JP3585784B2 - Fuel injection pump - Google Patents

Fuel injection pump Download PDF

Info

Publication number
JP3585784B2
JP3585784B2 JP28302399A JP28302399A JP3585784B2 JP 3585784 B2 JP3585784 B2 JP 3585784B2 JP 28302399 A JP28302399 A JP 28302399A JP 28302399 A JP28302399 A JP 28302399A JP 3585784 B2 JP3585784 B2 JP 3585784B2
Authority
JP
Japan
Prior art keywords
oil reservoir
fuel
oil
deflector
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28302399A
Other languages
Japanese (ja)
Other versions
JP2001099032A (en
Inventor
純一 佐藤
秀樹 小島
秀朗 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Niigata Power Systems Co Ltd
Original Assignee
Bosch Corp
Niigata Power Systems Co Ltd
Bosch Automotive Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp, Niigata Power Systems Co Ltd, Bosch Automotive Systems Corp filed Critical Bosch Corp
Priority to JP28302399A priority Critical patent/JP3585784B2/en
Publication of JP2001099032A publication Critical patent/JP2001099032A/en
Application granted granted Critical
Publication of JP3585784B2 publication Critical patent/JP3585784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばディーゼル機関等の内燃機関に用いられる燃料噴射ポンプに関する。
【0002】
【従来の技術】
ディーゼル機関の大きな特徴の一つに、燃料を燃料噴射ノズルに送る燃料噴射ポンプを備えることが挙げられる。図5は従来のボッシュ型の燃料噴射ポンプの構造を示す断面図である。この燃料噴射ポンプは、円筒形のハウジング1内に固定されたバレル3を有する。バレル3とハウジング1の間には供給源から送られた燃料油が溜まる油溜室5が形成されている。ハウジング1にはボルト状のデフレクタ6が螺合され、デフレクタ6の先端は油溜室5の内壁の一部を形成している。デフレクタ6は、回転調整されることにより油溜室5の容積を可変して、噴射による圧力波を減衰させる。第5図に示すデフレクタ6は、燃料油供給口と燃料油戻し口を兼ね備えている。バレル3の内周面には燃料油流出入口7が開口している。前記燃料油流出入口7は油溜室5に連通している。バレル3の上端には等圧弁9が設けられている。等圧弁9は、加圧された燃料油の圧力で作動して燃料油をバレル3外に吐出させる吐出側チェックバルブ11と、戻り側チェックバルブ13を有している。
【0003】
バレル3の内部には、プランジャ15が上下摺動可能に設けられている。プランジャ15の上方のバレル3内は、ポンプ室16となっている。プランジャ15の上端の周面には、前記燃料油流出入口7を適当なストロークで開閉するための切り欠き部17が形成されている。この切り欠き部17は、プランジャ15の上端面と螺旋状の下端縁に区画されてバレル3の内周面に摺接する周面部19と、周面部19よりも凹んだ略周状の逃げ部21と、プランジャ15の上端面と前記逃げ部21を連通する縦溝23とからなる。
【0004】
このように構成される従来の燃料噴射ポンプ25の動作は、プランジャ15の周面部19がバレル3の燃料油流出入口7を塞ぐと、プランジャ15の逃げ部21と油溜室5は遮断され、プランジャ15の上昇とともにバレル3内の燃料油の圧力が上昇していく。プランジャ15の周面部19が燃料油流出入口7を塞いだ瞬間を圧送始めと呼ぶ。更にプランジャ15が上昇すると、燃料油の圧力によって等圧弁9の吐出側チェックバルブ11が開き、燃料油は図示しないノズルに圧送される。
【0005】
プランジャ15の上昇に伴って切り欠き部17の周面部19の下端縁が燃料油流出入口7を通過し、燃料油流出入口7が切り欠き部17の逃げ部21に開口すると、プランジャ15内の高圧の燃料油は切り欠き部17の縦溝23から逃げ部21を通り、燃料油流出入口7を介して油溜室5に戻される。プランジャ15が上昇して燃料油流出入口7がプランジャ15の周面部19の逃げ部21に開口した瞬間を圧送終わりと呼ぶ。圧送始めから圧送終わりまで、実際に燃料油を圧送しているプランジャ15の移動範囲の長さを有効ストロークと呼ぶ。プランジャ15の有効ストロークは噴射量に比例する。
【0006】
【発明が解決しようとする課題】
ところで、上述した従来の燃料噴射ポンプ25では、プランジャ15の下降時、油溜室5の燃料油が燃料油流出入口7を通過しポンプ室16に流入する。その際、燃料油流出入口7とデフレクタ6の内壁面には、圧力の低下によって、燃料油の中に溶解していた空気が遊離して気泡(キャビティ)となり、キャビテーション(cavitation)を発生させる。次いで、プランジャ15が上昇すると、ポンプ室16の燃料が燃料油流出入口7を通過して燃料油供給管に流入し、キャビティを発生させる。プランジャ15が更に上昇すると、燃料油流出入口7を塞ぎ、燃料油は吐出側チェックバルブ11を通過して、図示しないノズルから噴射される。噴射が終わると、ポンプ室16の高圧の燃料油が燃料油流出入口7を通過して油溜室5へと流れる。この際、キャビティが再び燃料油に溶解してつぶれ、この衝撃が繰り返し内壁に作用することにより、内壁が次第に破壊されるエロージョン (壊食;erosion)の発生する問題があった。
また、前述した燃料噴射ポンプ25への燃料供給口及び燃料戻し口は、通常、燃料噴射ポンプ25の両側に対向して設けられているが、燃料噴射ポンプ25の周辺レイアウトによっては、他の機器が干渉しないように配置しなければならない場合があり、また燃料供給上、入口配管の取付性改善のための構造をとらなければならない場合もある。図6〜図8はこれらの場合を模式的に例示したものである。図6の例は燃料供給口26及び燃料戻し口27を直角方向に配置せざるを得ない場合であり、図7の例はブロック型の燃料供給出入り口管28を配置せざるを得ない場合であり、図8の例は燃料噴射ポンプ25の下部に燃料供給配管29を配置せざるを得ない場合を示す。このような場合に、特に油溜室でキャビテーション及びエロージョンが発生する場合があった。
本発明は上記状況に鑑みてなされたもので、油溜室で発生するキャビテーション及びエロージョンが抑制できる燃料噴射ポンプを提供し、もって、燃料噴射ポンプの耐久性、信頼性の向上を図ることを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するための本発明の構成を、実施形態に対応する図を用いて説明すると、請求項1記載の燃料噴射ポンプ53は、ハウジング1の内部に固定されるバレル3と、該バレル3の内部に摺動自在に収容され該バレル3の内壁とでポンプ室16を形成するプランジャ15と、前記ハウジング1と前記バレル3との間に形成される油溜室5と、前記バレル3に穿設され前記ポンプ室16及び該油溜室5を連通させる燃料油流出入口7と、前記ハウジング1に穿設され前記油溜室5及びハウジング1外を連通させる螺子穴41と、該螺子穴41に液密に螺合されるデフレクタ31とを具備した燃料噴射ポンプ53において、
前記デフレクタ31は、前記燃料噴射ポンプ53への燃料供給口及び燃料戻し口26,27,28,29と干渉しない位置に設けられ、
前記デフレクタ31は、頭部37を有するホローボルト33とスリーブ35からなり、前記ホローボルト33は、軸線方向に凹部43が形成され、該凹部43は先端が前記油溜室5で開口するとともに前記油溜室5の内壁の一部を形成して凹部43の形成された分だけ前記油溜室5の容積を増大させ、
前記スリーブ35は、内径側に前記ホローボルト33が挿通されるとともに、その内径側には円周方向に周溝45が形成されて、該スリーブ35の一端面とハウジング1との間及び他端面と前記頭部37との間は液密にシールされてスリーブ35の内周とホローボルト33の外周との間には密閉間隙47が形成され、
該密閉間隙47と前記凹部43とを連通させる連通孔51を前記ホローボルト33に穿設することにより、前記凹部43に加えて前記密閉間隙47の容積で前記油溜室5の容積を更に増大させることにより、
プランジャの下降時、前記油溜室5から燃料が前記ポンプ室16に流入する際に前記油溜室5の圧力の低下を少なくして前記油溜室5でのキャビテーションの発生を抑え、プランジャの上昇時、高圧の燃料が前記油溜室5に流れる際に前記油溜室5の圧力上昇を抑えて前記油溜室5でのエロージョンの発生を抑制するように構成したことを特徴とする。
【0008】
この燃料噴射ポンプでは、ハウジングやバレルの形状が変更されることなく、デフレクタの形状変更のみで容易に油溜室の容積が増大可能になる。そして、油溜室の容積が増大すれば、高圧燃料流入時における油溜室の圧力が低下され、キャビテーションの発生が抑えられることになり、キャビテーションに伴って発生するエロージョンが抑制されて、油溜室の耐久性が高められることになる。また、デフレクタの交換による容易な部品交換施工によって、油溜室の容積が増大可能になる。
【0010】
この燃料噴射ポンプでは、デフレクタの外周とスリーブの内周との間に密閉間隙が形成され、この密閉間隙と凹部とが連通孔によって連通されることで、凹部に加えて更に密閉間隙分の容積が、油溜室の容積増大分に加えられることになり、凹部のみを形成する場合に比べて更に油溜室の圧力を低下させることができるようになり、キャビテーション、エロージョンの発生がより効果的に抑えられることになる。
【0011】
【発明の実施の形態】
以下、本発明に係る燃料噴射ポンプの好適な実施の形態を図面を参照して詳細に説明する。
図1は本発明に係る燃料噴射ポンプの構造を示す断面図である。なお、図5に示した部材と同一の部材には同一の符号を付し、重複する説明は省略するものとする。
【0012】
ハウジング1にはボルト状のデフレクタ31が螺合され、デフレクタ31の先端は油溜室5の内壁の一部を形成している。デフレクタ31は、ホローボルト33と、円筒状のスリーブ(アイ)35とからなる。
【0013】
ホローボルト33の一端には例えば六角形状の頭部37が形成され、頭部37に連設される先端側の外周には雄螺子39が形成されている。この雄螺子39は、従来のデフレクタに形成される雄螺子と同一のもので形成されている。つまり、デフレクタ31のホローボルト33は、ハウジング1に形成された螺子穴41に、従来のデフレクタ31と同様に螺合されるようになっている。
【0014】
デフレクタ31には軸線方向に凹部43が形成され、凹部43は先端が油溜室5で開口している。つまり、油溜室5は、凹部43の形成された分、容積が増大されている。
【0015】
アイ35は、円環状に形成され、内径側にホローボルト33が挿通される。アイ35の内径側には円周方向に周溝45が形成されている。アイ35は、ホローボルト33に挿通されて、ホローボルト33が螺子穴41に螺合されると、一端がハウジング1の外面、他端がホローボルト33の頭部37に当接する。アイ35の一端面とハウジング1との間、及びアイ35の他端面と頭部37との間にはOリング49が介装され、Oリング49はアイ35の両端を液密にシールしている。つまり、アイ35がホローボルト33に挿着されることで、アイ35の内周とホローボルト33の外周との間には密閉間隙47が形成される。
【0016】
更に、ホローボルト33には径方向の連通孔51が穿設され、連通孔51は一端が凹部43に開口し、他端が密閉間隙47に開口している。つまり、油溜室5は、凹部43と密閉間隙47と連通して、その分、容積が増大されている。
【0017】
次に、このように構成された燃料噴射ポンプ53の動作を説明する。
プランジャ15の下降時、油溜室5の燃料が燃料油流出入口7を通過しポンプ室16に流入する。その際、燃料油流出入口7とデフレクタ31の内壁面には、圧力の低下によって、燃料油の中に溶解していた空気が遊離してキャビテーションが発生しようとするが、油溜室5の容積が大きいため、圧力の低下が少なく、キャビテーションの発生が抑えられることになる。
【0018】
次いで、プランジャ15が上昇すると、ポンプ室16の燃料油が燃料油流出入口7を通過して燃料油供給管に流入する。プランジャ15が更に上昇すると、燃料油流出入口7を塞ぎ、燃料油は吐出側チェックバルブ11を通過して、図示しないノズルから噴射される。噴射が終わると、ポンプ室16の高圧の燃料油が燃料油流出入口7を通過して油溜室5へと流れる。この際、油溜室5の圧力は上昇するが、凹部43及び密閉間隙47の容積が増大された分、油溜室5の圧力上昇が抑えられる。これにより、キャビティのつぶれによる衝撃の繰り返し、即ち、エロージョンの発生が抑制される。
【0019】
このように、上述の燃料噴射ポンプ53によれば、ハウジング1やバレル3の形状を変更することなく、デフレクタ31の形状変更のみで容易に油溜室5の容積を増大させ、油溜室5の圧力を低下させてキャビテーションの発生を抑えることができる。この結果、エロージョンを抑制して燃料噴射ポンプ53の耐久性、信頼性を向上させることができる。また、形状変更されたデフレクタ31を、既存のデフレクタと交換するのみで、容易な交換施工によって油溜室5の容積を増大させることができる。
【0020】
そして、凹部43に加えて更に密閉間隙47の容積も増大させることができるので、デフレクタ31の体積以上の容積を増大させて、高圧燃料流入時における油溜室5の圧力を低下させることができ、エロージョンの発生をより効果的に抑えることができる。
【0021】
【実施例】
次に、油溜室の内容積をパラメータとして、油溜室の圧力を計測した結果を図2乃至図4に基づき説明する。
図2は従来の中実のデフレクタを用いた場合の油溜室の圧力測定結果のグラフ、図3は発明に係るデフレクタを用いた場合の油溜室の圧力測定結果のグラフ、図4は容積と圧力との関係を旧形状と発明に係る形状とで対比したグラフである。
【0022】
図2、図3において、縦軸は圧力、横軸は時間を示す。また、図中、R側とは、燃料入口であり、反Rとは戻り側である。
図2、図3から明らかなように、従来のデフレクタを用いた場合には、圧力Pが比較的高いのに対し、本発明に係るデフレクタを用いた場合には、R側の圧力P、反R側の圧力Pとも大幅な圧力低下が確認された。(P>P、P>P
また、この際の油溜室の容積は、図4に示すように、従来のデフレクタよりも、本発明に係るデフレクタは大きく増大している。
【0023】
以上の結果から、油溜室の容積を増大させることにより、高圧燃料油流入時における油溜室の圧力を低下させることができ、この結果、キャビテーションの発生を抑えて、エロージョンの発生を抑制できることが分かった。
【0024】
【発明の効果】
以上詳細に説明したように、本発明に係る請求項1の燃料噴射ポンプは、油溜室に接するデフレクタの壁面に、油溜室の一部分となる凹部を形成したので、ハウジングやバレルの形状を変更することなく、デフレクタの形状変更のみで容易に油溜室の容積を増大させることができる。この結果、油溜室の圧力を低下させてキャビテーションの発生を抑えることができ、エロージョンを抑制して燃料噴射ポンプの耐久性、信頼性を向上させることができる。
また、デフレクタの形状変更のみで油溜室の容積を増大させることができるので、形状変更されたデフレクタを、既存のデフレクタと交換するのみで、容易な交換施工によって油溜室の容積を増大させることができる。更に、燃料供給用の配管レイアウトの自由度が向上する。
【0025】
請求項2の燃料噴射ポンプは、筒状のスリーブをデフレクタの外周に挿着し、デフレクタの外周とスリーブの内周との間に密閉間隙を形成して、この密閉間隙と凹部とを連通孔によって連通させたので、凹部に加えて更に密閉間隙分の容積を増大させることができる。この結果、凹部のみを形成する場合に比べて更に油溜室の圧力を低下させることができ、キャビテーションを抑えて、エロージョンの発生をより効果的に抑えることができる。
【図面の簡単な説明】
【図1】本発明に係る燃料噴射ポンプの構造を示す断面図である。
【図2】従来のデフレクタを用いた場合の油溜室の圧力測定結果のグラフである。
【図3】本発明に係るデフレクタを用いた場合の油溜室の圧力測定結果のグラフである。
【図4】容積と圧力との関係を旧形状と発明に係る形状とで対比したグラフである。
【図5】従来のボッシュ型の燃料噴射ポンプの構造を示す断面図である。
【図6】燃料供給出入口が直角に配置された燃料噴射ポンプの取り付け配置例を示す図である。
【図7】燃料供給出入口をブロック型とした燃料噴射ポンプの取り付け配置例を示す図である。
【図8】燃料供給出入口を直角に配置された、燃料噴射ポンプの取り付け配置例を示す図である。
【符号の説明】
1 ハウジング
3 バレル
5 油溜室
7 燃料油流出入口
15 プランジャ
16 ポンプ室
31 デフレクタ
35 アイ(スリーブ)
37 頭部
41 螺子穴
43 凹部
47 密閉間隙
51 連通孔
53 燃料噴射ポンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel injection pump used for an internal combustion engine such as a diesel engine.
[0002]
[Prior art]
One of the major features of a diesel engine is that it has a fuel injection pump that sends fuel to a fuel injection nozzle. FIG. 5 is a sectional view showing the structure of a conventional Bosch type fuel injection pump. This fuel injection pump has a barrel 3 fixed in a cylindrical housing 1. An oil reservoir 5 is formed between the barrel 3 and the housing 1 for storing fuel oil sent from a supply source. A bolt-shaped deflector 6 is screwed into the housing 1, and a tip of the deflector 6 forms a part of an inner wall of the oil reservoir 5. The rotation of the deflector 6 varies the volume of the oil reservoir 5 to attenuate the pressure wave caused by the injection. The deflector 6 shown in FIG. 5 has both a fuel oil supply port and a fuel oil return port. A fuel oil outflow port 7 is opened on the inner peripheral surface of the barrel 3. The fuel oil outlet 7 communicates with the oil reservoir 5. At the upper end of the barrel 3, an equal pressure valve 9 is provided. The equal-pressure valve 9 has a discharge-side check valve 11 that operates with the pressure of the pressurized fuel oil and discharges the fuel oil to the outside of the barrel 3, and a return-side check valve 13.
[0003]
A plunger 15 is provided inside the barrel 3 so as to be vertically slidable. The inside of the barrel 3 above the plunger 15 is a pump chamber 16. A cutout 17 is formed on the upper peripheral surface of the plunger 15 to open and close the fuel oil outlet 7 with an appropriate stroke. The cutout portion 17 is divided into an upper end surface of the plunger 15 and a spiral lower end edge, and is slidably in contact with the inner peripheral surface of the barrel 3, and a substantially peripheral relief portion 21 recessed from the peripheral surface portion 19. And a vertical groove 23 communicating the upper end surface of the plunger 15 with the relief portion 21.
[0004]
The operation of the conventional fuel injection pump 25 configured as described above is such that when the peripheral surface portion 19 of the plunger 15 closes the fuel oil outflow / inlet port 7 of the barrel 3, the escape portion 21 of the plunger 15 and the oil reservoir 5 are shut off. As the plunger 15 moves up, the pressure of the fuel oil in the barrel 3 rises. The moment when the peripheral surface 19 of the plunger 15 closes the fuel oil outflow / inlet 7 is referred to as the start of pressure feeding. When the plunger 15 is further raised, the discharge side check valve 11 of the equal pressure valve 9 is opened by the pressure of the fuel oil, and the fuel oil is fed to a nozzle (not shown).
[0005]
When the lower end edge of the peripheral surface portion 19 of the notch 17 passes through the fuel oil outflow port 7 with the rise of the plunger 15, and the fuel oil outflow port 7 opens to the escape portion 21 of the notch 17, The high-pressure fuel oil passes through the longitudinal groove 23 of the notch 17, passes through the escape portion 21, and returns to the oil reservoir 5 through the fuel oil outlet 7. The moment when the plunger 15 rises and the fuel oil outflow / inlet 7 opens to the escape portion 21 of the peripheral surface portion 19 of the plunger 15 is referred to as the end of pressure feeding. The length of the movement range of the plunger 15 that is actually pumping the fuel oil from the start of the pumping to the end of the pumping is called an effective stroke. The effective stroke of the plunger 15 is proportional to the injection amount.
[0006]
[Problems to be solved by the invention]
By the way, in the conventional fuel injection pump 25 described above, when the plunger 15 descends, the fuel oil in the oil reservoir 5 passes through the fuel oil outflow port 7 and flows into the pump chamber 16. At that time, the pressure dissolved in the fuel oil outflow / inflow port 7 and the inner wall surface of the deflector 6 causes air dissolved in the fuel oil to be liberated to form bubbles (cavities), thereby generating cavitation. Next, when the plunger 15 is raised, the fuel in the pump chamber 16 flows through the fuel oil outflow port 7 and flows into the fuel oil supply pipe to generate a cavity. When the plunger 15 is further raised, the fuel oil outlet port 7 is closed, and the fuel oil passes through the discharge side check valve 11 and is injected from a nozzle (not shown). When the injection is completed, the high-pressure fuel oil in the pump chamber 16 flows through the fuel oil outflow port 7 to the oil reservoir 5. At this time, the cavity is again dissolved in the fuel oil and collapsed, and this impact repeatedly acts on the inner wall, so that there is a problem that erosion (erosion) occurs in which the inner wall is gradually destroyed.
The above-described fuel supply port and the fuel return port to the fuel injection pump 25 are usually provided on both sides of the fuel injection pump 25 so as to face each other. May need to be arranged so as not to interfere with each other, and in some cases, it may be necessary to adopt a structure for improving the attachment of the inlet piping in terms of fuel supply. 6 to 8 schematically illustrate these cases. The example of FIG. 6 is a case where the fuel supply port 26 and the fuel return port 27 have to be arranged in a right angle direction, and the example of FIG. 7 is a case where the block type fuel supply inlet / outlet pipe 28 has to be arranged. FIG. 8 shows a case where the fuel supply pipe 29 must be disposed below the fuel injection pump 25. In such a case, cavitation and erosion may occur particularly in the oil reservoir.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel injection pump capable of suppressing cavitation and erosion generated in an oil reservoir, thereby improving durability and reliability of the fuel injection pump. And
[0007]
[Means for Solving the Problems]
The configuration of the present invention for achieving the above object will be described with reference to the drawings corresponding to the embodiment. The fuel injection pump 53 according to the first embodiment includes a barrel 3 fixed inside a housing 1 and a barrel 3. A plunger 15 slidably housed inside the barrel 3 and an inner wall of the barrel 3 to form a pump chamber 16; an oil reservoir 5 formed between the housing 1 and the barrel 3; A fuel oil outflow port 7 formed in the housing 1 to communicate the pump chamber 16 and the oil reservoir 5; a screw hole 41 formed in the housing 1 to communicate the oil reservoir 5 and the outside of the housing 1; In a fuel injection pump 53 having a deflector 31 screwed into the hole 41 in a liquid-tight manner,
The deflector 31 is provided at a position that does not interfere with the fuel supply port to the fuel injection pump 53 and the fuel return ports 26, 27, 28, 29.
The deflector 31 includes a hollow bolt 33 having a head 37 and a sleeve 35. The hollow bolt 33 has a concave portion 43 formed in the axial direction, and the concave portion 43 has a tip opening in the oil reservoir 5 and the oil reservoir. Forming a part of the inner wall of the chamber 5 to increase the volume of the oil reservoir 5 by the amount of the recess 43;
In the sleeve 35, the hollow bolt 33 is inserted on the inner diameter side, and a circumferential groove 45 is formed in the inner diameter side in a circumferential direction, and the sleeve 35 is provided between one end surface of the sleeve 35 and the housing 1 and the other end surface. A liquid-tight seal is formed between the head 37 and a sealed gap 47 is formed between the inner periphery of the sleeve 35 and the outer periphery of the hollow bolt 33,
By forming a communication hole 51 for communicating the sealing gap 47 and the recess 43 in the hollow bolt 33, the volume of the oil reservoir chamber 5 is further increased by the volume of the sealing gap 47 in addition to the recess 43. By
When the plunger descends, when the fuel flows from the oil reservoir 5 into the pump chamber 16, a decrease in the pressure of the oil reservoir 5 is reduced to suppress the occurrence of cavitation in the oil reservoir 5, When rising, when high-pressure fuel flows into the oil reservoir 5, the pressure in the oil reservoir 5 is suppressed from rising to suppress the occurrence of erosion in the oil reservoir 5 .
[0008]
In this fuel injection pump, the volume of the oil reservoir can be easily increased only by changing the shape of the deflector without changing the shape of the housing or the barrel. When the volume of the oil reservoir increases, the pressure in the oil reservoir at the time of inflow of high-pressure fuel is reduced, so that the occurrence of cavitation is suppressed, and the erosion generated due to cavitation is suppressed. The durability of the room will be increased. In addition, the volume of the oil reservoir can be increased by easy replacement of components by replacing the deflector.
[0010]
In this fuel injection pump, a sealed gap is formed between the outer circumference of the deflector and the inner circumference of the sleeve, and the sealed gap and the recess are communicated by the communication hole, so that the volume of the sealed gap is further increased in addition to the recess. Is added to the increase in the volume of the oil reservoir, so that the pressure in the oil reservoir can be further reduced as compared with the case where only the concave portion is formed, and the occurrence of cavitation and erosion is more effective. Will be suppressed.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a fuel injection pump according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view showing the structure of the fuel injection pump according to the present invention. Note that the same members as those shown in FIG. 5 are denoted by the same reference numerals, and redundant description will be omitted.
[0012]
A bolt-shaped deflector 31 is screwed into the housing 1, and the tip of the deflector 31 forms a part of the inner wall of the oil reservoir 5. The deflector 31 includes a hollow bolt 33 and a cylindrical sleeve (eye) 35.
[0013]
For example, a hexagonal head 37 is formed at one end of the hollow bolt 33, and a male screw 39 is formed at an outer periphery on a distal end side connected to the head 37. The male screw 39 is formed of the same male screw formed on a conventional deflector. That is, the hollow bolt 33 of the deflector 31 is screwed into a screw hole 41 formed in the housing 1 in the same manner as the conventional deflector 31.
[0014]
A concave portion 43 is formed in the deflector 31 in the axial direction, and the distal end of the concave portion 43 opens in the oil reservoir 5. That is, the volume of the oil reservoir 5 is increased by the amount of the concave portion 43.
[0015]
The eye 35 is formed in an annular shape, and the hollow bolt 33 is inserted into the inner diameter side. A circumferential groove 45 is formed on the inner diameter side of the eye 35 in the circumferential direction. The eye 35 is inserted into the hollow bolt 33, and when the hollow bolt 33 is screwed into the screw hole 41, one end contacts the outer surface of the housing 1 and the other end contacts the head 37 of the hollow bolt 33. An O-ring 49 is interposed between one end of the eye 35 and the housing 1 and between the other end of the eye 35 and the head 37. The O-ring 49 seals both ends of the eye 35 in a liquid-tight manner. I have. That is, by inserting the eye 35 into the hollow bolt 33, a sealed gap 47 is formed between the inner periphery of the eye 35 and the outer periphery of the hollow bolt 33.
[0016]
Further, a radial communication hole 51 is formed in the hollow bolt 33, and one end of the communication hole 51 is opened in the concave portion 43 and the other end is opened in the closed gap 47. That is, the oil reservoir chamber 5 communicates with the recess 43 and the closed gap 47, and the volume is increased accordingly.
[0017]
Next, the operation of the fuel injection pump 53 configured as described above will be described.
When the plunger 15 descends, the fuel in the oil reservoir 5 passes through the fuel oil outflow port 7 and flows into the pump chamber 16. At this time, the pressure dissolved in the fuel oil outflow port 7 and the inner wall surface of the deflector 31 causes the air dissolved in the fuel oil to be liberated to cause cavitation. Is large, the pressure drop is small and the occurrence of cavitation is suppressed.
[0018]
Next, when the plunger 15 is raised, the fuel oil in the pump chamber 16 passes through the fuel oil outlet 7 and flows into the fuel oil supply pipe. When the plunger 15 is further raised, the fuel oil outlet port 7 is closed, and the fuel oil passes through the discharge side check valve 11 and is injected from a nozzle (not shown). When the injection is completed, the high-pressure fuel oil in the pump chamber 16 flows through the fuel oil outflow port 7 to the oil reservoir 5. At this time, the pressure in the oil reservoir 5 increases, but the pressure increase in the oil reservoir 5 is suppressed by the increased volume of the concave portion 43 and the sealed gap 47. This suppresses repeated impact due to the collapse of the cavity, that is, erosion.
[0019]
As described above, according to the fuel injection pump 53 described above, the volume of the oil reservoir 5 can be easily increased only by changing the shape of the deflector 31 without changing the shape of the housing 1 and the barrel 3. Cavitation can be suppressed by lowering the pressure. As a result, erosion can be suppressed and the durability and reliability of the fuel injection pump 53 can be improved. Further, the volume of the oil reservoir 5 can be increased by simply replacing the deflector 31 whose shape has been changed with an existing deflector.
[0020]
Further, since the volume of the closed gap 47 can be further increased in addition to the concave portion 43, the volume of the deflector 31 can be increased to be larger than the volume of the deflector 31, and the pressure of the oil reservoir 5 at the time of high-pressure fuel inflow can be reduced. , Erosion can be suppressed more effectively.
[0021]
【Example】
Next, the results of measuring the pressure in the oil reservoir using the internal volume of the oil reservoir as a parameter will be described with reference to FIGS.
FIG. 2 is a graph of a pressure measurement result of the oil reservoir when a conventional solid deflector is used, FIG. 3 is a graph of a pressure measurement result of the oil reservoir when the deflector according to the present invention is used, and FIG. 7 is a graph comparing the relationship between pressure and pressure between an old shape and a shape according to the present invention.
[0022]
2 and 3, the vertical axis represents pressure, and the horizontal axis represents time. In the figure, the R side is a fuel inlet, and the anti-R is a return side.
Figure 2, as is apparent from FIG. 3, in the case of using the conventional deflector, while the pressure P G is relatively high, in the case of using a deflector according to the present invention, the pressure of the R-side P G , substantial pressure drops and the pressure P G of the anti-R side is confirmed. (P 1 > P 3 , P 2 > P 4 )
In this case, as shown in FIG. 4, the volume of the oil reservoir is larger in the deflector according to the present invention than in the conventional deflector.
[0023]
From the above results, by increasing the volume of the oil reservoir, it is possible to reduce the pressure of the oil reservoir when the high-pressure fuel oil flows, and as a result, it is possible to suppress the occurrence of cavitation and suppress the occurrence of erosion. I understood.
[0024]
【The invention's effect】
As described in detail above, in the fuel injection pump according to the first aspect of the present invention, since the concave portion serving as a part of the oil reservoir is formed on the wall surface of the deflector in contact with the oil reservoir, the shape of the housing and the barrel is reduced. Without changing, the capacity of the oil reservoir can be easily increased only by changing the shape of the deflector. As a result, cavitation can be suppressed by reducing the pressure in the oil reservoir, and erosion can be suppressed, thereby improving the durability and reliability of the fuel injection pump.
In addition, since the capacity of the oil reservoir can be increased only by changing the shape of the deflector, the volume of the oil reservoir is increased by simply replacing the deflector whose shape has been changed with an existing deflector, and easily replacing the deflector. be able to. Further, the degree of freedom of the fuel supply piping layout is improved.
[0025]
In the fuel injection pump according to the second aspect, a cylindrical sleeve is inserted into the outer periphery of the deflector, and a sealed gap is formed between the outer periphery of the deflector and the inner periphery of the sleeve. As a result, the volume of the closed gap can be further increased in addition to the recess. As a result, the pressure in the oil reservoir can be further reduced as compared with the case where only the concave portion is formed, cavitation can be suppressed, and the occurrence of erosion can be more effectively suppressed.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a structure of a fuel injection pump according to the present invention.
FIG. 2 is a graph of a pressure measurement result of an oil reservoir when a conventional deflector is used.
FIG. 3 is a graph of a pressure measurement result of an oil reservoir when the deflector according to the present invention is used.
FIG. 4 is a graph comparing the relationship between volume and pressure between an old shape and a shape according to the present invention.
FIG. 5 is a sectional view showing the structure of a conventional Bosch-type fuel injection pump.
FIG. 6 is a diagram showing an example of a mounting arrangement of a fuel injection pump in which fuel supply ports are arranged at right angles.
FIG. 7 is a view showing an example of a mounting arrangement of a fuel injection pump having a block-shaped fuel supply port.
FIG. 8 is a diagram showing an example of a mounting arrangement of a fuel injection pump in which fuel supply ports are arranged at right angles.
[Explanation of symbols]
Reference Signs List 1 housing 3 barrel 5 oil reservoir 7 fuel oil outlet 15 plunger 16 pump chamber 31 deflector 35 eye (sleeve)
37 head 41 screw hole 43 recess 47 closed gap 51 communication hole 53 fuel injection pump

Claims (1)

ハウジング(1)の内部に固定されるバレル(3)と、該バレル(3)の内部に摺動自在に収容され該バレル(3)の内壁とでポンプ室(16)を形成するプランジャ(15)と、前記ハウジング(1)と前記バレル(3)との間に形成される油溜室(5)と、前記バレル(3)に穿設され前記ポンプ室(16)及び該油溜室(5)を連通させる燃料油流出入口(7)と、前記ハウジング(1)に穿設され前記油溜室(5)及びハウジング(1)外を連通させる螺子穴(41)と、該螺子穴(41)に液密に螺合されるデフレクタ(31)とを具備した燃料噴射ポンプ(53)において、
前記デフレクタ(31)は、前記燃料噴射ポンプ(53)への燃料供給口及び燃料戻し口(26,27,28,29)と干渉しない位置に設けられ、
前記デフレクタ(31)は、頭部(37)を有するホローボルト(33)とスリーブ(35)からなり、前記ホローボルト(33)は、軸線方向に凹部(43)が形成され、該凹部(43)は先端が前記油溜室(5)で開口するとともに前記油溜室(5)の内壁の一部を形成して凹部(43)の形成された分だけ前記油溜室(5)の容積を増大させ、
前記スリーブ(35)は、内径側に前記ホローボルト(33)が挿通されるとともに、その内径側には円周方向に周溝(45)が形成されて、該スリーブ(35)の一端面とハウジング(1)との間及び他端面と前記頭部(37)との間は液密にシールされてスリーブ(35)の内周とホローボルト(33)の外周との間には密閉間隙(47)が形成され、
該密閉間隙(47)と前記凹部(43)とを連通させる連通孔(51)を前記ホローボルト(33)に穿設することにより、前記凹部(43)に加えて前記密閉間隙(47)の容積で前記油溜室(5)の容積を更に増大させることにより、
プランジャの下降時、前記油溜室(5)から燃料が前記ポンプ室(16)に流入する際に前記油溜室(5)の圧力の低下を少なくして前記油溜室(5)でのキャビテーションの発生を抑え、プランジャの上昇時、高圧の燃料が前記油溜室(5)に流れる際に前記油溜室(5)の圧力上昇を抑えて前記油溜室(5)でのエロージョンの発生を抑制するように構成したことを特徴とする燃料噴射ポンプ(53)
A barrel (3) fixed to the inside of the housing (1), a plunger (15 forming the pump chamber (16) between the inside slidably housed by the inner wall of the barrel (3) of the barrel (3) ) and the housing (1) and the barrel (3) the oil reservoir chamber formed between the (5), said barrel (3) to be drilled being the pump chamber (16) and the oil reservoir chamber ( and 5) the communicated to the fuel oil inlet and outlet opening (7), said drilled in the housing (1) the oil reservoir chamber (5) and the housing (1) a screw hole (41 for communicating the outside),該螺Ko hole ( 41) A fuel injection pump (53) comprising a deflector (31) screwed into a liquid-tight manner to 41) .
The deflector (31) is provided at a position that does not interfere with a fuel supply port to the fuel injection pump (53) and a fuel return port (26, 27, 28, 29).
The deflector (31) comprises a hollow bolt (33) having a head (37) and a sleeve (35), and the hollow bolt (33) has a concave portion (43) formed in the axial direction, and the concave portion (43) The tip opens in the oil sump (5) and forms a part of the inner wall of the oil sump (5) to increase the volume of the oil sump (5) by the amount of the recess (43). Let
The hollow bolt (33) is inserted through the inside of the sleeve (35), and a circumferential groove (45) is formed in the inside of the sleeve in the circumferential direction. (1) and between the other end face and the head (37) are liquid-tightly sealed, and a sealed gap (47) is provided between the inner circumference of the sleeve (35) and the outer circumference of the hollow bolt (33). Is formed,
By forming a communication hole (51) for communicating the sealing gap (47) with the recess (43) in the hollow bolt (33), the volume of the sealing gap (47) can be increased in addition to the recess (43). By further increasing the volume of the oil reservoir (5),
When the plunger is lowered, when the fuel flows from the oil reservoir (5) into the pump chamber (16), a decrease in the pressure of the oil reservoir (5) is reduced to reduce the pressure in the oil reservoir (5). The occurrence of cavitation is suppressed, and when the plunger rises, when the high-pressure fuel flows into the oil reservoir (5), the pressure rise in the oil reservoir (5) is suppressed to prevent erosion in the oil reservoir (5). A fuel injection pump (53) characterized in that generation is suppressed .
JP28302399A 1999-10-04 1999-10-04 Fuel injection pump Expired - Fee Related JP3585784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28302399A JP3585784B2 (en) 1999-10-04 1999-10-04 Fuel injection pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28302399A JP3585784B2 (en) 1999-10-04 1999-10-04 Fuel injection pump

Publications (2)

Publication Number Publication Date
JP2001099032A JP2001099032A (en) 2001-04-10
JP3585784B2 true JP3585784B2 (en) 2004-11-04

Family

ID=17660233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28302399A Expired - Fee Related JP3585784B2 (en) 1999-10-04 1999-10-04 Fuel injection pump

Country Status (1)

Country Link
JP (1) JP3585784B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415973B2 (en) 2006-11-06 2008-08-26 Mitsubishi Heavy Industries, Ltd. Fuel injection pump equipped with rotary deflector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415973B2 (en) 2006-11-06 2008-08-26 Mitsubishi Heavy Industries, Ltd. Fuel injection pump equipped with rotary deflector

Also Published As

Publication number Publication date
JP2001099032A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
US10465680B1 (en) Discharge cap and block for a fluid end assembly
KR100331758B1 (en) Internal high pressure fuel pump
JP4571980B2 (en) High pressure pump for fuel injection device of internal combustion engine
EP2351929A2 (en) Apparatus for preventing cavitation damage to a diesel engine fuel injection pump
KR19990068166A (en) A device for avoiding cavitation in injection pumps
JP3585784B2 (en) Fuel injection pump
JP4887421B2 (en) Supply pump for high-pressure gasoline fuel injection
JPH10176625A (en) Plunger pump
JP2004068727A (en) Fuel injection device
US20230383716A1 (en) Fuel pump
CN109964032B (en) High-pressure pump for a fuel injection system
JP2005147096A (en) Delivery valve for fuel injection pump
CN114599874A (en) High-pressure fuel pump
KR960013107B1 (en) Fuel ejection pump
JP4153618B2 (en) Plunger pump
JP3948006B2 (en) Fuel injection nozzle with labyrinth seal
JP2000249018A (en) Metal bellows type pulsation absorbing device
JP2007023948A (en) Fuel injection pump for internal combustion engine
JPH057500Y2 (en)
KR100781915B1 (en) Fuel injection pump for internal combustion engine
JP2005155411A (en) Jet pump module
US10794347B1 (en) Roller reaction force lubrication system
JP2000291511A (en) Fuel injection pump
JP2000205085A (en) Unit injector
JP3877863B2 (en) Pressure control mechanism of fuel injection pump

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040804

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees