (in the case of an example, the carbon chain at position 17-20) Means no carbon chains.).
Production Example 1
(3R) -3- (t-butyldimethylsiloxy) -4-phenoxy-1-butyne [formula ( XI ))
(1) A solution of oxalyl chloride (48.0 ml, 0.55 mol) in methylene chloride (300 ml) was added with dimethyl sulfoxide (39.0 ml, 0.55 mol) in methylene chloride (60 ml) at −30 ° C. in an argon gas stream at the same temperature for 5 minutes. The mixture was stirred under the conditions. Then, 350 ml of a methylene chloride solution of 2-phenoxyethanol (69.1 g, 0.50 mol) was added under the same conditions, and the mixture was stirred under the same conditions for 15 minutes, and triethylamine (245 ml, 1.75 mol) was added under the same conditions. The temperature was raised to 2 ° C. over 2 hours. After 750 ml of water was added thereto and the organic layer was separated, the aqueous layer was extracted with methylene chloride. The organic layer was dried and concentrated to obtain 67.5 g of a crude product, phenoxyacetaldehyde.
[0040]
(2) A mixture of 67.5 g of the compound obtained in the above (1), pyridine (40.4 ml, 0.50 mol) and malonic acid (52.0 g, 0.50 mol) was added at 100 ° C. for 1 hour and at 140 ° C. for 1 hour. After heating and stirring for an hour, the mixture was cooled to room temperature. The reaction solution was acidified with hydrochloric acid and extracted with ether. The ether layer was extracted with an aqueous sodium hydroxide solution and washed with ether. The aqueous layer was acidified with hydrochloric acid and extracted with ether, and the organic layer was washed with saturated saline. The organic layer was dried and concentrated to obtain 28.2 g of (2E) -4-phenoxy-2-butenoic acid.
1H-NMR (DMSO-d64.77 (dd, J = 2.0 Hz, 4.2 Hz, 2H), 6.03 (dt, J = 2.0 Hz, 15.8 Hz, 1H), 6.90-7.04. (M, 3H), 6.95 (dt, J = 4.2 Hz, 15.8 Hz, 1H), 7.24 to 7.40 (m, 2H), 12.41 (s, 1H)
IR (KBr): 3435, 2894, 2885, 2593, 1701, 1660, 1598, 1588, 1500, 1445, 1245, 1387, 1316, 1286, 1250, 1208, 1180, 1095, 1073, 1027, 941, 927, 757 cm-1
[0041]
(3) A concentrated sulfuric acid was added to a 150 ml methanol solution of the compound (28.2 g) obtained in the above (2) in a catalytic amount. After stirring at room temperature for 7 hours, the mixture was concentrated, saturated aqueous sodium hydrogen carbonate was added, and the mixture was extracted with ethyl acetate. Washed with water and saturated saline. The organic layer was dried and concentrated to obtain (2E) -4-phenoxy-2-butenoic acid methyl ester 27.9 g.
1H-NMR (CDCl33.76 (s, 3H), 4.70 (dd, J = 2.1 Hz, 4.1 Hz, 2H), 6.21 (dt, J = 2.1 Hz, 15.8 Hz, 1H). ), 6.85 to 7.03 (m, 3H), 7.09 (dt, J = 4.1 Hz, 15.8 Hz, 1H), 7.23 to 7.40 (m, 2H).
IR (neat): 2952, 1728, 1666, 1600, 1589, 1496, 1437, 1384, 1310, 1279, 1244, 1196, 1174, 1093, 1030, 968, 840, 756, 692 cm-1
[0042]
(4) To a solution of the compound obtained in the above (3) (61.8 g, 0.322 mol) in 350 ml of ether was added diisobutylaluminum hydride (1.5 M, toluene solution, 473 ml, 0.708 mol) at −40 ° C. under an argon stream. After the dropwise addition, the mixture was stirred for 15 minutes. Under ice cooling, the mixture was acidified with hydrochloric acid and the insolubles were removed by filtration, and the filtrate was washed with hydrochloric acid, water, saturated aqueous sodium hydrogen carbonate and saturated saline. The organic layer was dried and concentrated, and the resulting crude product was distilled under reduced pressure to obtain 44.0 g of (2E) -4-phenoxy-2-buten-1-ol.
bp 107-109 ° C / 0.69-0.85 mmHg
1H-NMR (CDCl3, 200 MHz) δ ppm; 1.49 (s, 1H), 4.15 to 4.24 (m, 2H), 4.48 to 4.61 (m, 2H), 5.88 to 6.12 (m, 2H), 6.86 to 7.01 (m, 3H), 7.22 to 7.35 (m, 2H).
IR (neat): 3351, 2666, 1599, 1587, 1495, 1461, 1384, 1303, 1243, 1174, 1089, 1030, 1009, 990, 755, 692 cm-1
[0043]
(5) L-(+)-tartaric acid was added to a mixture of powdered molecular sieves 4A (25.7 g) and titanium tetraisopropoxide (16.0 ml, 53.6 mmol) in methylene chloride (390 ml) at -20 ° C under an argon stream. Diisopropyl ester (13.8 ml, 64.3 mmol) was added dropwise, and the mixture was stirred under the same conditions for 30 minutes. Next, to this mixture was added a solution of the compound obtained in the above (4) (44.0 g, 268 mmol) in 214 ml of methylene chloride, and the mixture was stirred at -20 ° C for 1 hour. The mixture was cooled to −30 ° C., and t-butyl hydroperoxide (2.8 M, methylene chloride solution, 172 ml, 482 mmol) was added dropwise over 55 minutes, and after the addition was completed, the mixture was stirred at −20 ° C. for 18 hours and stirred at dimethyl sulfide. (43.1 ml, 587 mmol) was added, and the mixture was further stirred at the same temperature for 3 hours. Then, 29.2 ml of tartaric acid aqueous solution (10%) was added, and the mixture was stirred at room temperature for 1 hour, 188 g of sodium fluoride was added for 1 hour, 107 g of celite and 300 ml of ether were added and stirred for 1 hour. 112 g of an oily substance obtained by filtration and concentration was further dissolved in 342 ml of ether, an aqueous sodium hydroxide solution (1N, 167 ml) was added, and the mixture was stirred at room temperature for 1.5 hours. The organic layer was separated, and the aqueous layer was extracted with ether. did. The organic layers were combined, washed with saturated saline, dried and concentrated, and the resulting residue was purified by silica gel column chromatography (developing solvent; hexane: ethyl acetate = 7: 3) to give (2S, 3S) -2,2. 40.6 g of 3-epoxy-4-phenoxy-1-butanol was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 1.54 to 1.84 (
m, 1H), 3.20 to 3.27 (m, 1H), 3.38 to 3.46 (m, 1H), 3.65 to 3.81 (m, 1H), 3.73 to 4. 10 (m, 1H), 4.04 (dd, J = 5.3 Hz, 11.2 Hz, 1H), 4.26 (dd, J = 3.1 Hz, 11.2 Hz, 1H), 6.86-7 .03 (m, 3H), 7.23 to 7.36 (m, 2H)
IR (neat): 3401, 2926, 2872, 1733, 1600, 1588, 1495, 1245, 1084, 1038, 757, 693 cm-1
[0044]
(6) Triethylamine (37.6 ml, 0.270 mol) was added to a solution of the compound (40.6 g, 0.225 mol) obtained in the above (5) and mesyl chloride (19.2 ml, 0.248 mol) in 280 ml of methylene chloride, and the mixture was ice-cooled. The solution was added dropwise under cooling. After the dropwise addition, the mixture was stirred at room temperature for 30 minutes, and washed with water, saturated aqueous sodium hydrogen carbonate and saturated saline. The organic layer was dried and concentrated to obtain 56.7 g of (2S, 3S) -2,3-epoxy-1-mesyloxy-4-phenoxybutane.
1H-NMR (CDCl33.09 (s, 3H), 3.33 to 3.44 (m, 2H), 4.00 to 4.61 (m, 4H), 6.86 to 7.04 (m, 3H), 7.23-7.39 (m, 2H)
[0045]
(7) A solution of the compound (56.1 g, 0.217 mol) obtained in the above (6) and lithium chloride (18.4 g, 0.434 mol) in N, N-dimethylformamide (217 ml) was added at 55 ° C. in an argon stream at 55 ° C. The mixture was heated and stirred for 0.5 hours. After cooling, 100 ml of water and 300 ml of saturated saline were added, extracted with ethyl acetate: hexane (1: 1), and the organic layer was washed with saturated saline. The organic layer was dried and concentrated to obtain 38.7 g of (2S, 3S) -1-chloro-2,3-epoxy-4-phenoxybutane.
1H-NMR (CDCl3, 200 MHz) δ ppm; 3.27 to 3.37 (m, 2H), 3.63 (d, J = 5.1 Hz, 2H), 4.05 (dd, J = 4.8 Hz, 11.3 Hz, 1H). ), 4.23 (dd, J = 2.9 Hz, 11.3 Hz, 1H), 6.86-7.02 (m, 3H), 7.23-7.34 (m, 2H).
IR (neat): 2924, 1588, 1489, 1451, 1426, 1389, 1334, 1308, 1295, 1244, 1233, 1180, 1156, 1140, 1084, 1032, 1013, 922, 868, 815, 761, 738 cm-1
[0046]
(8) n-Butyllithium (2.5 M, hexane solution, 196 ml, 0.489 mol) was added to a solution of the compound (32.4 g, 0.163 mol) obtained in the above (7) in 160 ml of tetrahydrofuran under an argon stream at −70. It was added dropwise at ° C. After the dropwise addition, the mixture was stirred for 30 minutes under the same conditions, 200 ml of a saturated aqueous solution of ammonium chloride was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated saline. The crude product obtained by drying and concentrating the organic layer was purified by silica gel column chromatography (developing solvent; hexane: ethyl acetate = 17: 3) to give (3R) -3-hydroxy-4-phenoxy-1-. 23.1 g of butyne were obtained.
1H-NMR (CDCl32.53 (d, J = 2.3 Hz, 1H), 2.56 (d, J = 5.4 Hz, 1H), 4.03 to 4.21 (m, 2H), 4. 70 to 4.83 (m, 1H), 6.88 to 7.04 (m, 3H), 7.23 to 7.36 (m, 2H)
IR (neat): 3412, 3282, 2940, 2865, 2126, 1602, 1589, 1499, 1456, 1327, 1309, 1295, 1254, 1173, 1082, 1049, 969, 895, 752, 693, 674 cm-1
[0047]
(9) A solution of the compound (23.1 g, 0.142 mol) obtained in the above (8) and imidazole (19.3 g, 0.284 mol) in 140 ml of N, N-dimethylformamide was cooled with ice and t-butyldimethylchlorosilane was added. (25.6 g, 0.170 mol) was added. After stirring overnight at room temperature, the mixture was poured into 650 ml of saturated aqueous sodium hydrogen carbonate, stirred at room temperature for 15 minutes, extracted with hexane: ethyl acetate = 4: 1, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated saline. The crude product obtained by drying and concentrating the organic layer was purified by silica gel column chromatography (developing solvent; hexane: ether = 49: 1), and further distilled under reduced pressure to obtain 35.9 g of the title compound.
bp 108-110 ° C / 0.97mmHg
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.13 (s, 3H), 0.17 (s, 3H), 0.92 (s, 9H), 2.45 (d, J = 2.2 Hz, 1H), 3.99 4.13 (m, 2H), 4.68 to 4.79 (m, 1H), 6.86 to 7.00 (m, 3H), 7.21 to 7.34 (m, 2H)
IR (neat): 3308, 2955, 2930, 2885, 2858, 2120, 1601, 1589, 1497, 1473, 1389, 1362, 1302, 1250, 1173, 1120, 1051, 965, 838, 781, 754, 691 cm-1
[0048]
Production Example 2
(3RS) -3- (t-butyldimethylsiloxy) -4- (4'-fluorophenoxy) -1-butyne
The title compound was obtained in the same manner as in Production Example 1.
bp 86.0-87.5 ° C / 0.30-0.36 mmHg
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.13 (s, 3H), 0.16 (s, 3H), 0.91 (s, 9H), 2.45 (d, J = 2.2 Hz, 1H), 3.95 -4.10 (m, 2H), 4.15-4.75 (m, 1H), 6.79-7.03 (m, 4H)
IR (neat): 3308, 2956, 2931, 2886, 2859, 2121, 1603, 1508, 1473, 1390, 1362, 1295, 1253, 1221, 1119, 1049, 1008, 964, 828, 781, 757, 667 cm-1
[0049]
Production Example 3
(3RS) -3- (t-butyldimethylsiloxy) -4- (4'-chlorophenoxy) -1-butyne
The title compound was obtained in the same manner as in Production Example 1.
bp 113.5-117.0 ° C / 0.29-0.30 mmHg
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.12 (s, 3H), 0.16 (s, 3H), 0.91 (s, 9H), 2.46 (d, J = 2.1 Hz, 1H), 3.96 4.10 (m, 2H), 4.71 (ddd, J = 6.9 Hz, 5.0 Hz, 2.1 Hz, 1H), 6.80 to 6.88 (m, 2H), 7.19 to 7.26 (m, 2H)
IR (neat): 3306, 2955, 2930, 2885, 2858, 2121, 1598, 1583, 1493, 1472, 1387, 1362, 1287, 1250, 1171, 1119, 1046, 1008, 964, 838, 781, 666, 567. , 506cm-1
[0050]
Production Example 4
(3RS) -3- (t-butyldimethylsiloxy) -4- (4'-methylphenoxy) -1-butyne
The title compound was obtained in the same manner as in Production Example 1.
bp 110.0-116.5 ° C / 0.25-0.26 mmHg
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.14 (s, 3H), 0.18 (s, 3H), 0.93 (s, 9H), 2.29 (s, 3H), 2.45 (d, J = 2 .1 Hz, 1H), 3.97 to 4.11 (m, 2H), 4.73 (ddd, J = 7.0 Hz, 5.0 Hz, 2.1 Hz, 1H), 6.78 to 6.85 ( m, 2H), 7.04 to 7.11 (m, 2H)
IR (neat): 3309, 3032, 2955, 2930, 2885, 2858, 2120, 1615, 1587, 1512, 1472, 1386, 1362, 1292, 1249, 1177, 1119, 1052, 1007, 965, 838, 781, 744. , 666,571,509cm-1
[0051]
Production Example 5
(3RS) -3- (t-butyldimethylsiloxy) -4- (4'-trifluoromethylphenoxy) -1-butyne
The title compound was obtained in the same manner as in Production Example 1.
[0052]
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.13 (s, 3H), 0.17 (s, 3H), 0.91 (s, 9H), 2.47 to 2.48 (m, 1H), 4.11 (d , J = 5.7 Hz, 2H), 4.71 to 4.78 (m, 1H), 6.93 to 7.03 (m, 2H), 7.50 to 7.60 (m, 2H).
IR (neat): 3111, 2956, 2932, 2887, 2860, 2122, 1617, 1592, 1520, 1474, 1331, 1311, 1260, 1164, 1122, 1071, 1011, 965, 837, 782, 668, 639 cm-1
[0053]
Production Example 6
(3R) -3- (t-butyldimethylsiloxy) -4- (3'-trifluoromethylphenoxy) -1-butyne
The title compound was obtained in the same manner as in Production Example 1.
bp 98.5-101.8 ° C / 0.58-0.60 mmHg
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.13 (s, 3H), 0.17 (s, 3H), 0.91 (s, 9H), 2.47 (d, J = 2.2 Hz, 1H), 4.03 4.15 (m, 2H), 4.68 to 4.79 (m, 1H), 7.05 to 7.44 (m, 4H)
IR (neat): 3311, 2956, 2932, 2887, 2860, 2122, 1594, 1494, 1450, 1391, 1331, 1298, 1253, 1170, 1131, 1067, 1049, 968, 879, 839, 783, 698, 659 cm-1
[0054]
Production Example 7
(3RS) -3- (t-butyldimethylsiloxy) -4- (4'-methoxyphenoxy) -1-butyne
The title compound was obtained in the same manner as in Production Example 1.
bp 122.0-124.0 ° C / 0.21-0.22 mmHg
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.13 (s, 3H), 0.16 (s, 3H), 0.92 (s, 9H), 2.45 (d, J = 2.2 Hz, 1H), 3.76. (S, 3H), 3.99 (dd, J = 9.8 Hz, 7.4 Hz, 1H), 4.04 (dd, J = 9.8 Hz, 5.0 Hz, 1H), 4.70 (ddd, J = 7.0 Hz, 4.9 Hz, 2.0 Hz, 1H), 6.77-6.89 (m, 4H)
IR (neat): 3293, 2954, 2931, 2886, 2858, 2120, 1593, 1510, 1465, 1388, 1362, 1290, 1234, 1182, 1118, 1052, 1007, 965, 826, 781, 739, 668 cm-1
[0055]
Production Example 8
(3RS) -3- (t-butyldimethylsiloxy) -4- (4'-biphenyloxy) -1-butyne
The title compound was obtained in the same manner as in Production Example 1.
bp 164.0 to 166.0 ° C / 0.30 to 0.31 mmHg
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.15 (s, 3H), 0.18 (s, 3H), 0.93 (s, 9H), 2.32 (d, J = 2.2 Hz, 1H), 3.97 4.18 (m, 2H), 4.70 to 4.82 (m, 1H), 6.93 to 7.05 (m, 2H), 7.24 to 7.64 (m, 7H)
IR (neat): 3306, 3033, 2955, 2930, 2885, 2858, 2120, 1610, 1585, 1520, 1489, 1472, 1454, 1410, 1390, 1362, 1292, 1270, 1251, 1187, 1176, 1119, 1052. , 1006,965,834,812,781,763,698,668cm-1
[0056]
Example 1
(2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 Production of methyl ester (compound 1)
(1) The compound (1.55 g, 5.60 mmol) obtained in Production Example 1 was dissolved in 17.2 ml of toluene, and n-butyllithium (2.5 M, hexane solution, 2.1 ml) was added at 0 ° C. in an argon stream. , 5.16 mmol) and stirred at the same temperature for 20 minutes. To this solution was added diethylaluminum chloride (0.94 M, hexane solution, 6.4 ml, 6.02 mmol) at 0 ° C., and the mixture was heated to room temperature and stirred for 20 minutes. At room temperature, (4R) -2- (N, N-diethylamino) methyl-4- (t-butyldimethylsiloxy) cyclopent-2-en-1-one (0.25M, toluene solution, 17.2 ml, (4.30 mmol) and stirred for 20 minutes. The reaction solution was poured into a mixed solution of hexane (42 ml) -aqueous saturated ammonium chloride solution (42 ml) -aqueous hydrochloric acid solution (3N, 12 ml) with stirring. The organic layer was separated, and the aqueous layer was extracted with hexane. The combined solution was washed with saturated aqueous sodium hydrogen carbonate and saturated saline. The residue obtained by drying and concentrating the organic layer was purified by silica gel column chromatography (developing solvent; hexane: ethyl acetate = 50: 1) to give (3R, 4R) -2-methylene-3-[(3 ′ R) -3 '-(t-Butyldimethylsiloxy) -4'-phenoxybuta-1'-ynyl] -4- (t-butyldimethylsiloxy) cyclopentan-1-one 1.07 g.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.11 (s, 3H), 0.12 (s, 3H), 0.15 (s, 6H), 0.90 (s, 9H), 0.91 (s, 9H), 2.33 (dd, J = 18.0 Hz, 7.7 Hz, 1H), 2.72 (dd, J = 18.0 Hz, 6.5 Hz, 1H), 3.50 to 3.60 (m, 1H) , 3.97-4.09 (m, 2H), 4.23-4.35 (m, 1H), 4.73-4.83 (m, 1H), 5.56 (dd, J = 2. 7 Hz, 0.6 Hz, 1 H), 6.15 (d, J = 3.1 Hz, 1 H), 6.85 to 7.00 (m, 3 H), 7.21 to 7.34 (m, 2 H)
IR (neat): 2955, 2930, 2886, 2858, 2241, 1737, 1643, 1601, 1589, 1497, 1472, 1389, 1362, 1288, 1251, 1114, 1050, 1007, 975, 838, 780, 754 cm-1
[0057]
(2) Copper cyanide (I) -5-carbomethoxy-4-pentenylzinc (II) iodide (0.69 M, tetrahydrofuran solution, 4.6 ml, 3.17 mmol) was added to (E) -5-carbomethoxy-4-pentenylzinc (II) iodide at −60 ° C. under an argon stream. ). Lithium dichloride (1.0 M, tetrahydrofuran solution, 3.98 ml, 3.98 mmol) was added, and the mixture was stirred at the same temperature for 15 minutes. A solution of the compound obtained in the above (1) (796 mg, 1.59 mmol) in 5.6 ml of diethyl ether and chlorotrimethylsilane (0.36 ml, 2.86 mmol) were added to this solution at −60 ° C., and the mixture was stirred with stirring. The temperature was raised to 0 ° C. over 1.5 hours. 36 ml of a saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was extracted with hexane. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated saline, dried and concentrated, and the resulting residue was dissolved in 2-propanol (6.4 ml) -diethyl ether (1.6 ml), and pyridine was added to pyridine p-toluenesulfonate. A salt (20 mg, 0.080 mmol) was added, and the mixture was stirred at room temperature overnight. 10 ml of hexane was added to the reaction solution, which was washed with saturated aqueous sodium hydrogen carbonate and saturated saline, dried and concentrated, and the resulting residue was purified by silica gel column chromatography (developing solvent; hexane: ethyl acetate = 19: 1). (2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE1  522 mg of methyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.11 (s, 3H), 0.13 (s, 3H), 0.14 (s, 3H), 0.89 (s, 9H), 0.91 (s, 9H), 1.18 to 1.86 (m, 6H), 2.08 to 2.30 (m, 3H), 2.17 (dd, J = 18.4 Hz, 7.3 Hz) , 1H), 2.58-2.76 (m, 1H), 2.67 (dd, J = 18.4 Hz, 6.9 Hz, 1H), 3.72 (s, 3H), 3.94-4. .10 (m, 2H), 4.30 (dd, J = 13.6 Hz, 6.8 Hz, 1H), 4.68 to 4.79 (m, 1H), 5.81 (dt, J = 15. 7Hz, 1.5Hz, 1H), 6.83 to 7.04 (m, 4H), 7.22 to 7.36 (m, 2H)
IR (neat): 2952, 2931, 2887, 2858, 2238, 1748, 1727, 1658, 1601, 1589, 1497, 1463, 1362, 1251, 1173, 1116, 1048, 1007, 977, 940, 838, 780, 755. , 692,670cm-1
[0058]
(3) To a solution of the compound obtained in the above (2) (520 mg, 0.827 mmol) in 27.6 ml of acetonitrile, 6.2 ml of an aqueous solution of hydrofluoric acid (46%) was added under ice-cooling, and the same temperature was applied for 2 hours. Stirred. The reaction solution was poured into 200 ml of saturated aqueous sodium hydrogen carbonate and extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated saline, dried and concentrated. = 1: 1) to give 270 mg of the title compound.
1H-NMR (CDCl31.38-1.86 (m, 6H), 2.13-2.31 (m, 3H), 2.23 (dd, J = 18.5 Hz, 9.1 Hz, 1H), 2.65 (ddd, J = 11.4 Hz, 8.3 Hz, 1.8 Hz, 1H), 2.76 (ddd, J = 18.5 Hz, 7.6 Hz, 1.3 Hz, 1H), 2.85 ( d, J = 3.5 Hz, 1H), 3.06 (d, J = 5.2 Hz, 1H), 3.71 (s, 3H), 4.08 (dd, J = 9.6 Hz, 6.9 Hz) , 1H), 4.14 (dd, J = 9.6 Hz, 4.0 Hz, 1H), 4.28-4.40 (m, 1H), 4.75-4.84 (m, 1H), 5 .82 (dt, J = 15.7 Hz, 1.4 Hz, 1H), 6.88 to 7.04 (m, 4H), 7.24 to 7.35 (m, 2H)
IR (neat): 3412, 2933, 2861, 241, 1744, 1723, 1656, 1600, 1588, 1496, 1456, 1438, 1385, 1291, 1246, 1174, 1080, 1044,988, 910, 756, 693 cm.-1
[0059]
Example 2
(2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 Manufacturing of
A solution of the compound obtained in Example 1 (205 mg, 0.512 mmol) in 5.13 ml of acetone and 5.13 ml of water was dissolved in 92.3 ml of a phosphate buffer (10 mM, pH = 7), and lipase VII (2. 05g) and stirred at 30 ° C. overnight. Salt was added at room temperature, salted out, extracted with ethyl acetate, dried and concentrated, and the obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate) to obtain 153 mg of the title compound.
1H-NMR (CDCl31.32 to 1.85 (m, 6H), 2.17 to 2.32 (m, 3H), 2.23 (dd, J = 18.6 Hz, 9.2 Hz, 1H), 2.64 (ddd, J = 11.4 Hz, 8.3 Hz, 1.8 Hz, 1H), 2.75 (ddd, J = 18.6 Hz, 7.3 Hz, 1.3 Hz, 1H), 2.80- 4.40 (br, 3H), 4.08 (dd, J = 9.6 Hz, 6.8 Hz, 1H), 4.14 (dd, J = 9.6 Hz, 3.9 Hz, 1H), 4.29 44.39 (m, 1H), 4.80 (ddd, J = 6.8 Hz, 3.9 Hz, 1.8 Hz, 1H), 5.82 (dt, J = 15.6 Hz, 1.4 Hz, 1H) ), 6.90-7.10 (m, 4H), 7.25-7.34 (m, 2H)
IR (neat): 3392, 2931, 281, 242, 1740, 1696, 1652, 1600, 1588, 1496, 1456, 1417, 1291, 1245, 1173, 1080, 1045, 984, 885, 756, 693 cm-1
[0060]
Example 3
(2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 Production of n-butyl ester
(1) (2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE in the same manner as in Example 1 (1) and (2).1  The n-butyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.11 (s, 3H), 0.13 (s, 3H), 0.14 (s, 3H), 0.88 to 0.98 (m , 3H), 0.89 (s, 9H), 0.91 (s, 9H), 1.24 to 1.83 (m, 10H), 2.08 to 2.32 (m, 3H), 2. 17 (dd, J = 18.3 Hz, 7.2 Hz, 1H), 2.58 to 2.75 (m, 1H), 2.67 (ddd, J = 18.3 Hz, 6.5 Hz, 1.1 Hz, 1H), 3.94-4.07 (m, 2H), 4.12 (t, J = 6.6 Hz, 2H), 4.24-4.36 (m, 1H), 4.68-4. 80 (m, 1H), 5.81 (dt, J = 15.7 Hz, 1.5 Hz, 1H), 6.84 to 7.02 (m, 4H), 7.22 to 7.33 (m, 2H) )
IR (neat): 2956, 2931, 2858, 2240, 1748, 1723, 1656, 1601, 1589, 1497, 1464, 1385, 1362, 1251, 1174, 1117, 1049, 1007, 978, 838, 780, 755 cm-1
[0061]
(2) The title compound was obtained in the same manner as in Example 1 (3).
1H-NMR (CDCl3, 300 MHz) δ ppm; 0.94 (t, J = 7.4 Hz, 3H), 1.31 to 1.86 (m, 10H), 2.05 to 3.10 (br, 2H), 2.23 ( dd, J = 18.5 Hz, 9.2 Hz, 1H), 2.58-2.82 (m, 3H), 2.64 (ddd, J = 11.4 Hz, 8.2 Hz, 1.7 Hz, 1H) , 2.75 (dd, J = 18.5 Hz, 7.3 Hz, 1H), 4.08 (dd, J = 9.7 Hz, 7.0 Hz, 1H), 4.12 (t, J = 6.7 Hz) , 2H), 4.13 (dd, J = 9.7 Hz, 4.1 Hz, 1H), 4.28-4.39 (m, 1H), 4.76-4.83 (m, 1H), 5 .81 (dt, J = 15.7 Hz, 1.4 Hz, 1H), 6.90 to 7.03 (m, 3H), 6.94 (dt, J = 15.7 Hz, .9Hz, 1H), 7.25~7.35 (m, 2H)
IR (neat): 3419, 2934, 2872, 2242, 1746, 1717, 1653, 1600, 1588, 1496, 1456, 1386, 1246, 1175, 1080, 1045, 985, 885, 756, 693 cm-1
[0062]
Example 4
(2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 t-butyl ester (compound 2) Manufacture
(1) (2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE in the same manner as in Example 1 (1) and (2).1  The t-butyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.11 (s, 3H), 0.13 (s, 3H), 0.14 (s, 3H), 0.89 (s, 9H), 0.91 (s, 9H), 1.23 to 1.84 (m, 6H), 1.48 (s, 9H), 2.05 to 2.33 (m, 3H), 2.17 (dd, J = 18.3 Hz, 7.3 Hz, 1H), 2.58-2.75 (m, 1H), 2.67 (ddd, J = 18.3 Hz, 6.9 Hz, 1.3 Hz, 1H), 3 .94 to 4.07 (m, 2H), 4.24 to 4.37 (m, 1H), 4.70 to 4.79 (m, 1H), 5.73 (dt, J = 15.6 Hz, 1.5 Hz, 1H), 6.84 (dt, J = 15.6 Hz, 6.9 Hz, 1H), 6.85 to 7.00 (m, 3H), 7.23 to 7.35 (m, 2H) )
IR (neat): 2931, 2858, 2241, 1748, 1714, 1654, 1601, 1589, 1497, 1472, 1463, 1391, 1368, 1289, 1251, 1157, 1118, 1049, 1007, 979, 838, 780, 755 cm-1
[0063]
(2) The title compound was obtained in the same manner as in Example 1 (3).
1H-NMR (CDCl3, 300 MHz) δ ppm; 1.40 to 1.86 (
m, 6H), 1.48 (s, 9H), 2.11 to 2.31 (m, 3H), 2.23 (dd, J = 18.6 Hz, 9.2 Hz, 1H), 2.65 ( ddd, J = 11.3 Hz, 8.2 Hz, 1.8 Hz, 1H), 2.76 (ddd, J = 1.3 Hz, 7.3 Hz, 18.6 Hz, 1H), 4.09 (dd, J = 9.6 Hz, 6.8 Hz, 1H), 4.14 (dd, J = 9.6 Hz, 4.1 Hz, 1H), 4.28-4.39 (m, 1H), 4.76-4.83 (M, 1H), 5.74 (dt, J = 15.6 Hz, 1.5 Hz, 1H), 6.84 (dt, J = 15.6 Hz, 7.0 Hz, 1H), 6.90-7. 03 (m, 3H), 7.24 to 7.35 (m, 2H)
IR (neat): 3413,2978,2933,2862,2242,1746,1713,1651,1600,1589,1497,1456,1393,1369,1318,1246,1158,1081,1046,986,851,756,693cm-1
[0064]
Example 5
(2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 Cyclohexyl ester (compound 3 )Manufacturing of
(1) (2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE in the same manner as in Example 1 (1) and (2).1  Cyclohexyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.11 (s, 3H), 0.13 (s, 3H), 0.14 (s, 3H), 0.89 (s, 9H), 0.91 (s, 9H), 1.20 to 1.96 (m, 16H), 2.12 to 2.26 (m, 3H), 2.17 (dd, J = 18.3 Hz, 7.3 Hz) , 1H), 2.60-2.74 (m, 2H), 3.95-4.08 (m, 2H), 4.25-4.35 (m, 1H), 4.71-4.78. (M, 1H), 4.80 (quint, J = 4.8 Hz, 1H), 5.79 (dt, J = 15.6 Hz, 1.5 Hz, 1H), 6.85 to 7.00 (m, 1H) 4H), 7.23-7.33 (m, 2H).
IR (neat): 2932, 2858, 2240, 1748, 1718, 1655, 1601, 1589, 1497, 1472, 1464, 1251, 1175, 1119, 1045, 1021, 978, 940, 838, 780, 754, 691, 670 cm-1
[0065]
(2) The title compound was obtained in the same manner as in Example 1 (3).
1H-NMR (CDCl3, 300 MHz) δ ppm; 1.18 to 1.91 (m, 16H), 2.13 to 2.30 (m, 3H), 2.23 (dd, J = 18.5 Hz, 9.1 Hz, 1H), 2.30 to 3.06 (br, 2H), 2.65 (ddd, J = 11.4 Hz, 8.3 Hz, 1.8 Hz, 1H), 2.75 (ddd, J = 18.5 Hz, 7. 3 Hz, 1.2 Hz, 1 H), 4.08 (dd, J = 9.6 Hz, 6.9 Hz, 1 H), 4.14 (dd, J = 9.6 Hz, 4.0 Hz, 1 H), 4.30 4.38 (m, 1H), 4.74 to 4.84 (m, 2H), 5.80 (dt, J = 15.6 Hz, 1.5 Hz, 1H), 6.88 to 7.02 ( m, 4H), 7.27 to 7.33 (m, 2H)
IR (neat): 3419, 2937, 2860, 2241, 1744, 1714, 1653, 1600, 1588, 1497, 1455, 1374, 1246, 1175, 1080, 1044, 1020, 989, 912, 756, 693, 510 cm-1
[0066]
Example 6
(2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 Production of cyclopentyl ester
(1) (2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE in the same manner as in Example 1 (1) and (2).1  Cyclopentyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.12 (s, 3H), 0.13 (s, 3H), 0.14 (s, 3H), 0.90 (s, 9H), 0.91 (s, 9H), 1.18 to 1.97 (m, 14H), 2.08 to 2.28 (m, 3H), 2.18 (dd, J = 18.2 Hz, 7.3 Hz) , 1H), 2.59 to 2.76 (m, 1H), 2.67 (ddd, J = 18.2 Hz, 6.9 Hz, 1.3 Hz, 1H), 3.99 (dd, J = 9. 6 Hz, 6.8 Hz, 1 H), 4.05 (dd, J = 9.6 Hz, 5.3 Hz, 1 H), 4.24 to 4.36 (m, 1 H), 4.75 (ddd, J = 6) 5.8 Hz, 5.3 Hz, 1.7 Hz, 1 H), 5.15 to 5.25 (m, 1 H), 5.78 (dt, J = 15.6 Hz, 1.5 Hz, 1 H), .82~7.00 (m, 4H), 7.19~7.35 (m, 2H)
IR (neat): 2954, 2931, 2885, 2858, 2240, 1748, 1717, 1655, 1601, 1589, 1497, 1472, 1464, 1362, 1251, 1163, 1115, 1006, 1049, 978, 838, 780, 754. , 691,670cm-1
[0067]
(2) The title compound was obtained in the same manner as in Example 1 (3).
1H-NMR (CDCl3, 400 MHz) δ ppm; 1.37 to 1.93 (m, 14H), 2.14 to 2.29 (m, 3H), 2.22 (dd, J = 18.5 Hz, 9.2 Hz, 1H), 2.50 to 3.70 (br, 2H), 2.64 (ddd, J = 11.4 Hz, 8.3 Hz, 1.8 Hz, 1H), 2.75 (ddd, J = 18.5 Hz, 7. 3 Hz, 1.0 Hz, 1H), 4.06 (dd, J = 9.6 Hz, 6.9 Hz, 1H), 4.17 (dd, J = 9.6 Hz, 3.9 Hz, 1H), 4.34 (Ddd, J = 9.2 Hz, 8.3 Hz, 7.3 Hz, 1H), 4.79 (ddd, J = 6.9 Hz, 3.9 Hz, 1.8 Hz, 1H), 5.15 to 5.23 (M, 1H), 5.78 (dt, J = 15.7 Hz, 1.4 Hz, 1H), 6.86 to 7.02 (m, 4H , 7.25~7.33 (m, 2H)
IR (neat): 3412, 2938, 2872, 2242, 1745, 1713, 1652, 1600, 1588, 1497, 1455, 1367, 1325, 1289, 1246, 1165, 1081, 1045, 992, 756, 693 cm-1
[0068]
Example 7
(2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 Production of isopropyl ester
(1) (2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE in the same manner as in Example 1 (1) and (2).1  Isopropyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.11 (s, 3H), 0.13 (s, 3H), 0.14 (s, 3H), 0.89 (s, 9H), 0.91 (s, 9H), 1.18 to 1.90 (m, 6H), 1.26 (d, J = 6.2 Hz, 6H), 2.08 to 2.28 (m, 3H), 2.16 (dd, J = 18.3 Hz, 7.2 Hz, 1H), 2.59-2.75 (m, 1H), 2.67 (ddd, J = 18.3 Hz, 6.8 Hz, 1.16) 4Hz, 1H), 3.93-4.09 (m, 2H), 4.22-4.36 (m, 1H), 4.75 (ddd, J = 6.8Hz, 5.2Hz, 1.H). 6 Hz, 1 H), 5.04 (sept, J = 6.2 Hz, 1 H), 5.79 (dt, J = 15.6 Hz, 1.4 Hz, 1 H), 6.82 to 7.01 (m 4H), 7.20~7.35 (m, 2H)
IR (neat): 2931, 2886, 2858, 2241, 1748, 1718, 1655, 1601, 1589, 1497, 1472, 1374, 1362, 1251, 1175, 1112, 1050, 979, 838, 780, 755, 692, 670 cm-1
[0069]
(2) The title compound was obtained in the same manner as in Example 1 (3).
1H-NMR (CDCl3, 200 MHz) δ ppm; 1.25 (d, J = 6
. 2Hz, 6H), 1.40 to 1.90 (m, 6H), 2.12 to 2.34 (m, 3H), 2.30 (dd, J = 18.6 Hz, 9.2 Hz, 1H), 2.35 to 2.75 (br, 2H), 2.64 (m, 1H), 2.75 (ddd, J = 18.6 Hz, 7.4 Hz, 1.1 Hz, 1H), 4.07 (dd) , J = 9.6 Hz, 6.4 Hz, 1H), 4.15 (dd, J = 9.6 Hz, 4.2 Hz, 1H), 4.26 to 4.42 (m, 1H), 4.79 ( ddd, J = 6.4 Hz, 4.2 Hz, 1.8 Hz, 1 H), 5.04 (sept, J = 6.2 Hz, 1 H), 5.79 (dt, J = 15.6 Hz, 1.5 Hz, 1H), 6.82 to 7.07 (m, 4H), 7.23 to 7.38 (m, 2H).
IR (neat): 3413,2981,2935,2862,2242,1745,1713,1653,1600,1588,1497,1456,1374,1290,1246,1176,1109,1081,1046,990,756,693cm-1
[0070]
Example 8
(2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 2,4-dimethyl-3-pentylue Manufacture of steles
(1) (2E) -16-phenoxy-17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE in the same manner as in Example 1 (1) and (2).1  2,4-Dimethyl-3-pentyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.12 (s, 3H), 0.14 (s, 3H), 0.15 (s, 3H), 0.87 (d, J = 6) .6 Hz, 6H), 0.89 (d, J = 6.6 Hz, 6H), 0.90 (s, 9H), 0.91 (s, 9H), 1.15 to 1.81 (m, 6H) ), 1.92 (oct, J = 6.6 Hz, 2H), 2.10 to 2.29 (m, 3H), 2.17 (dd, J = 18.1 Hz, 7.3 Hz, 1H), 2 .58 to 2.79 (m, 1H), 2.67 (dd, J = 18.1 Hz, 8.1 Hz, 1H), 3.96 to 4.09 (m, 2H), 4.30 (dd, J = 13.8 Hz, 7.0 Hz, 1H), 4.64 (t, J = 6.0 Hz, 1H), 4.69-4.80 (m, 1H), 5.84 (dt, J = 15) .4H , 1.2Hz, 1H), 6.83~7.03 (m, 4H), 7.20~7.34 (m, 2H)
IR (neat): 2960, 2931, 2858, 2240, 1748, 1718, 1655, 1601, 1589, 1497, 1464, 1386, 1371, 1250, 1174, 1116, 1049, 1006, 979, 939, 837, 779, 754. , 691,670cm-1
[0071]
(2) The title compound was obtained in the same manner as in Example 1 (3).
1H-NMR (CDCl30.87 (d, J = 6.6 Hz, 6H), 0.88 (d, J = 6.6 Hz, 6H), 1.36 to 1.90 (m, 6H), 1. 92 (oct. J = 6.6 Hz, 2H), 2.16 to 2.30 (m, 3H), 2.23 (dd, J = 18.5 Hz, 9.2 Hz, 1H), 2.48 (br s, 2H), 2.64 (ddd, J = 11.4 Hz, 8.3 Hz, 1.8 Hz, 1H), 2.75 (ddd, J = 18.5 Hz, 7.3 Hz, 1.2 Hz, 1H) , 4.08 (dd, J = 9.6 Hz, 6.9 Hz, 1H), 4.14 (dd, J = 9.6 Hz, 4.2 Hz, 1H), 4.28-4.39 (m, 1H) ), 4.64 (t, J = 6.6 Hz, 1H), 4.79 (ddd, J = 6.9 Hz, 4.2 Hz, 1.8 Hz, 1H), 5 .84 (dt, J = 15.6 Hz, 1.5 Hz, 1H), 6.89 to 7.06 (m, 4H), 7.25 to 7.34 (m, 2H)
IR (neat): 3401, 2966, 2933, 2875, 2242, 1746, 1715, 1652, 1600, 1589, 1496, 1463, 1387, 1371, 1246, 1175, 1134, 1080, 1046, 989, 934, 902, 755 , 692,593cm-1
[0072]
Example 9
(2E, 15RS) -16- (4'-fluorophenoxy) -17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 Met Production of luster
(1) The compound obtained in Production Example 2 was used in place of the compound obtained in Production Example 1, and (3R, 4R) -2-methylene-3-[( 3′RS) -3 ′-(t-butyldimethylsiloxy) -4 ′-(4 ″ -fluorophenoxy) buta-1′-ynyl] -4- (t-butyldimethylsiloxy) cyclopentan-1-one Obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.11 (s, 3H), 0.13 (s, 3H), 0.14 (s, 3H), 0.90 (s, 9H), 0.91 (s, 9H), 2.34 (dd, J = 18.0 Hz, 7.7 Hz, 1H), 2.72 (dd, J = 18.0 Hz, 6.6 Hz, 1H), 3.51 3.59 (m, 1H), 3.93 to 4.06 (m, 2H), 4.23 to 4.34 (m, 1H), 4.72 to 4.80 (m, 1H), 5 .56 (d, J = 2.4 Hz, 1H), 6.15 (d, J = 3.1 Hz, 1H), 6.78-7.03 (m, 4H)
IR (neat): 2955, 2931, 2887, 2858, 2242, 1737, 1645, 1508, 1473, 1389, 1363, 1293, 1253, 1222, 1117, 1048, 1007, 996, 950, 908, 838, 780, 755. , 671,513cm-1
[0073]
(2) Using the compound obtained in (1), (2E, 15RS) -16- (4'-fluorophenoxy) -17,18,19,20- in substantially the same manner as in Example 1 (2). Tetranor-2,3,13,14-tetradehydro-PGE1  Methyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.09 (s, 3H), 0.11 (s, 3H), 0.12 and 0.13 (s, 3H), 0.14 (s, 3H), 0.89 (s) , 9H), 0.91 (s, 9H), 1.32 to 1.88 (m, 6H), 2.09 to 2.28 (m, 3H), 2.18 (dd, J = 18.4 Hz) , 7.3 Hz, 1H), 2.61 to 2.74 (m, 2H), 3.72 (s, 3H), 3.92 to 4.05 (m, 2H), 4.28 to 4.35. (M, 1H), 4.68 to 4.76 (m, 1H), 5.81 (dt, J = 15.7 Hz, 1.5 Hz, 1H), 6.79 to 7.02 (m, 5H)
IR (neat): 2953, 2931, 2858, 2241, 1748, 1728, 1659, 1507, 1472, 1464, 1437, 1362, 1253, 1210, 1116, 1046, 1007, 977, 838, 780, 754, 670, 513 cm-1
[0074]
(3) Using the compound obtained in (2), the title compound was obtained in substantially the same manner as in Example 1 (3).
1H-NMR (CDCl3, 300 MHz) δ ppm; 1.36 to 1.86 (m, 6H), 2.15 to 2.31 (m, 3H), 2.24 (dd, J = 18.6 Hz, 9.0 Hz, 1H), 2.64 (brs, 1H), 2.66 (ddd, J = 10.6 Hz, 8.5 Hz, 1.6 Hz, 1H), 2.76 (ddd, J = 18.6 Hz, 7.3 Hz, 1 .2 Hz, 1H), 2.93 (brs, 1H), 3.72 (s, 3H), 4.03 (dd, J = 9.5 Hz, 7.0 Hz, 1H), 4.09 (dd, J = 9.5 Hz, 3.9 Hz, 1H), 4.31 to 4.40 (m, 1H), 4.75 to 4.81 (m, 1H), 5.81 (dt, J = 15.6 Hz) , 1.5Hz, 1H), 6.84-7.03 (m, 5H)
IR (neat): 3426, 2935, 2862, 2242, 1744, 1724, 1657, 1508, 1438, 1250, 1208, 1084, 1044, 832, 752, 515 cm-1
[0075]
Example 10
(2E, 15RS) -16- (4'-chlorophenoxy) -17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 Methyl Ester production
(1) Instead of the compound obtained in Production Example 1, the compound obtained in Production Example 3 was used, and (3R, 4R) -2-methylene-3-[( 3′RS) -3 ′-(t-butyldimethylsiloxy) -4 ′-(4 ″ -chlorophenoxy) buta-1′-ynyl] -4- (t-butyldimethylsiloxy) cyclopentan-1-one Obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.11 (s, 3H), 0.14 (s, 6H), 0.90 (s, 9H), 0.91 (s, 9H), 2.34 (dd, J = 18.0 Hz, 7.7 Hz, 1H), 2.72 (dd, J = 18.0 Hz, 6.6 Hz, 1H), 3.51-3.58 (m, 1H) , 3.95-4.08 (m, 2H), 4.23-4.34 (m, 1H), 4.72-4.80 (m, 1H), 5.55 (d, J = 2. 9 Hz, 1H), 6.15 (d, J = 3.1 Hz, 1H), 6.78-6.86 (m, 2H), 7.19-7.26 (m, 2H)
IR (neat): 2955, 2930, 2886, 2858, 2242, 1737, 1644, 1598, 1583, 1493, 1472, 1389, 1362, 1287, 1250, 1224, 1171, 1116, 1045, 1007, 975, 950, 908. , 838,780,672,506cm-1
[0076]
(2) Using the compound obtained in (1), (2E, 15RS) -16- (4'-chlorophenoxy) -17,18,19,20- in substantially the same manner as in Example 1 (2). Tetranor-2,3,13,14-tetradehydro-PGE1  The methyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.11 (s, 3H), 0.13 (s, 3H), 0.14 (s, 3H), 0.89 (s, 9H), 0.90 (s, 9H), 1.34 to 1.88 (m, 6H), 2.10 to 2.28 (m, 3H), 2.18 (dd, J = 18.2 Hz, 7.2 Hz) , 1H), 2.61 to 2.74 (m, 2H), 3.72 (s, 3H), 3.92 to 4.05 (m, 2H), 4.24 to 4.35 (m, 1H). ), 4.68-4.76 (m, 1H), 5.82 (dt, J = 15.6 Hz, 1.5 Hz, 1H), 6.78-6.86 (m, 2H), 6.95. (Dt, J = 15.6 Hz, 7.0 Hz, 1H), 7.19 to 7.26 (m, 2H)
IR (neat): 2953, 2931, 2858, 2240, 1748, 1727, 1658, 1598, 1583, 1493, 1464, 1437, 1362, 1250, 1171, 1117, 1044, 1007, 977, 838, 780, 669, 507 cm-1
[0077]
(3) Using the compound obtained in (2), the title compound was obtained in substantially the same manner as in Example 1 (3).
1H-NMR (CDCl3, 300 MHz) δ ppm; 1.36 to 1.87 (m, 6H), 2.16 to 2.30 (m, 3H), 2.24 (dd, J = 18.5 Hz, 9.0 Hz, 1H), 2.24 to 2.62 (br, 2H), 2.62 to 2.69 (m, 1H), 2.76 (ddd, J = 18.6 Hz, 7.3 Hz, 1.2 Hz, 1H), 3 0.72 (s, 3H), 4.04 (dd, J = 9.6 Hz, 7.0 Hz, 1H), 4.10 (dd, J = 9.6 Hz, 3.8 Hz, 1H), 4.30- 4.39 (m, 1H), 4.77 to 4.81 (m, 1H), 5.82 (dt, J = 15.7 Hz, 1.5 Hz, 1H), 6.84 to 6.89 (m , 2H), 6.95 (dt, J = 15.7 Hz, 7.0 Hz, 1H), 7.23 to 7.28 (m, 2H).
IR (neat): 3426, 2936, 2861, 241, 1741, 1724, 1657, 1597, 1583, 1494, 1438, 1374, 1283, 1245, 1173, 1091, 1043, 1007, 828, 722, 668, 509 cm-1
[0078]
Example 11
(2E, 15RS) -16- (4'-methylphenoxy) -17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 Methyl Ester production
(1) The compound obtained in Production Example 4 was used instead of the compound obtained in Production Example 1, and (3R, 4R) -2-methylene-3-[( 3′RS) -3 ′-(t-butyldimethylsiloxy) -4 ′-(4 ″ -methylphenoxy) buta-1′-ynyl] -4- (t-butyldimethylsiloxy) cyclopentan-1-one Obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.12 (s, 3H), 0.14 (s, 6H), 0.90 (s, 9H), 0.91 (s, 9H), 2.28 (s, 3H), 2.33 (dd, J = 18.0 Hz, 7.7 Hz, 1H), 2.71 (dd, J = 18.0 Hz, 6.6 Hz, 1H), 3.51 3.58 (m, 1H), 3.95 to 4.08 (m, 2H), 4.23 to 4.34 (m, 1H), 4.72 to 4.80 (m, 1H), 5 .56 (d, J = 2.6 Hz, 1H), 6.15 (d, J = 3.1 Hz, 1H), 6.75 to 6.82 (m, 2H), 7.03 to 7.11 ( m, 2H)
IR (neat): 2955, 2930, 2886, 2858, 2241, 1737, 1644, 1615, 1587, 1512, 1472, 1389, 1362, 1291, 1250, 1223, 1177, 1117, 1051, 1007, 976, 948, 908. , 838,817,780,671,573,509cm-1
[0079]
(2) (2E, 15RS) -16- (4'-methylphenoxy) -2,3,13,14- using the compound obtained in (1) and in substantially the same manner as in Example 1 (2). Tetradehydro-17,18,19,20-tetranor-PGE1  The methyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.11 (s, 3H), 0.13 (s, 3H), 0.14 (s, 3H), 0.89 (s, 9H), 0.91 (s, 9H), 1.33 to 1.88 (m, 6H), 2.09 to 2.31 (m, 3H), 2.17 (dd, J = 18.3 Hz, 7.2 Hz) , 1H), 2.28 (s, 3H), 2.60 to 2.73 (m, 2H), 3.72 (s, 3H), 3.92 to 4.05 (m, 2H), 4. 24 to 4.35 (m, 1H), 4.69 to 4.76 (m, 1H), 5.81 (dt, J = 15.6 Hz, 1.5 Hz, 1H), 6.75 to 6.82 (M, 2H), 6.95 (dt, J = 15.6 Hz, 6.9 Hz, 1H), 7.04 to 7.11 (m, 2H)
IR (neat): 2952, 2930, 2858, 2240, 1748, 1728, 1658, 1615, 1511, 1463, 1437, 1362, 1250, 1176, 1115, 1049, 1007, 977, 839, 780, 670, 510 cm-1
[0080]
(3) Using the compound obtained in (2), the title compound was obtained in substantially the same manner as in Example 1 (3).
1H-NMR (CDCl3, 300 MHz) δ ppm; 1.36 to 1.86 (m, 6H), 1.96 to 2.52 (br, 2H), 2.14 to 2.32 (m, 3H), 2.23 (dd, J = 18.5 Hz, 9.1 Hz, 1 H), 2.29 (s, 3 H), 2.59 to 2.69 (m, 1 H), 2.75 (dd, J = 18.5 Hz, 7.1 Hz) , 1H), 3.72 (s, 3H), 4.01 to 4.07 (m, 1H), 4.11 (dd, J = 9.7 Hz, 3.9 Hz, 1H), 4.29 to 4 .38 (m, 1H), 4.75 to 4.80 (m, 1H), 5.82 (dt, J = 15.6 Hz, 1.5 Hz, 1H), 6.80 to 6.86 (m, 1H) 2H), 6.95 (dt, J = 15.6 Hz, 7.3 Hz, 1H), 7.06 to 7.12 (m, 2H).
IR (neat): 3413, 3018, 2932, 2862, 2241, 1744, 1724, 1657, 1615, 1587, 1511, 1438, 1290, 1244, 1178, 1084, 1043, 986, 909, 819, 756, 667, 512 cm-1
[0081]
Example 12
(2E, 15RS) -16- (4'-trifluoromethylphenoxy) -17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 Production of methyl ester
(1) Instead of the compound obtained in Production Example 1, the compound obtained in Production Example 5 was used, and (3R, 4R) -2-methylene-3-[( 3′RS) -3 ′-(t-butyldimethylsiloxy) -4 ′-(4 ″ -trifluoromethylphenoxy) buta-1′-ynyl] -4- (t-butyldimethylsiloxy) cyclopentane-1- Got on.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.11 (s, 3H), 0.12 (s, 3H), 0.14 (s, 3H), 0.15 (s, 3H), 0.90 (s, 18H), 2.34 (dd, J = 18.0 Hz, 7.7 Hz, 1H), 2.72 (dd, J = 18.0 Hz, 6.6 Hz, 1H), 3.52 to 3.59 (m, 1H) , 4.02-4.15 (m, 2H), 4.23-4.34 (m, 1H), 4.75-4.83 (m, 1H), 5.55 (d, J = 2. 7 Hz, 1 H), 6.16 (d, J = 3.1 Hz, 1 H), 6.92 to 6.99 (m, 2 H), 7.51 to 7.58 (m, 2 H)
IR (neat): 2956, 2931, 2887, 2859, 2241, 1737, 1644, 1616, 1592, 1520, 1473, 1363, 1330, 1260, 1163, 1122, 1071, 1039, 1010, 975, 908, 837, 780 , 671,628,594cm-1
[0082]
(2) (2E, 15RS) -16- (4'-trifluoromethylphenoxy) -2,3,13, using the compound obtained in (1) in substantially the same manner as in Example 1 (2). 14-tetradehydro-17,18,19,20-tetranor-PGE1  The methyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.11 (s, 3H), 0.13 (s, 3H), 0.14 (s, 3H), 0.89 (s, 9H), 0.90 (s, 9H), 1.32 to 1.87 (m, 6H), 2.11 to 2.28 (m, 3H), 2.18 (dd, J = 18.2 Hz, 7.3 Hz) , 1H), 2.61 to 2.74 (m, 2H), 3.72 (s, 3H), 4.06 (d, J = 5.4 Hz, 2H), 4.25 to 4.35 (m , 1H), 4.72 to 4.79 (m, 1H), 5.82 (dt, J = 15.6 Hz, 1.5 Hz, 1H), 6.95 (dt, J = 15.6 Hz, 7. 0 Hz, 1H), 6.90-6.99 (m, 2H), 7.50-7.59 (m, 2H)
IR (neat): 2953, 2931, 2859, 2241, 1748, 1727, 1659, 1616, 1592, 1520, 1473, 1464, 1437, 1330, 1311, 1260, 1163, 1121, 1071, 1039, 1010, 977, 838. , 812,780,670,638,595cm-1
[0083]
(3) Using the compound obtained in (2), the title compound was obtained in substantially the same manner as in Example 1 (3).
1H-NMR (CDCl3, 300 MHz) δ ppm; 1.38 to 1.87 (m, 6H), 2.12 to 2.31 (m, 3H), 2.22 to 3.18 (br, 2H), 2.24 (dd, J = 18.5 Hz, 9.0 Hz, 1H), 2.67 (ddd, J = 11.4 Hz, 8.1 Hz, 1.8 Hz, 1H), 2.77 (ddd, J = 18.6 Hz, 7. 3 Hz, 1.2 Hz, 1 H), 3.71 (s, 3 H), 4.12 (dd, J = 9.6 Hz, 6.7 Hz, 1 H), 4.17 (dd, J = 9.6 Hz, 4 4.0Hz, 1H), 4.31 to 4.40 (m, 1H), 4.83 (ddd, J = 6.7 Hz, 4.0 Hz, 1.8 Hz, 1H), 5.83 (dt, J = 15.7Hz, 1.5Hz, 1H), 6.90-7.03 (m, 3H), 7.54-7.60 (m, 2H)
IR (neat): 3412,2937,2862,2242,1745,1724,1657,1615,1592,1520,1439,1331,1260,1163,1114,1070,1037,1011,839,758,667,638,595cm-1
[0084]
Example 13
(2E) -16- (3'-trifluoromethylphenoxy) -17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 Met Production of luster
(1) Instead of the compound obtained in Production Example 1, the compound obtained in Production Example 6 was used, and (3R, 4R) -2-methylene-3-[( 3'R) -3 '-(t-butyldimethylsiloxy) -4'-(3 "-trifluoromethylphenoxy) buta-1'-ynyl] -4- (t-butyldimethylsiloxy) cyclopentane-1- Got on.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.11 (s, 3H), 0.12 (s, 3H), 0.14 (s, 3H), 0.15 (s, 3H), 0.90 (s, 18H), 2.34 (dd, J = 18.0 Hz, 7.8 Hz, 1H), 2.72 (dd, J = 18.0 Hz, 6.6 Hz, 1H), 3.52 to 3.59 (m, 1H) , 4.01-4.14 (m, 2H), 4.24-4.35 (m, 1H), 4.76-4.83 (m, 1H), 5.56 (d, J = 2. 6Hz, 1H), 6.16 (d, J = 3.1Hz, 1H), 7.04 to 7.43 (m, 4H)
IR (neat): 2955, 2931, 2887, 2859, 2242, 1737, 1645, 1594, 1494, 1449, 1390, 1330, 1286, 1254, 1224, 1170, 1129, 1068, 1047, 1007, 976, 838, 781. , 748,698,671cm-1
[0085]
(2) (2E) -16- (3'-trifluoromethylphenoxy) -2,3,13,14- using the compound obtained in (1) in substantially the same manner as in Example 1 (2). Tetradehydro-17,18,19,20-tetranor-PGE1  Methyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.11 (s, 3H), 0.13 (s, 3H), 0.15 (s, 3H), 0.89 (s, 9H), 0.90 (s, 9H), 1.32 to 1.89 (m, 6H), 2.10 to 2.29 (m, 3H), 2.18 (dd, J = 18.3 Hz, 7.4 Hz) , 1H), 2.61 to 2.74 (m, 2H), 3.72 (s, 3H), 3.97 to 4.12 (m, 2H), 4.25 to 4.36 (m, 1H). ), 4.72 to 4.79 (m, 1H), 5.80 (dt, J = 15.6 Hz, 1.5 Hz, 1H), 6.95 (dt, J = 15.6 Hz, 7.0 Hz, 1H), 7.03 to 7.43 (m, 4H).
IR (neat): 2953, 2932, 2859, 2241, 1748, 1728, 1659, 1593, 1494, 1463, 1449, 1330, 1252, 1170, 1129, 1068, 1045, 1007, 978, 880, 839, 813, 781. , 746,698,670cm-1
[0086]
(3) Using the compound obtained in (2), the title compound was obtained in substantially the same manner as in Example 1 (3).
1H-NMR (CDCl3, 300 MHz) δ ppm; 1.37 to 1.86 (m, 6H), 2.15 to 2.31 (m, 3H), 2.24 (dd, J = 18.5 Hz, 9.0 Hz, 1H), 2.36 to 3.18 (brs, 2H), 2.66 (ddd, J = 11.3 Hz, 8.2 Hz, 1.8 Hz, 1H), 2.77 (ddd, J = 18.6 Hz, 7 .3 Hz, 1.2 Hz, 1H), 3.71 (s, 3H), 4.11 (dd, J = 9.6 Hz, 6.8 Hz, 1H), 4.17 (dd, J = 9.6 Hz, 4.0 Hz, 1 H), 4.32 to 4.40 (m, 1 H), 4.82 (ddd, J = 6.8 Hz, 4.0 Hz, 1.8 Hz, 1 H), 5.82 (dt, J) = 15.6 Hz, 1.5 Hz, 1H), 6.95 (dt, J = 15.6 Hz, 7.1 Hz, 1H), 7.10 to 7.44. (M, 4H)
IR (neat): 3426, 2937, 2242, 1741, 1726, 1658, 1593, 1494, 1451, 1375, 1331, 1285, 1243, 1168, 1127, 1098, 1068, 1045, 914, 794, 749, 700, 659 cm.-1
[0087]
Example 14
(2E, 15RS) -16- (4'-methoxyphenoxy) -17,18,1 9,20-tetranor-2,3,13,14-tetradehydro-PGE 1 Met Production of luster
(1) Instead of the compound obtained in Production Example 1, the compound obtained in Production Example 7 was used, and (3R, 4R) -2-methylene-3-[( 3′RS) -3 ′-(t-butyldimethylsiloxy) -4 ′-(4 ″ -methoxyphenoxy) buta-1′-ynyl] -4- (t-butyldimethylsiloxy) cyclopentan-1-one Obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.12 (s, 3H), 0.14 (s, 6H), 0.90 (s, 9H), 0.91 (s, 9H), 2.33 (dd, J = 18.0 Hz, 7.7 Hz, 1H), 2.71 (dd, J = 18.0 Hz, 6.6 Hz, 1H), 3.51-3.58 (m, 1H) , 3.77 (s, 3H), 3.92-4.06 (m, 2H), 4.23-4.34 (m, 1H), 4.71-4.79 (m, 1H), 5 .56 (d, J = 2.7 Hz, 1H), 6.15 (d, J = 3.1 Hz, 1H), 6.83 (s, 4H)
IR (neat): 2955, 2930, 2887, 2858, 2241, 1736, 1645, 1510, 1472, 1389, 1362, 1287, 1251, 1234, 1182, 1114, 1051, 1007, 975, 942, 908, 838, 780 , 739,671,523cm-1
[0088]
(2) (2E, 15RS) -16- (4'-methoxyphenoxy) -2,3,13,14- using the compound obtained in (1) in substantially the same manner as in Example 1 (2). Tetradehydro-17,18,19,20-tetranor-PGE1  Methyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.11 (s, 3H), 0.14 (s, 6H), 0.89 (s, 9H), 0.91 (s, 9H), 1.32 to 1.86 (m, 6H), 2.10 to 2.27 (m, 3H), 2.17 (dd, J = 18.2 Hz, 7.2 Hz, 1H), 2.60 to 2 .74 (m, 2H), 3.72 (s, 3H), 3.77 (s, 3H), 3.90 to 4.03 (m, 2H), 4.24 to 4.35 (m, 1H) ), 4.67-4.75 (m, 1H), 5.81 (dt, J = 15.7 Hz, 1.5 Hz, 1H), 6.82 (s, 4H), 6.95 (dt, J). = 15.7Hz, 6.9Hz, 1H)
IR (neat): 2952, 2931, 2858, 2239, 1748, 1727, 1658, 1509, 1464, 1438, 1362, 1251, 1234, 1110, 1050, 1007, 977, 838, 780, 738, 670 cm-1
[0089]
(3) Using the compound obtained in (2), the title compound was obtained in substantially the same manner as in Example 1 (3).
1H-NMR (CDCl3, 300 MHz) δ ppm; 1.38 to 1.86 (m, 6H), 1.90 to 3.25 (br, 2H), 2.14 to 2.30 (m, 3H), 2.23 (dd, J = 18.5 Hz, 9.1 Hz, 1H), 2.58-2.70 (m, 1H), 2.75 (dd, J = 18.5 Hz, 7.3 Hz, 1H), 3.72 (s , 3H), 3.77 (s, 3H), 3.98-4.04 (m, 1H), 4.08 (dd, J = 9.6 Hz, 3.9 Hz, 1H), 4.29-4. .38 (m, 1H), 4.74 to 4.79 (m, 1H), 5.82 (dt, J = 15.7 Hz, 1.5 Hz, 1H), 6.81 to 7.00 (m, 1H) 5H)
IR (neat): 3429, 2935, 2861, 2242, 1743, 1724, 1657, 1510, 1440, 1275, 1234, 1181, 1083, 1045, 828, 742, 523 cm-1
[0090]
Example 15
(2E, 15RS) -16- (4'-biphenyloxy) -17,18,19,20-tetranor-2,3,13,14-tetradehydro-PGE 1 Methyl Ester production
(1) Instead of the compound obtained in Production Example 1, the compound obtained in Production Example 8 was used, and (3R, 4R) -2-methylene-3-[( 3′RS) -3 ′-(t-Butyldimethylsiloxy) -4′-biphenyloxybut-1′-ynyl] -4- (t-butyldimethylsiloxy) cyclopentan-1-one was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.11 (s, 3H), 0.14 (s, 3H), 0.15 (s, 3H), 0.16 (s, 3H), 0.90 (s, 9H), 0.92 (s, 9H), 2.34 (dd, J = 17.9 Hz, 7.7 Hz, 1H), 2.72 (dd, J = 17.9 Hz, 6.6 Hz, 1H), 3.53 -3.60 (m, 1H), 4.02-4.15 (m, 2H), 4.25-4.35 (m, 1H), 4.76-4.84 (m, 1H), 5 .57 (d, J = 2.7 Hz, 1H), 6.16 (d, J = 3.0 Hz, 1H), 6.93 to 7.00 (m, 2H), 7.28 to 7.57 ( m, 7H)
IR (neat): 3033, 2955, 2930, 2886, 2858, 2241, 1736, 1644, 1610, 1520, 1489, 1472, 1388, 1362, 1291, 1251, 1224, 1176, 1114, 1051, 1006, 996, 941 , 909,837,780,763,719,698,671,602cm-1
[0091]
(2) (2E, 15RS) -16- (4'-biphenyloxy) -2,3,13,14- using the compound obtained in (1) and in substantially the same manner as in Example 1 (2). Tetradehydro-17,18,19,20-tetranor-PGE1  The methyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.13 (s, 3H), 0.14 (s, 3H), 0.16 (s, 3H), 0.90 (s, 9H), 0.92 (s, 9H), 1.34 to 1.88 (m, 6H), 2.10 to 2.28 (m, 3H), 2.18 (dd, J = 18.4 Hz, 7.2 Hz) , 1H), 2.61 to 2.74 (m, 2H), 3.71 (s, 3H), 3.99 to 4.13 (m, 2H), 4.26 to 4.37 (m, 1H). ), 4.73-4.81 (m, 1H), 5.81 (dt, J = 15.7 Hz, 1.5 Hz, 1H), 6.82-7.02 (m, 3H), 7.29. ~ 7.57 (m, 7H)
IR (neat): 2952, 2930, 2858, 2240, 1748, 1727, 1658, 1610, 1520, 1489, 1463, 1436, 1362, 1270, 1251, 1176, 1115, 1050, 1006, 977, 837, 812, 780. , 764, 719, 699, 670, 602 cm-1
[0092]
(3) Using the compound obtained in (2), the title compound was obtained in substantially the same manner as in Example 1 (3).
1H-NMR (CDCl3, 300 MHz) δ ppm; 1.38 to 1.86 (
m, 6H), 2.17 to 2.31 (m, 3H), 2.24 (dd, J = 18.6 Hz, 9.2 Hz, 1H), 2.63 to 2.69 (m, 1H), 3.76 (dd, J = 18.6 Hz, 7.4 Hz, 1H), 2.81 (brs, 1H), 3.05 (brs, 1H), 3.71 (s, 3H), 4. 12 (dd, J = 9.6 Hz, 7.0 Hz, 1H), 4.18 (dd, J = 9.6 Hz, 3.9 Hz, 1H), 4.31 to 4.40 (m, 1H), 4 .79-4.86 (m, 1H), 5.82 (dt, J = 15.7 Hz, 1.5 Hz, 1H), 6.90-7.03 (m, 3H), 7.28-7. 56 (m, 7H)
IR (neat): 3412, 3030, 2934, 2861, 224, 1745, 1723, 1657, 1610, 1585, 1520, 1488, 1455, 1438, 1315, 1290, 1271, 1247, 1177, 1080, 1047, 910, 836. , 763,699,667,600,551cm-1
[0093]
Example 16
16-phenoxy-17,18,19,20-tetranor-2,2,3,3,13,14-hexadehydro-PGE 1 Production of methyl ester (compound 4)
(1) Copper (I) cyanide dichloride was added to 5-carbomethoxy-4-pentynylzinc (II) iodide (0.64 M, tetrahydrofuran solution, 5.0 ml, 3.20 mmol) at −60 ° C. in an argon stream. Lithium (1.0 M, tetrahydrofuran solution, 4.00 ml, 4.00 mmol) was added, and the mixture was stirred at the same temperature for 15 minutes. A solution of the compound obtained in Example 1 (1) (801 mg, 1.60 mmol) in 5.6 ml of diethyl ether and chlorotrimethylsilane (0.37 ml, 2.88 mmol) were added to this solution at −60 ° C., and the mixture was stirred. The temperature was raised to 0 ° C. over about 1.5 hours. 24 ml of a saturated aqueous solution of ammonium chloride was added to the reaction solution, and the mixture was extracted with hexane. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated saline, dried and concentrated, and the resulting residue was dissolved in 2-propanol (6.4 ml) -diethyl ether (1.6 ml), and pyridine was added to pyridine p-toluenesulfonate. A salt (20 mg, 0.080 mmol) was added, and the mixture was stirred at room temperature overnight. 10 ml of hexane was added to the reaction solution, which was washed with saturated aqueous sodium hydrogen carbonate and saturated saline, dried and concentrated, and the resulting residue was purified by silica gel column chromatography (developing solvent; hexane: ethyl acetate = 19: 1). 16-phenoxy-17,18,19,20-tetranor-2,2,3,3,13,14-hexadehydro-PGE1  493 mg of methyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.12 (s, 3H), 0.14 (s, 3H), 0.15 (s, 3H), 0.89 (s, 9H), 0.91 (s, 9H), 1.20 to 1.86 (m, 6H), 2.13 to 2.39 (m, 3H), 2.18 (dd, J = 18.2 Hz, 7.2 Hz) , 1H), 2.58 to 2.76 (m, 2H), 3.74 (s, 3H), 3.95 to 4.08 (m, 2H), 4.23 to 4.37 (m, 1H). ), 4.70 to 4.80 (m, 1H), 6.85 to 7.02 (m, 3H), 7.22 to 7.35 (m, 2H).
IR (neat): 2953, 2931, 2886, 2858, 2238, 1748, 1718, 1601, 1497, 1463, 1435, 1362, 1255, 1116, 1079, 1050, 1007, 975, 838, 780, 754, 692, 670 cm-1
[0094]
(2) To a solution of the compound obtained in the above (1) (465 mg, 0.742 mmol) in 24.7 ml of acetonitrile was added 5.6 ml of an aqueous solution of hydrofluoric acid (46%) under ice-cooling, and the same temperature was maintained for 2 hours Stirred. The reaction solution was poured into 170 ml of a saturated aqueous solution of sodium bicarbonate, extracted with ethyl acetate, and the organic layer was washed with a saturated aqueous solution of sodium bicarbonate and brine, dried, and concentrated. = 1: 1) to give 247 mg of the title compound.
1H-NMR (CDCl3, 300 MHz) δ ppm; 1.48 to 1.88 (m, 6H), 2.18 to 2.37 (m, 1H), 2.24 (dd, J = 18.6 Hz, 9.0 Hz, 1H), 2.33 (t, J = 6.5 Hz, 2H), 2.67 (ddd, J = 11.3 Hz, 8.1 Hz, 1.8 Hz, 1H), 2.76 (ddd, J = 18.6 Hz, 7.3 Hz, 1.3 Hz, 1H), 2.82 (d, J = 3.6 Hz, 1H), 2.96 (d, J = 5.2 Hz, 1H), 3.74 (s, 3H), 4.09 (dd, J = 9.6 Hz, 6.9 Hz, 1H), 4.14 (dd, J = 9.6 Hz, 4.0 Hz, 1H), 4.30 to 4.41 (m, 1H) , 4.76-4.84 (m, 1H), 6.91-7.06 (m, 3H), 7.25-7.35 (m, 2H)
IR (neat): 3412, 3016, 2944, 2866, 2237, 1745, 1714, 1600, 1588, 1496, 1456, 1436, 1385, 1260, 1154, 1079, 1046, 909, 755, 693, 667 cm-1
[0095]
Example 17
16-phenoxy-17,18,19,20-tetranor-2,2,3,3,13,14-hexadehydro-PGE 1 Production of cyclohexyl ester
(1) Instead of 5-carbomethoxy-4-pentynylzinc (II) iodide, 5-carbocyclohexyloxy-4-pentynylzinc (II) iodide was used and substantially as in Example 16 (1). -Phenoxy-17,18,19,20-tetranor-2,2,3,3,13,14-hexadehydro-PGE1  Cyclohexyl ester 11,15-bis (t-butyldimethylsilyl ether) was obtained.
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.12 (s, 3H), 0.14 (s, 3H), 0.15 (s, 3H), 0.90 (s, 9H), 0.91 (s, 9H), 1.18 to 1.97 (m, 16H), 2.13 to 2.38 (m, 3H), 2.18 (dd, J = 18.2 Hz, 7.2 Hz) , 1H), 2.58-2.76 (m, 2H), 3.95-4.08 (m, 2H), 4.23-4.37 (m, 1H), 4.67-4.90. (M, 2H), 6.83 to 7.00 (m, 3H), 7.21 to 7.35 (m, 2H)
IR (neat): 2931, 2859, 2236, 1748, 1707, 1642, 1601, 1497, 1463, 1385, 1252, 1114, 1077, 1012,977, 838, 780, 754, 692 cm-1
[0096]
(2) The title compound was obtained in the same manner as in Example 16 (2) using the compound obtained in (1).
1H-NMR (CDCl3, 300 MHz) δ ppm; 1.15 to 1.94 (m, 16H), 2.15 to 2.82 (br, 2H), 2.22 to 2.35 (m, 1H), 2.24 (dd, J = 18.5 Hz, 8.9 Hz, 1 H), 2.32 (t, J = 6.5 Hz, 2 H), 2.67 (ddd, J = 10.1 Hz, 8.1 Hz, 1.8 Hz, 1 H) , 2.76 (ddd, J = 18.7 Hz, 7.4 Hz, 1.3 Hz, 1H), 4.09 (dd, J = 9.6 Hz, 7.0 Hz, 1H), 4.15 (dd, J = 9.6 Hz, 4.1 Hz, 1H), 4.30-4.40 (m, 1H), 4.75-4.88 (m, 2H), 6.90-7.03 (m, 3H) , 7.25 to 7.35 (m, 2H)
IR (neat): 3401, 2938, 2861, 235, 1745, 1703, 1600, 1496, 1455, 1385, 1253, 1174, 1077, 1045, 1012, 909, 754, 692 cm-1
[0097]
Example 18
16-phenoxy-17,18,19,20-tetranor-2,2,3,3,13,14-hexadehydro-PGE 1 Preparation of t-butyl ester (compound 5) Construction
(1) Using 5-carbo-tert-butoxy-4-pentynylzinc (II) iodide instead of 5-carbomethoxy-4-pentynylzinc (II) iodide, substantially in the same manner as in Example 16 (1) 16-phenoxy-17,18,19,20-tetranor-2,2,3,3,13,14-hexadehydro-PGE1  There was obtained t-butyl ester 11,15-bis (t-butyldimethylsilyl ether).
1H-NMR (CDCl3, 200 MHz) δ ppm; 0.10 (s, 3H), 0.12 (s, 3H), 0.13 (s, 3H), 0.15 (s, 3H), 0.89 (s, 9H), 0.91 (s, 9H), 1.20 to 1.86 (m, 6H), 1.49 (s, 9H), 2.13 to 2.37 (m, 3H), 2.18 (dd, J = 18.2 Hz, 7.2 Hz, 1H), 2.58-2.76 (m, 2H), 3.95-4.10 (m, 2H), 4.24-4.37 (m, 1H) ), 4.70-4.80 (m, 1H), 6.84-7.00 (m, 3H), 7.22-7.34 (m, 2H).
IR (neat): 2953, 2931, 2858, 2237, 1748, 1708, 1601, 1589, 1497, 1472, 1463, 1385, 1370, 1277, 1256, 1162, 1116, 1078, 1050, 976, 838, 809, 780. , 754,692,670cm-1
[0098]
(2) The title compound was obtained in the same manner as in Example 16 (2) using the compound obtained in (1).
1H-NMR (CDCl31.48 (s, 9H), 1.50 to 1.86 (m, 6H), 2.20 to 2.34 (m, 1H), 2.25 (dd, J = 18. 6 Hz, 9.0 Hz, 1 H), 2.30 (t, J = 6.5 Hz, 2 H), 2.35 to 3.10 (br, 2 H), 2.68 (ddd, J = 9.9 Hz, 8 2.0 Hz, 1.8 Hz, 1 H), 2.76 (ddd, J = 18.6 Hz, 7.3 Hz, 1.3 Hz, 1 H), 4.09 (dd, J = 9.6 Hz, 6.5 Hz, 1 H) ), 4.15 (dd, J = 9.6 Hz, 4.1 Hz, 1H), 4.30-4.40 (m, 1H), 4.80 (ddd, J = 6.7 Hz, 4.1 Hz, 1.8Hz, 1H), 6.90-7.02 (m, 3H), 7.25-7.35 (m, 2H)
IR (neat): 3400, 2980, 2933, 2866, 2236, 1746, 1704, 1600, 1589, 1496, 1456, 1429, 1395, 1385, 1370, 1279, 1248, 1160, 1127, 1079, 1045, 844, 802. , 756,693,512cm-1
[0099]

Claims (1)


Figure 0003588133
[式中、Aはビニレン基またはエチニレン基を示し、Rは水素原子、炭素原子数1〜8個のアルキル基、炭素原子数3〜8個のシクロアルキル基、炭素原子数1〜4個のアルキル基1個〜3個で置換された炭素原子数3〜6個のシクロアルキル基または当該置換された炭素原子数1〜4個のアルキル基が架橋して環を形成し、多環式炭化水素になっている炭素原子数3〜6個のシクロアルキル基を示し、Rは水素原子、ハロゲン原子、トリフルオロメチル基、炭素原子数1〜4個のアルキル基、炭素原子数1〜4個のアルコキシ基、フェニル基または「ハロゲン原子で置換されたフェニル基」を示し、RおよびRはそれぞれ水素原子、ハロゲン原子、トリフルオロメチル基、炭素原子数1〜4個のアルキル基または炭素原子数1〜4個のアルコキシ基を示す。]で表されるプロスタグランジンE類縁体及びその塩。
formula
Figure 0003588133
[In the formula, A represents a vinylene group or an ethynylene group, and R 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, and 1 to 4 carbon atoms. The cycloalkyl group having 3 to 6 carbon atoms substituted with 1 to 3 alkyl groups or the alkyl group having 1 to 4 carbon atoms substituted forms a ring by crosslinking, And represents a hydrocarbon cycloalkyl group having 3 to 6 carbon atoms , wherein R 2 is a hydrogen atom, a halogen atom, a trifluoromethyl group, an alkyl group having 1 to 4 carbon atoms, 4 alkoxy group, a "phenyl group substituted with a halogen atom" phenyl or, R 3 and R 4 are each a hydrogen atom, a halogen atom, a trifluoromethyl group, 1-4 alkyl groups carbon atoms Or 1 to carbon atoms Shows the number of alkoxy groups. Prostaglandin E 1 analogues and their salts represented by.
JP25618593A 1992-10-20 1993-10-13 Prostaglandin E1 analog Expired - Fee Related JP3588133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25618593A JP3588133B2 (en) 1992-10-20 1993-10-13 Prostaglandin E1 analog

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP28192392 1992-10-20
JP4-281923 1992-10-20
JP7948793 1993-04-06
JP5-79487 1993-04-06
JP25618593A JP3588133B2 (en) 1992-10-20 1993-10-13 Prostaglandin E1 analog

Publications (2)

Publication Number Publication Date
JPH0725847A JPH0725847A (en) 1995-01-27
JP3588133B2 true JP3588133B2 (en) 2004-11-10

Family

ID=27303027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25618593A Expired - Fee Related JP3588133B2 (en) 1992-10-20 1993-10-13 Prostaglandin E1 analog

Country Status (1)

Country Link
JP (1) JP3588133B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220730A1 (en) * 2017-05-31 2018-12-06 国立大学法人東北大学 Pge1 core block derivative and production method therefor

Also Published As

Publication number Publication date
JPH0725847A (en) 1995-01-27

Similar Documents

Publication Publication Date Title
US5977173A (en) Aromatic C16 -C20 -substituted tetrahydro prostaglandins useful as FP agonists
DK1704141T3 (en) Prostaglandin nitrooxyderivatives
JP4985400B2 (en) Prostaglandin derivatives
US6107338A (en) Aromatic C16 -C20 -substituted tetrahydro prostaglandins useful as FP agonists
US20050192451A1 (en) Process for preparing prostaglandin derivatives and stereospecific starting material thereof
JPH048427B2 (en)
EP1159266B1 (en) C-16 unsaturated fp-selective prostaglandins analogs
EP0159784A1 (en) Carbacyclin analogues
US4169895A (en) Antisecretory 16,16-dimethyl-17-oxaprostaglandins
CH619691A5 (en)
CH619930A5 (en)
JP3588133B2 (en) Prostaglandin E1 analog
US6444840B1 (en) C11 oxymyl and hydroxylamino prostaglandins useful as FP agonists
CH616409A5 (en)
US6482990B1 (en) Prostaglandin E analogues
JP3502952B2 (en) prostaglandin derivative
US6066751A (en) Process for making epoxide intermediates
JPH08208600A (en) 7-thiaprostaglandin compound and its production
EP0695741B1 (en) 7-thiaprostaglandins and process for producing the same
WO1991013869A1 (en) 15-deoxyprostaglandin derivative
WO1994008960A1 (en) Prostaglandin e1 analog
WO1994008961A1 (en) Prostaglandin e1 analog
JPH07238068A (en) Prostaglandin e1 analog
FR2533917A1 (en) 15-CYCLOALIPHATIC DERIVATIVES OF 13,14-BISDESHYDRO-CARBOPROSTACYCLINS AND PROCESS FOR THEIR PREPARATION
JPH07233145A (en) Prostaglandin e1 amide homologues

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees