JP3586994B2 - Bevel gear tooth contact evaluation method and apparatus - Google Patents

Bevel gear tooth contact evaluation method and apparatus Download PDF

Info

Publication number
JP3586994B2
JP3586994B2 JP26522296A JP26522296A JP3586994B2 JP 3586994 B2 JP3586994 B2 JP 3586994B2 JP 26522296 A JP26522296 A JP 26522296A JP 26522296 A JP26522296 A JP 26522296A JP 3586994 B2 JP3586994 B2 JP 3586994B2
Authority
JP
Japan
Prior art keywords
gear
tooth contact
bevel gear
meshing transmission
transmission error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26522296A
Other languages
Japanese (ja)
Other versions
JPH1090123A (en
Inventor
武夫 坂東
正男 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP26522296A priority Critical patent/JP3586994B2/en
Publication of JPH1090123A publication Critical patent/JPH1090123A/en
Application granted granted Critical
Publication of JP3586994B2 publication Critical patent/JP3586994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、例えばディファレンシャルギヤのピニオンギヤとリングギヤ(ベベルギヤ)との歯当りを評価するような傘歯車の歯当り評価方法およびその装置に関する。
【0002】
【従来の技術】
一般に、図5、図6に示すようにベベルギヤ51とピニオンギヤ52とを噛合せた場合、PMD(ピニオン・マウント・ディスタンス)においてピニオンギヤ52が水平マイナス方向(H−方向)に近づくと、歯当りに沈みが生じ、ピニオンギヤ52が水平プラス方向(H+方向)に遠ざかると、歯当りに浮きが生ずる。同様にGMD(ギヤ・マウント・ディスタンス)においてピニオンギヤ52が垂直プラス方向(V+方向)に近づいたり或は垂直マイナス方向(V−方向)に遠ざかると、歯当りの浮き沈みが生じ、図7に図示の便宜上ハッチングを施して示す噛合伝達誤差が最小の部位においてギヤノイズが最小となり、図7に矢印で示す何れの方向に歯当り位置としての噛合接触痕(ハッチング部参照)がずれてもギヤノイズが大となることが知られている。
【0003】
ところで、従来、上述のベベルギヤ51とピニオンギヤ52とのセット化された歯当りを評価するには、これら両ギヤ51,52が予め一体的に組合わされたものを回転させながら、作業者の目視により評価が実行されていた関係上、正確な評価が不可能で、判定誤差等が多発する問題点があった。
一方、特開平6−229880号公報に記載の如きかみ合い式歯車回転誤差検出装置が既に発明されているが、この装置は単に歯車伝達誤差を検出するものに過ぎず、歯当りの評価を行なうことは不可能である。
【0004】
【発明が解決しようとする課題】
この発明は、傘歯車とピニオンギヤとを噛合せて、噛合せ位置の変更により歯当りを変化させ、その時の噛合伝達誤差を計測した場合、噛合伝達誤差の最小値は歯型に関係なく歯当り浮き沈みが零(スケア)の状態を示すことに着目し、少なくとも正規歯車(マスタギヤ)での基準となる噛合伝達誤差の最小部(配置誤差が零となるポイント)を求め(実際に正規歯車を用いて求める場合と、基準値をデータとして予め求める場合の双方を含む)、次に測定歯車においてPMD方向もしくはGMD方向の何れか一方の方向に対する数位置で噛合伝達誤差を測定(実測)し、測定された測定歯車の噛合伝達誤差と上記基準とを比較して歯当り位置を評価することで、作業者の目視評価によることなく、歯当りを定性的に評価することができる傘歯車の歯当り評価方法の提供を目的とする。
【0005】
この発明の一実施態様は、上述の正規歯車でのPMDと噛合伝達誤差との関係による歯当り位置(基準となる歯当り位置)を予め求めておくことで、測定歯車の歯当りを定性的に、かつより一層正確に評価することができる傘歯車の歯当り評価方法の提供を目的とする。
【0006】
この発明はまた、少なくとも正規歯車での基準となる配置誤差が零となるポイントとしての噛合伝達誤差の最小部を求める基準設定手段(実際に正規歯車を用いて設定する場合と、基準値をデータとして予め設定する場合との双方を含む)と、測定歯車においてPMD方向もしくはGMD方向の何れか一方の方向に対する数位置で噛合伝達誤差を測定する測定手段と、この測定された測定歯車の噛合伝達誤差と上記基準とを比較して歯当り位置の善し悪しを評価する評価手段とを備えることで、作業車の目視評価によることなく、歯当りを定性的に評価することができる傘歯車の歯当り評価装置の提供を目的とする。
【0007】
【課題を解決するための手段】
この発明による傘歯車の歯当り評価方法は、少なくとも正規歯車での基準となる噛合伝達誤差の最小部を求め、次に測定歯車においてPMD方向もしくはGMD方向の何れか一方の方向に対する数位置で噛合伝達誤差を測定し、この測定された測定歯車の噛合伝達誤差と上記基準とを比較して歯当り位置を評価するものである。
【0008】
この発明の一実施態様においては、上記正規歯車でのPMDと噛合伝達誤差との関係による歯当り位置を予め求めておくものである。
【0009】
この発明による傘歯車の歯当り評価装置は、少なくとも正規歯車での基準となる噛合伝達誤差の最小部を求める基準設定手段と、測定歯車においてPMD方向もしくはGMD方向の何れか一方の方向に対する数位置で噛合伝達誤差を測定する測定手段と、上記測定された測定歯車の噛合伝達誤差と上記基準とを比較して歯当り位置を評価する評価手段とを備えたものである。
【0010】
【発明の作用及び効果】
この発明の傘歯車の歯当り評価方法によれば、まず少なくとも正規歯車での基準となる噛合伝達誤差の最小部(配置誤差が零となるポイント)が求められ、次に測定歯車においてPMD方向もしくはGMD方向の何れかの一方の方向に対する数位置で噛合伝達誤差を測定し、この測定された測定歯車の噛合伝達誤差と上述の基準とが比較されて測定歯車の歯当り位置を評価するので従来方法のような作業者の目視評価によることなく、歯当りを定性的に評価することができる効果がある。
【0011】
この発明の一実施態様によれば、予め正規歯車でのPMDと噛合伝達誤差との関係による歯当り位置(基準となる歯当り位置)を求めるので、噛合伝達誤差の最小値(例えばH=0となるポイント)のみを求めておく方法と比較して、測定歯車の歯当りを定性的に、かつより一層正確に評価することができる効果がある。
【0012】
この発明の傘歯車の歯当り評価装置によれば、上述の基準設定手段は少なくとも正規歯車での基準となる噛合伝達誤差の最小部を求め、測定手段は測定歯車においてPMD方向もしくはGMD方向の何れか一方の方向に対する数位置で噛合伝達誤差を測定し、評価手段は上述の測定手段にて測定された測定歯車の噛合伝達誤差と上述の基準設定手段で設定された基準とを比較して測定歯車の歯当り位置の善し悪しを評価する。
この結果、従来のような作業者の目視評価によることなく、歯当りを定性的に評価することができる効果がある。
【0013】
【実施例】
この発明の一実施例を以下図面に基づいて詳述する。
本発明の傘歯車の歯当り評価方法の説明に先立って、まず傘歯車の歯当り評価装置の構成を図1、図2に基づいて説明する。
【0014】
図1は傘歯車の歯当り評価装置を示す平面図で、ベース1上に2本の平行なガイドレール2,2を介してPMD方向へ移動すべく構成している。具体的にはサーボモータ4の回転軸にスクリュ5を連結し、スライダ3のネジ孔にスクリュ5を螺合することで、サーボモータ4の回転時にスライダ3をPMD方向へ移動するように構成すると共に、移動量をリニアスケール6で検出すべく構成している。
【0015】
上述のスライダ3上には縦方向のガイド7,7でGMD方向に移動可能に支持されたギヤアーバコラム8を設け、このギヤアーバコラム8をV軸送り手段としてのサーボモータ9でGD方向へ移動すべく構成している。具体的にはサーボモータ9の回転軸にスクリュ10を連結し、ギヤアーバコラム8のネジ孔にスクリュ10を螺合することで、サーボモータ9の回転時にギヤアーバコラム8をGMD方向へ移動するように構成している。
上述のギヤアーバコラム8は図1、図2に示すように、モータ11、動力伝達機構12、ロータリエンコーダ13、回転軸14、ギヤ取付部15を備え、このギヤ取付部15に傘歯車としてのベルギヤ16を取付ける。
【0016】
一方、先の2本のガイドレール2,2と直交するようにベース1上に別の2本の平行なガイドレール17,17を取付け、これら各ガイドレール17,17上にピニオンアーバコラム18を設けている。このピニオンアーバコラム18は図1、図2に示すようにモータ19、動力伝達機構20、ロータリエンコーダ21、ピニオンギヤ取付部22を備え、このギヤ取付部22にピニオンギヤ23を取付ける。上述のガイドレール17,17はピニオンギヤ23をベベルギヤ16に噛合させる時、ピニオンアーバコラム18を案内する。
【0017】
次に図2を参照して傘歯車の歯当り評価装置の制御回路の構成について説明する。
モータ制御部24はモータ11,19、サーボモータ4,9を駆動制御するが、ピニオン駆動用のモータ19は加速時に駆動用として作用し、減速時にブレーキ用として作用する。また負荷付勢用のモータ11は加速時に制動用として作用し、減速時に駆動用として作用する。
【0018】
ロータリエンコーダ13,21は噛合伝達誤差を得るために必要なパルス信号を次段の補正部25に出力する。
上述の補正部25は増幅器26,27、逓倍部28.29、歯数比補正部30,31を備え、ピニオンギヤ23側のロータリエンコーダ21出力は増幅器26で増幅された後に、逓倍部28で逓倍処理され、次の歯数比補正部30でベベルギヤ16の歯数Z2の逆数つまり(1/Z2)が乗算される。
【0019】
ベベルギヤ16側のロータリエンコーダ13出力は増幅器27で増幅された後に、逓倍部29で逓倍処理され、次の歯数比補正部31でピニオンギヤ23の歯数Z1の逆数つまり(1/Z1)が乗算される。
このようにして、パルスが揃えられた信号は位相差演算部32に入力され、この位相差演算部32にてピニオン回転角とベベルギヤ回転角との位相差が演算される。
【0020】
上述の位相差演算部32の次段にはFFTアナライザ33(ファースト・フーリエ・トランスファ・アナライザ)が接続され、このFFTアナライザ33ではモータ19が一定回転しないことに起因して生ずる歯合一次成分をフーリエ変換して、ピニオン回転角に対するベベルギヤ回転角の特性を直線化すべく構成し、このFFTアナライザ33の出力段に噛合伝達誤差に相当する信号を得る。この噛合伝達誤差の信号はCPU34に入力される。
【0021】
一方、ピニオンギヤ23の軸の近傍には加速度検出器35を配置し、その出力を増幅器36を介してFFTアナライザ33と打痕演算部37に出力すべく構成している。
上述のCPU34は噛合伝達誤差の信号入力に基づいてプロッタ38(plotter 、直線グラフ、図形を描く装置)、プリンタ39を駆動制御すると共に、インタフェース40を介してモータ制御部24、H軸位置表示部41、回転数表示部42、トルク表示部43を駆動制御する。
【0022】
ここで、上述のCPU34は正規歯車(図1、図2のベベルギヤ16として正規歯車を使用)での基準となる噛合伝達誤差の最小部(図3に示す配置誤差H=0のポイント参照)を含む正規歯車でのPMDと噛合伝達誤差との関係による歯当り位置(図3の曲線a参照)を予め求めておく基準設定手段を兼ねる。
【0023】
また2に示す各要素13,21,25〜33は、測定歯車(図1、図2のベベルギヤ16として正規歯車に代えて測定歯車を使用)においてPMD方向に対する複数の位置で噛合伝達誤差(図3の曲線b、c参照)を測定する測定手段44を構成する。
【0024】
さらに上述のCPU34は、測定手段44で測定された測定歯車の噛合伝達誤差(図3の曲線b,c参照)と、上述の基準(図3の曲線a参照)とを比較して歯当り位置を評価する評価手段を兼ねる。
次に傘歯車の歯当り評価方法について説明する。
【0025】
図4に示す第1の工程S1で、正規歯車でのPMDと噛合伝達誤差との関係による歯当り位置を求める。
すなわち、ギヤ取付部15にベベルギヤ16として正規歯車を取付け、この正規歯車にピニオンギヤ23を噛合させ、モータ19を駆動してピニオンギヤ23を回転させると共に、モータ11をブレーキング作動させて正規歯車に負荷を付勢しつつ測定手段44にてPMD方向に対する複数の位置で噛合伝達誤差を実測して図3に示す曲線aを得る。
【0026】
ベベルギヤ16として用いる正規歯車をPMD方向に移動させるには前述のサーボモータ4を使用する。上述の曲線aを得る際には当然、正規歯車での基準となる噛合伝達誤差の最小部(H=0)をも求めることができる。ここで、H=0のポイントはCPU34が3次曲線を近似化処理することで求めることができる。
なお、正規歯車を取付けて実測する方法に代えて、曲線aに相当する基準データ(理論値)を予めCPU34に入力し、RAM等の記憶手段に記憶させておいてもよい。
【0027】
次に図4に示す第2の工程S2で、測定歯車においてPMD方向に対する複数の位置で噛合伝達誤差を測定する。
すなわち、先の正規歯車を取外した後に、ギヤ取付部15にベベルギヤ16として測定歯車を取付け、正規歯車取付け時の実測方法と同様の方法により測定手段44にてPMD方向に対する複数の位置で噛合伝達誤差を実測して図3に示す曲線bまたは曲線cを得る。
【0028】
次に図4に示す第3の工程S3で、測定された測定歯車のPMD方向に対する噛合伝達誤差の特性(図3の曲線b,c参照)と、正規歯車のPMD方向に対する噛合伝達誤差の特性(図3の曲線a参照)とをCPU34で比較して、歯当り位置の善し悪しを評価する。
【0029】
図3において曲線bは正規歯車の曲線aに対してH−方向へずれているので沈み状態にあり、曲線cは曲線aに対してH+方向へずれているので浮き状態にあると評価される。
而して図3においてずれ量が小さい場合にはラップセッティング修正が実行され、ずれ量が大きい場合には歯切セッティング修正が実行され、ずれ量が許容範囲内になって、ギヤノイズが最小もしくは零となるとOK品として使用に供される。
【0030】
以上要するに、上記実施例の傘歯車の歯当り評価方法によれば、まず少なくとも正規歯車での基準となる噛合伝達誤差の最小部(図3のH=0のポイント参照)が求められ、次に測定歯車においてPMD方向に対する複数の位置で噛合伝達誤差(図3の曲線b,c参照)を測定し、この測定された測定歯車の噛合伝達誤差(図3の曲線b,c参照)と上述の基準(図3のH=0のポイント参照)とが比較されて、ずれ量の大小により測定歯車の歯当り位置を評価するので従来方法のような作業者の目視評価によることなく、歯当りを定性的に評価することができる効果がある。
【0031】
また、予め正規歯車でのPMDと噛合伝達誤差との関係(図3の曲線a参照)による歯当り位置(基準となる歯当り位置)を求めるので、噛合伝達誤差の最小値(例えばH=0となるポイント)のみを求めておく方法と比較して、測定歯車の歯当りを定性的に、かつより一層正確に評価することができる効果がある。
【0032】
さらに上記実施例の傘歯車の歯当り評価装置によれば、上述の基準設定手段(CPU34参照)は少なくとも正規歯車での基準となる噛合伝達誤差の最小部(図3のH=0のポイント参照)を求め、測定手段44は測定歯車においてPMD方向もしくはGMD方向の何れか一方の方向に対する複数の位置で噛合伝達誤差(図3の曲線b,c参照)を測定し、評価手段(CPU34参照)は上述の測定手段44にて測定された測定歯車の噛合伝達誤差(図3の曲線b,c参照)と上述の基準設定手段(CPU34参照)で設定された基準(図3のH=0のポイント参照)とをずれ量の大小により比較して測定歯車の歯当り位置の善し悪しを評価する。
【0033】
この結果、従来のような作業者の目視評価によることなく、歯当りを定性的に評価することができる効果がある。
なお、上記実施例においては正規歯車および測定歯車をPMD方向(H方向)に移動して歯当りを評価したが、サーボモータ9により正規歯車および測定歯車をGMD方向(V方向)に移動して評価すべく成してもよい。
【0034】
この発明の構成と、上述の実施例との対応において、
この発明の基準設定手段は、実施例のCPU34に対応し、
以下同様に、
測定手段は、各回路要素13,21,25〜33から成る測定手段44に対応し、
評価手段は、CPU34に対応し、
傘歯車は、ベベルギヤ16に対応し、
正規歯車での基準となる噛合伝達誤差の最小部は、配置誤作H=0のポイントに対応するも、
この発明は、上述の実施例の構成のみに限定されるものではない。
【図面の簡単な説明】
【図1】本発明の傘歯車の歯当り評価方法に用いる評価装置の平面図。
【図2】同評価装置の制御回路ブロック図。
【図3】各傘歯車におけるPMDに対する噛合伝達誤差の測定結果を示す説明図。
【図4】本発明の傘歯車の歯当り評価方法を示す工程図。
【図5】ピニオン、マウント、ディスタンスの説明図。
【図6】ギヤ、マウント、ディスタンスの説明図。
【図7】噛合接触痕の説明図。
【符号の説明】
16…ベベルギヤ
34…CPU(基準設定手段、評価手段)
44…測定手段
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bevel gear tooth contact evaluation method and apparatus for evaluating the contact between a pinion gear and a ring gear (bevel gear) of a differential gear, for example.
[0002]
[Prior art]
Generally, when the bevel gear 51 and the pinion gear 52 are meshed with each other as shown in FIGS. 5 and 6, when the pinion gear 52 approaches the horizontal minus direction (H-direction) in the PMD (pinion mount distance), a tooth contact occurs. When sinking occurs and the pinion gear 52 moves away in the horizontal plus direction (H + direction), floating occurs at the tooth contact. Similarly, in the GMD (gear mount distance), when the pinion gear 52 approaches the vertical plus direction (V + direction) or moves away in the vertical minus direction (V- direction), ups and downs of the teeth occur, and FIG. For the sake of convenience, the gear noise is minimized at the portion where the meshing transmission error indicated by hatching is minimum, and the gear noise is large even if the meshing contact mark (see the hatched portion) as the contact position in any direction indicated by the arrow in FIG. It is known to be.
[0003]
By the way, conventionally, in order to evaluate the set tooth contact of the bevel gear 51 and the pinion gear 52, while rotating a gear in which these two gears 51 and 52 are combined in advance, the operator visually checks the gear. Due to the fact that the evaluation has been performed, there has been a problem that accurate evaluation is impossible, and judgment errors and the like frequently occur.
On the other hand, a meshing gear rotation error detecting device as described in JP-A-6-229880 has already been invented, but this device is merely a device for detecting a gear transmission error. Is impossible.
[0004]
[Problems to be solved by the invention]
The inventions is engaged so the bevel gear and the pinion gear, the per tooth was varied by changing the meshing allowed position when measured meshing transmission error at that time, the minimum value of the meshing transmission error, regardless of the tooth die teeth Paying attention to the fact that the ups and downs are zero (scare), at least the minimum part (point at which the arrangement error is zero ) of the standard meshing transmission error in the normal gear (master gear ) is determined (actually, the normal gear and when determined using, including both when obtained in advance a reference value as data), then measuring the difference erroneous meshing transmission with multiple number of location in the measuring wheel against either one of the directions of PMD direction or GMD direction (measured) and, by comparing the measured meshed transmission error and the reference measurement gear to evaluate the teeth per position, without visual assessment of the operator, it is possible to qualitatively assess the per tooth And an object thereof is to provide a tooth per evaluation method of the gear.
[0005]
One embodiment of the invention, by teeth per position by the relationship between the PMD and the meshing transmission error in the regular gear above mentioned the (Standards teeth per position) is obtained in advance, the teeth per measurement gear qualitative It is another object of the present invention to provide a bevel gear tooth contact evaluation method capable of performing a more accurate and more accurate evaluation.
[0006]
The present invention also provides a reference setting means for determining a minimum portion of the meshing transmission error as a point at which the arrangement error serving as a reference for the normal gear becomes zero (in a case where the reference value is actually set using a normal gear, as the advance include both the case of setting), and measuring means for measuring the meshing transmission erroneous difference double the number of location for either direction of the PMD direction or GMD direction in the measurement wheel, the measured measured gear Evaluating means for comparing the meshing transmission error and the above-mentioned criterion to evaluate whether the tooth contact position is good or bad, by using a bevel gear that can qualitatively evaluate the tooth contact without visual evaluation of the working vehicle. The purpose is to provide a tooth contact evaluation device.
[0007]
[Means for Solving the Problems]
Tooth evaluation method of the bevel gear according to the invention, the smallest portion of the meshing transmission errors as a reference in the least normal gear determined, then in measuring gears either double the number of location for one direction of the PMD direction or GMD direction measuring the meshing transmission erroneous difference, it is to evaluate the teeth per position by comparing the mesh transmission error and the reference of the measured measured gear.
[0008]
In one embodiment of the present invention, the tooth contact position based on the relationship between the PMD of the regular gear and the mesh transmission error is determined in advance .
[0009]
Tooth evaluation device of the bevel gear according to the invention, at least a reference setting means for obtaining a reference made meshing minimum unit of transmission errors in the regular gear, double the number of for either direction of the PMD direction or GMD direction in the measurement gear measuring means for measuring the meshing transmission erroneous difference location, in which a evaluating means for evaluating tooth per position by comparing the mesh transmission error and the reference measurement gears that are the measurement.
[0010]
Function and effect of the present invention
According to the bevel gear tooth contact evaluation method of the present invention, at least the minimum portion of the meshing transmission error (the point where the arrangement error becomes zero) which is a reference for the normal gear is obtained, and then the PMD direction or measuring the meshing transmission erroneous difference double the number of location for either one of the directions of GMD direction, meshing transmission error of the measured measured gear and the above criteria to evaluate the teeth per position of the measuring wheel is compared Therefore, there is an effect that the tooth contact can be qualitatively evaluated without relying on the visual evaluation of the operator as in the conventional method.
[0011]
According to one embodiment of the present invention, since obtaining the teeth per position by the relationship between the PMD and the meshing transmission error in the pre-Me regular gear (Standards teeth per position), the minimum value of the meshing transmission error (for example, H = Compared to the method of determining only the point (0), there is an effect that the contact of the tooth of the measuring gear can be qualitatively and more accurately evaluated.
[0012]
According to the bevel gear tooth contact evaluation device of the present invention, the above-described reference setting means obtains at least a minimum portion of the meshing transmission error which is a reference for the normal gear, and the measuring means determines whether the measurement gear has a PMD direction or a GMD direction. or for one direction measures the difference erroneous meshing transmission with multiple number of location, evaluation means compares the criteria set in the meshing transmission error of measurement gear measured by the above-mentioned measuring means above the reference setting means To evaluate the position of the tooth contact of the measuring gear.
As a result, there is an effect that the tooth contact can be qualitatively evaluated without using the conventional visual evaluation of the operator.
[0013]
【Example】
An embodiment of the present invention will be described below in detail with reference to the drawings.
Prior to the description of the bevel gear tooth contact evaluation method of the present invention, first, the configuration of a bevel gear tooth contact evaluation apparatus will be described with reference to FIGS.
[0014]
FIG. 1 is a plan view showing a tooth contact evaluation device of a bevel gear, which is configured to move in a PMD direction on a base 1 via two parallel guide rails 2. Specifically, the screw 5 is connected to the rotation shaft of the servo motor 4 and the screw 5 is screwed into the screw hole of the slider 3 so that the slider 3 moves in the PMD direction when the servo motor 4 rotates. At the same time, the moving amount is detected by the linear scale 6.
[0015]
The gear arbor column 8 in the longitudinal direction of the guide 7, 7 are movably supported in the GMD direction provided on the slider 3 above, G M D of the gear arbor column 8 by a servomotor 9 as V-axis feed means It is configured to move in the direction. Specifically, the screw 10 is connected to the rotating shaft of the servo motor 9 and the screw 10 is screwed into the screw hole of the gear arbor column 8 to move the gear arbor column 8 in the GMD direction when the servo motor 9 rotates. It is configured as follows.
As shown in FIGS. 1 and 2, the gear arbor column 8 includes a motor 11, a power transmission mechanism 12, a rotary encoder 13, a rotating shaft 14, and a gear mounting portion 15. The gear mounting portion 15 has a bevel gear as a bevel gear. attaching the base Berugiya 16.
[0016]
On the other hand, another two parallel guide rails 17, 17 are mounted on the base 1 so as to be orthogonal to the two guide rails 2, 2, and a pinion arbor column 18 is mounted on each of the guide rails 17, 17. Provided. 1 and 2, the pinion arbor column 18 includes a motor 19, a power transmission mechanism 20, a rotary encoder 21, and a pinion gear mounting portion 22, and a pinion gear 23 is mounted on the gear mounting portion 22. The guide rails 17 guide the pinion arbor column 18 when the pinion gear 23 meshes with the bevel gear 16.
[0017]
Next, the configuration of a control circuit of the bevel gear tooth contact evaluation device will be described with reference to FIG.
The motor control unit 24 controls the driving of the motors 11 and 19 and the servomotors 4 and 9, and the motor 19 for driving the pinion functions as a drive during acceleration and acts as a brake during deceleration. The load energizing motor 11 acts as a brake during acceleration and acts as a drive during deceleration.
[0018]
The rotary encoders 13 and 21 output a pulse signal necessary for obtaining an engagement transmission error to the correction unit 25 at the next stage.
The correction unit 25 includes amplifiers 26 and 27, a multiplication unit 28.29, and a gear ratio correction unit 30 and 31. The output of the rotary encoder 21 on the pinion gear 23 side is amplified by the amplifier 26 and then multiplied by the multiplication unit 28. The bevel gear 16 is multiplied by the reciprocal of the number of teeth Z2 of the bevel gear 16, that is, (1 / Z2).
[0019]
The output of the rotary encoder 13 on the side of the bevel gear 16 is amplified by an amplifier 27 and then multiplied by a multiplying unit 29, and then multiplied by a reciprocal of the number of teeth Z1 of the pinion gear 23, that is, (1 / Z1) by the next gear ratio correcting unit 31. Is done.
The signal in which the pulses are aligned in this manner is input to the phase difference calculator 32, which calculates the phase difference between the pinion rotation angle and the bevel gear rotation angle.
[0020]
An FFT analyzer 33 (Fast Fourier Transfer Analyzer) is connected to the next stage of the above-described phase difference calculation unit 32. In this FFT analyzer 33, a primary component of the meshing caused by the motor 19 not rotating at a constant speed is detected. Fourier transform is performed to linearize the characteristic of the bevel gear rotation angle with respect to the pinion rotation angle, and a signal corresponding to the mesh transmission error is obtained at the output stage of the FFT analyzer 33. The signal of the mesh transmission error is input to the CPU 34.
[0021]
On the other hand, an acceleration detector 35 is arranged near the axis of the pinion gear 23, and the output of the acceleration detector 35 is output to the FFT analyzer 33 and the dent calculating unit 37 via the amplifier 36.
The CPU 34 controls the drive of a plotter 38 (plotter, a device for drawing a linear graph or a figure) and a printer 39 based on the signal input of the meshing transmission error, and also controls the motor control unit 24 and the H-axis position display unit via an interface 40. The drive control unit 41 controls the rotation speed display unit 42 and the torque display unit 43.
[0022]
Here, the above-described CPU 34 determines the minimum portion of the meshing transmission error (see the point of the arrangement error H = 0 shown in FIG. 3) which is a reference in the regular gear (a regular gear is used as the bevel gear 16 in FIGS. 1 and 2). It also serves as reference setting means for previously obtaining the tooth contact position (see curve a in FIG. 3) based on the relationship between the PMD and the mesh transmission error of the regular gear.
[0023]
The elements 13,21,25~33 shown in FIG. 2, measured gear meshing transmission erroneous difference at a plurality of positions relative to PMD direction (FIG. 1, using a measuring wheel in place of the normal gear as bevel gear 16 in FIG. 2) ( See curves b and c in FIG. 3).
[0024]
Further, the CPU 34 compares the meshing transmission error of the measuring gear measured by the measuring means 44 (see the curves b and c in FIG. 3) with the reference (see the curve a in FIG. 3) to determine the tooth contact position. Also serves as an evaluation means.
Next, a method for evaluating the contact of the bevel gear with teeth will be described.
[0025]
In a first step S1 shown in FIG. 4, a tooth contact position based on the relationship between the PMD of the regular gear and the mesh transmission error is determined.
That is, a regular gear is attached to the gear attachment portion 15 as the bevel gear 16, the pinion gear 23 is meshed with the regular gear, the motor 19 is driven to rotate the pinion gear 23, and the motor 11 is braked to load the regular gear. by actually measuring the meshing transmission erroneous difference at a plurality of positions relative to PMD direction by the measuring means 44 while biasing the obtaining curve a shown in FIG.
[0026]
The aforementioned servomotor 4 is used to move the regular gear used as the bevel gear 16 in the PMD direction. When the above-mentioned curve a is obtained, the minimum part (H = 0) of the meshing transmission error which is a reference for the regular gear can be naturally obtained. Here, the point of H = 0 can be obtained by the CPU 34 approximating the cubic curve.
Note that, instead of the method of actually measuring with a regular gear attached, reference data (theoretical value) corresponding to the curve a may be input to the CPU 34 in advance and stored in a storage unit such as a RAM.
[0027]
Then in the second step S2 shown in FIG. 4, measuring the difference erroneous meshing transmission at a plurality of positions relative to PMD direction in the measurement wheel.
That is, after removing the regular gear, a measuring gear is attached to the gear attaching portion 15 as the bevel gear 16, and meshing transmission is performed at a plurality of positions in the PMD direction by the measuring means 44 by the same method as the actual measuring method when the regular gear is attached. by actually measuring an erroneous difference obtain curve b or the curve c shown in FIG.
[0028]
Then in the third step S3 shown in FIG. 4, the mesh Goden our error characteristics with respect to PMD direction of the measured measured gear (see curve b, c in FIG. 3), meshing transmission error of the normal gear for PMD direction The characteristics (see curve a in FIG. 3 ) are compared by the CPU 34 to evaluate the quality of the tooth contact position.
[0029]
In FIG. 3, the curve b is depressed in the H-direction with respect to the curve a of the normal gear, so that the curve c is depressed in the H + direction with respect to the curve a. .
In FIG. 3, when the shift amount is small, the lap setting correction is executed, and when the shift amount is large, the gear cutting setting correction is executed, and the shift amount falls within an allowable range, and the gear noise is minimized or reduced. Then it is used as an OK product.
[0030]
Above required, according to the teeth per evaluation method of the bevel gear of the embodiment, first, at least serving as a reference minimum portion of the meshing transmission error in the regular gear (point see H = 0 in FIG. 3) is determined, following the meshing transmission erroneous difference at a plurality of positions relative to PMD direction in the measurement wheel (curve b in FIG. 3, c reference) was measured, (curve b in FIG. 3, reference c) meshing transmission error of the measured measured gear and above reference (point see H = 0 in FIG. 3) and is compared, not a Re without by the operator of the visual evaluation, such as in the conventional method because the magnitude of the amount of assessing tooth per position of the measuring wheel, There is an effect that the tooth contact can be qualitatively evaluated.
[0031]
In addition, since the tooth contact position (reference tooth contact position) based on the relationship between the PMD of the regular gear and the mesh transmission error (see curve a in FIG. 3) is obtained in advance, the minimum value of the mesh transmission error (for example, H = 0) Compared with the method of determining only the following point, there is an effect that the gear contact of the measurement gear can be qualitatively and more accurately evaluated.
[0032]
Further, according to the bevel gear tooth contact evaluation device of the above embodiment, the above-described reference setting means (see CPU 34) is at least the minimum part of the meshing transmission error which is the reference for the normal gear (see the point H = 0 in FIG. 3). ) is obtained, the measuring means 44 measures the meshing transmission erroneous difference at a plurality of positions in measured gear to either one direction in the PMD direction or GMD direction (see curve b, c in FIG. 3), evaluation means (CPU 34 references ) Is the meshing transmission error of the measuring gear measured by the measuring means 44 (see curves b and c in FIG. 3) and the reference (H = 0 in FIG. 3) set by the reference setting means (CPU 34). The point of contact of the measurement gear is evaluated by comparing the difference with the magnitude of the shift amount.
[0033]
As a result, there is an effect that the tooth contact can be qualitatively evaluated without using the conventional visual evaluation of the operator.
In the above embodiment, the regular gear and the measurement gear were moved in the PMD direction (H direction) to evaluate the tooth contact. However, the regular gear and the measurement gear were moved in the GMD direction (V direction) by the servo motor 9. It may be done to evaluate.
[0034]
In correspondence between the configuration of the present invention and the above-described embodiment,
The reference setting means of the present invention corresponds to the CPU 34 of the embodiment,
Similarly,
The measuring means corresponds to the measuring means 44 comprising the circuit elements 13, 21, 25 to 33,
The evaluation means corresponds to the CPU 34,
The bevel gear corresponds to the bevel gear 16,
The minimum portion of the meshing transmission error that is the reference for the regular gear corresponds to the misplacement H = 0 point,
The present invention is not limited only to the configuration of the above embodiment.
[Brief description of the drawings]
FIG. 1 is a plan view of an evaluation device used in a bevel gear tooth contact evaluation method of the present invention.
FIG. 2 is a control circuit block diagram of the evaluation device.
FIG. 3 is an explanatory diagram showing a measurement result of a mesh transmission error with respect to PMD in each bevel gear.
FIG. 4 is a process chart showing a bevel gear tooth contact evaluation method of the present invention.
FIG. 5 is an explanatory diagram of a pinion, a mount, and a distance.
FIG. 6 is an explanatory diagram of a gear, a mount, and a distance.
FIG. 7 is an explanatory diagram of a meshing contact mark.
[Explanation of symbols]
16: bevel gear 34: CPU (reference setting means, evaluation means)
44 ... Measurement means

Claims (3)

傘歯車の歯当り評価方法であって、
少なくとも正規歯車での基準となる配置誤差が零となるポイントとしての噛合伝達誤差の最小部を求め、
次に測定歯車においてPMD方向もしくはGMD方向の何れか一方の方向に対する数位置で噛合伝達誤差を測定し、
この測定された測定歯車の噛合伝達誤差と上記基準とを比較して歯当り位置を評価する
傘歯車の歯当り評価方法。
An evaluation method of bevel gear tooth contact,
Determine the minimum part of the meshing transmission error as a point where at least the arrangement error that is the reference in the regular gear becomes zero ,
Then measuring the difference erroneous meshing transmission with multiple number of location for either direction of the PMD direction or GMD direction in the measurement wheel,
A tooth contact evaluation method of a bevel gear for evaluating the tooth contact position by comparing the measured transmission error of the measured gear with the above reference.
上記正規歯車でのPMDと噛合伝達誤差との関係による歯当り位置を予め求めておく
請求項1記載の傘歯車の歯当り評価方法。
2. The method according to claim 1, wherein a tooth contact position based on a relationship between the PMD and the mesh transmission error of the regular gear is determined in advance.
傘歯車の歯当り評価装置であって、
少なくとも正規歯車での基準となる配置誤差が零となるポイントとしての噛合伝達誤差の最小部を求める基準設定手段と、
測定歯車においてPMD方向もしくはGMD方向の何れか一方の方向に対する数位置で噛合伝達誤差を測定する測定手段と、
上記測定された測定歯車の噛合伝達誤差と上記基準とを比較して歯当り位置を評価する評価手段とを備えた
傘歯車の歯当り評価装置。
An apparatus for evaluating bevel contact of a bevel gear,
Reference setting means for determining a minimum portion of the meshing transmission error as a point at which the arrangement error serving as a reference in at least the normal gear becomes zero ,
Measuring means for measuring the meshing transmission erroneous difference double the number of location for either direction of the PMD direction or GMD direction in the measurement wheel,
A bevel gear tooth contact evaluation device, comprising: evaluation means for evaluating the tooth contact position by comparing the measured meshing transmission error of the measurement gear with the reference.
JP26522296A 1996-09-13 1996-09-13 Bevel gear tooth contact evaluation method and apparatus Expired - Fee Related JP3586994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26522296A JP3586994B2 (en) 1996-09-13 1996-09-13 Bevel gear tooth contact evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26522296A JP3586994B2 (en) 1996-09-13 1996-09-13 Bevel gear tooth contact evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JPH1090123A JPH1090123A (en) 1998-04-10
JP3586994B2 true JP3586994B2 (en) 2004-11-10

Family

ID=17414227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26522296A Expired - Fee Related JP3586994B2 (en) 1996-09-13 1996-09-13 Bevel gear tooth contact evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP3586994B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639513B2 (en) * 2001-04-16 2011-02-23 マツダ株式会社 Gear mesh adjustment method
JP5423647B2 (en) * 2010-10-19 2014-02-19 三菱自動車工業株式会社 Indentation inspection apparatus, indentation inspection method, and bevel gear manufacturing apparatus
CN103091100A (en) * 2013-01-10 2013-05-08 哈尔滨东安发动机(集团)有限公司 Bevel gear coloring tool
CN103234747B (en) * 2013-03-28 2015-04-29 浙江大学 Test stand capable of adjusting installation errors for comprehensive performance of spiral bevel gears
CN105300691B (en) * 2015-10-21 2018-08-28 北京工业大学 Bevel Gear Transmission error measurement method based on best locating distance
CN105334054A (en) * 2015-12-08 2016-02-17 天津市轩宇机床设备有限公司 Bevel gear engagement detection device and method
CN109738184B (en) * 2019-01-30 2020-08-18 中国北方车辆研究所 Comprehensive test device for spiral bevel gear for dynamic and quasi-static tests

Also Published As

Publication number Publication date
JPH1090123A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
KR101827572B1 (en) Method of Automatically Detecting and Compensating Backlash of Machine and Device for the Same
JP3586994B2 (en) Bevel gear tooth contact evaluation method and apparatus
JPH01210839A (en) Method and machine for measuring errors of gear
EP1203928B1 (en) Road surface roughness measuring device
US6655205B2 (en) Continuous measurement for determining a suitable mounting position or for quality-testing of gear sets
WO1996016315A1 (en) Apparatus for inspecting a gear
US7153183B2 (en) Method and apparatus for lapping gears
GB2203548A (en) Method and apparatus for pitch testing
JP2000131043A (en) Road surface roughness measuring system
JP2001027583A (en) Measuring apparatus for backlash
US3668501A (en) Means for generating compensating control means
JP4639513B2 (en) Gear mesh adjustment method
JP3586997B2 (en) Bevel gear tooth profile evaluation method and apparatus
DE60310044T2 (en) RETRAPPED PHASE COMPENSATOR
CN111780920B (en) Method for calibrating dynamic torque sensor on line in situ
GB2100867A (en) Methods of and apparatus for determining and indexing angular positions of unbalance of rotary bodies
JPS61205816A (en) Apparatus for measuring gear by meshing of two toothed surfaces
JPS587923B2 (en) Hagurumakensahouhoutosouchi
EP0665482A1 (en) Spindle apparatus
JPH0625707B2 (en) Gear runout measuring device
JP3203916B2 (en) Automatic gear measuring device
CN217764922U (en) Be applied to removal body construction of thin slice coating thickness detection
CN117047559B (en) Turntable torque testing device and testing method
JP2002168619A (en) Method and device for measuring error such as eccentricity of gear
GB1599905A (en) Apparatus and a method for monitoring gear teeth profiles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees