JP3585682B2 - Winding filter device - Google Patents

Winding filter device Download PDF

Info

Publication number
JP3585682B2
JP3585682B2 JP34476196A JP34476196A JP3585682B2 JP 3585682 B2 JP3585682 B2 JP 3585682B2 JP 34476196 A JP34476196 A JP 34476196A JP 34476196 A JP34476196 A JP 34476196A JP 3585682 B2 JP3585682 B2 JP 3585682B2
Authority
JP
Japan
Prior art keywords
filter medium
roll
winding
medium roll
take
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34476196A
Other languages
Japanese (ja)
Other versions
JPH10180025A (en
Inventor
勝人 斉藤
雄二 岩永
裕男 水島
亨 志摩
祥一 桑名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Shinwa Corp
Original Assignee
Taikisha Ltd
Shinwa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd, Shinwa Corp filed Critical Taikisha Ltd
Priority to JP34476196A priority Critical patent/JP3585682B2/en
Publication of JPH10180025A publication Critical patent/JPH10180025A/en
Application granted granted Critical
Publication of JP3585682B2 publication Critical patent/JP3585682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は巻取式フィルタ装置に関し、詳しくは、繰出側濾材ロールから処理対象気体の通過路を介して巻取側濾材ロールに掛け渡した濾材を、駆動手段による巻取側濾材ロールの駆動回転により巻取側濾材ロールに巻き取る巻取式フィルタ装置に関する。
【0002】
【従来の技術】
従来、一般の巻取式フィルタ装置では、巻取用電動モータ(通常はギヤードモータ)からチェーン式やベルト式、あるいは、ギヤ式などの伝動機構を介して巻取側濾材ロールのロール軸に単に回転動力を伝達するだけの単純な回転動力伝達で巻取側濾材ロールを駆動回転させていた。
【0003】
しかし、濾材が十分な強度を有する場合には、この一般の巻取式フィルタ装置において、大きな巻き取り抵抗に対し巻取側濾材ロールに大きな巻き取りトルクがかかり、これにより、多少過大な張力が濾材にかかったとしても、濾材の損傷に至る虞は特にないが、用途によって濾材種が制限されるなどのことから濾材の強度が小さい場合には濾材損傷の虞が生じる。
【0004】
そこで、濾材保護を目的として、図6に示す如く、処理対象気体Aの通過路Fにおける濾材Eの下流側にネット状の無端回動帯3を設け、この無端回動帯3に対し通過気体Aによる風圧で濾材Eを押し付けるようにし、また、遊転自在な巻取側濾材ロールX及び繰出側濾材ロールYの夫々を重力付勢やスプリング付勢で無端回動帯3に押し付けるようにし、この構成において、無端回動帯3を駆動回転させることにより、無端回動帯3の回転に伴い巻取側濾材ロールX及び繰出側濾材ロールYを従動回転させながら、無端回動帯3により濾材Eを送って、この濾材Eを巻取側濾材ロールXに巻き取るものを先に提案した(特願平8−8645号参照)。
【発明が解決しようとする課題】
しかし、この提案装置では、低強度の濾材についても濾材損傷を効果的に防止できるものの、巻き取りの際の巻取側濾材ロールXの回転が、無端回動帯3に対するロール押し付け状態での無端回動帯3の駆動回転に伴う従動回転である為、巻取側濾材ロールXと無端回動帯3との間でスリップを生じることがあり、このスリップが原因で巻取側濾材ロールXへの巻き取りに弛み傾向を生じたり、また、巾方向における濾材物性のバラツキでスリップによる弛みが濾材巾方向で不均一に生じる形態となって巻き取り濾材Eに蛇行傾向が生じることがあった。
【0005】
そして、これら弛みや蛇行により巻取側濾材ロールXにおける濾材Eの巻き取り状態がムラや偏りのある不適切なもの(例えば、ロール断面形状が異常に歪なものや、濾材が竹の子状に巻き取られたもの)となることで装置運転に支障を来す場合があり、殊に、濾材Eを巻き取った巻取側濾材ロールXを繰出側濾材ロールYとして再び使用するものでは、この不適切な巻き取りの影響で、その再使用運転にも支障を来す場合があった。
【0006】
また、この提案装置では、圧縮性や弾性を有する濾材の場合、濾材ロールX,Yにおける無端回動帯3への押し付け側部分と、それとは反対側の自由側部分とでロール径に差を生じるため、繰出側濾材ロールYにおいて濾材Eに弛みを生じる傾向があり、この繰出側濾材ロールYでの弛みによって装置運転に支障を来す虞もあった。
【0007】
以上の実情に対し、本発明の主たる課題は、濾材の保護を十分に図りながら、濾材の巻き取りを適切な状態で安定的に行えるようにする点にある。
【0008】
【課題を解決するための手段】
〔1〕請求項1記載の発明では、処理対象気体の通過路における濾材の下流側に濾材支持用の無端回動帯を設け、通過気体による風圧で前記濾材を前記無端回動帯に押し付ける構成とし、そして、この風圧による無端回動帯への濾材押し付け状態で、巻取側濾材ロールの駆動回転による濾材巻き取りに伴い、無端回動帯を巻取側濾材ロール及び繰出側濾材ロールとは非接触の状態で駆動回転させて、この無端回動帯により濾材を巻取側濾材ロールの側へ送る。
【0009】
すなわち、この構成では、無端回動帯とは非接触の状態での巻取側濾材ロールそのものの駆動回転をもって濾材を巻き取る形式であるから、前述した先の提案装置(図6)で生じる如き、巻取側濾材ロールのスリップ動作に原因する巻取側濾材ロールでの濾材の弛みや蛇行を回避でき、濾材を適切かつ安定的に巻取側濾材ロールに巻き取ることができる。
【0010】
また、この構成では、処理対象気体の通過路における濾材を濾材支持用の無端回動帯により受け止め支持した状態で、巻取側濾材ロールの駆動回転に並行して、無端回動帯の駆動回転により濾材を巻取側濾材ロールの側へ送るから、さらに高い濾材保護効果を得ることができ、濾材必要強度の一層の低減が可能となる。
【0011】
そしてまた、先の提案装置(図6)では、前述の如く、圧縮性や弾性を有する濾材の場合、濾材ロールにおける無端回動帯への押し付け側部分と、それとは反対側の自由側部分とでロール径に差を生じるため、繰出側濾材ロールにおいて濾材に弛みを生じる傾向があるが、上記構成では、繰出側濾材ロールを無端回動帯に対し非接触の状態とするから、このような問題を生じることはなく、この点でも、巻き取り運転を一層良好かつ安定的なものにすることができる。
【0012】
〔2〕請求項2記載の発明では、巻取側濾材ロールの巻き取りトルクを目標適正範囲に保つように、この巻き取りトルクをトルク制御手段により自動調整するから、濾材の巻き取りにおいて大きな巻き取り抵抗がかかる要因があるとしても、この抵抗に対し巻き取りトルクが過大となって濾材に過大な張力がかかることを防止でき、これにより、低強度の濾材を用いる場合についても濾材損傷を確実に防止できる。
【0013】
〔3〕請求項3記載の発明では、巻取側濾材ロールの濾材巻き取り速度を前記無端回動帯の濾材送り速度よりも大きく設定した運転において、この速度差により生じる巻き取り抵抗に対し、前記のトルク制御手段によるトルク調整で、巻取側濾材ロールの実際の濾材巻き取り速度を制限して無端回動帯の濾材送り速度に一致させる構成とする。
【0014】
すなわち、巻取側濾材ロールの濾材巻き取り速度(ロール周速度)は、濾材の巻き取り量が大きくなって巻取側濾材ロールのロール径が大きくなるに伴い次第に大きくなるが、上記構成によれば、巻取側濾材ロールの濾材巻き取り速度を無端回動帯の濾材送り速度よりも予め大きく設定した運転を行うから、この速度差により生じる巻き取り抵抗に対しトルク制御手段のトルク調整を発現させて、このトルク調整により、巻取側濾材ロールの実際の濾材巻き取り速度を無端回動帯の濾材送り速度に一致させつつ、濾材のうち無端回動帯から巻取側濾材ロールに渡る部分に対し適度な巻き取り張力を巻取側濾材ロールのロール径が未だ小さい段階から確実に与えた状態で、濾材を弛みなく適切に巻き取ることができる。
【0015】
〔4〕請求項4記載の発明では、第1濾材ロールを巻取側とし、かつ、第2濾材ロールを繰出側として、第1濾材ロールの正転駆動回転により濾材を第1濾材ロールに巻き取る正転運転と、これとは逆に第1濾材ロールを繰出側とし、かつ、第2濾材ロールを巻取側として、第2濾材ロールの逆転駆動回転により濾材を第2濾材ロールに巻き取る逆転運転とに切り換え自在な構成とするから、濾材の再使用運転、すなわち、気体処理に使用して一旦巻き取った後の濾材を再び気体処理に使用する運転を、この正逆転運転の切り換えをもって容易に行うことができる。
【0016】
そして、前記した請求項2記載の発明の巻き取りトルク調整として、第1濾材ロールを巻取側とする正転運転では第1濾材ロールの巻き取りトルクを、かつ、第2濾材ロールを巻取側とする逆転運転では第2濾材ロールの巻き取りトルクを、夫々、前記のトルク制御手段により目標適正範囲に保つように自動調整すれば、正逆転運転の双方について、濾材 損傷を確実に防止できるとともに、巻取側濾材ロールへの濾材巻き取りを適切かつ安定的に行うことができる。
【0017】
〔5〕請求項5記載の発明では、駆動手段の回転動力を前記の第1濾材ロールに伝達する第1伝動系に、駆動手段の正転駆動時には伝動状態になり、かつ、駆動手段の逆転駆動時には非伝動状態になる第1濾材ロール用の一方向クラッチ機構を介装し、また、この第1伝動系とは並列状態で駆動手段の回転動力を前記の第2濾材ロールに伝達する第2伝動系に、駆動手段の正転駆動時には非伝動状態となり、かつ、駆動手段の逆転駆動時には伝動状態になる第2濾材ロール用の一方向クラッチ機構を介装するから、駆動手段に対する正逆転駆動の切り換え操作だけで、第1濾材ロールを巻取側とする前記の正転運転と、第2濾材ロールを巻取側とする前記の逆転運転との切り換えを簡便に行うことができる。
【0018】
すなわち、駆動手段の正転駆動時には、第1濾材ロール用の一方向クラッチ機構の伝動状態への切り換わりにより、駆動手段の正転回転動力を第1伝動系を介し第1濾材ロールに伝達して、第1濾材ロールを巻取側として正転駆動回転させ、これに対し、第2濾材ロール用の一方向クラッチ機構の非伝動状態への切り換わりにより、第2伝動系による動力伝達を断って、第2濾材ロールを繰出側として正転従動回転させる。
【0019】
また、駆動手段の逆転駆動時には、第2濾材ロール用の一方向クラッチ機構の伝動状態への切り換わりにより、駆動手段の逆転回転動力を第2伝動系を介し第2濾材ロールに伝達して、第2濾材ロールを巻取側として逆転駆動回転させ、これに対し、第1濾材ロール用の一方向クラッチ機構の非伝動状態への切り換わりにより、第1伝動系による動力伝達を断って、第1濾材ロールを繰出側として逆転従動回転させる。
【0020】
〔6〕請求項6記載の発明では、前記トルク制御手段として、濾材の巻き取り抵抗が設定値以上になると、駆動手段から巻取側濾材ロールへのトルク伝達に滑りを生じさせる滑りクラッチ機構を設ける。
【0021】
すなわち、巻き取り抵抗が設定値以上になることに対し、この滑りクラッチ機構において滑りを生じさせることで、駆動手段から巻取側濾材ロールへのトルク伝達率を低下させ、これにより、巻取側濾材ロールの巻き取りトルクが過大になることを防止して、この巻き取りトルクを目標適正範囲に保つ。
【0022】
したがって、この構成によれば、例えば、駆動手段としてのモータに対する制御でモータトルクそのものを調整して、巻取側濾材ロールの巻き取りトルクを目標適正範囲に保つといった形態を採る等に比べ、滑りクラッチ機構を駆動手段から巻取側濾材ロールへの伝動系に介装するだけで巻き取りトルクを適正に保つことができ、改良コストを安価にすることができる。
【0023】
〔7〕請求項7記載の発明では、巻取側濾材ロールへの濾材巻き取りに伴う繰出側濾材ロールの遊転回転に所定の回転抵抗を与える抵抗付与機構を設けるから、遊転状態の繰出側濾材ロールが何らかの要因で濾材繰り出し側へ過度に回転して繰り出し濾材に弛みを生じるといったことを、この回転抵抗付与による繰出側濾材ロールの制動をもって防止でき、これにより、巻き取り運転を一層良好かつ安定的なものにすることができる。
【0024】
特に、前記した請求項記載の発明を実施する場合、一方向クラッチ機構の中には、非伝動状態においても僅かなトルク伝達を生じるものがあることから、この非伝動状態の伝達トルク(空転トルク)よりもある程度大きな回転抵抗(停動トルク)を、上記の抵抗付与機構をもって繰出側濾材ロールに与えることにより、一方向クラッチ機構の非伝動状態の伝達トルクで繰出側濾材ロールが濾材繰り出し側に過度に回転して濾材に弛みを生じるといったことを確実に防止することができる。
【0025】
【発明の実施の形態】
図1〜図4は本発明に係る巻取式フィルタ装置を示し、装置ケーシング1の内部において、処理対象気体Aを通過させる気体通過路Fの下側に第1濾材ロール2Aを配置するとともに、この気体通過路Fの上側に第2濾材ロール2Bを配置し、これら濾材ロール2A,2Bに掛け渡した濾材Eにより、気体通過路Fにおける通過気体Aを濾過処理する。
【0026】
気体通過路Fにおける濾材Eの下流側には、同図1及び図2に示す如く各濾材ロール2A,2Bとは非接触となる配置で濾材Eに近接させて濾材支持用のネット状の無端回動帯3を設けてあり、濾材Eの上流側に位置して無端回動帯3との間で濾材Eを挟む状態の下側及び上側のガイドローラ4A,4Bにより、これらガイドローラ間において濾材Eを無端回動帯3に沿わせるように支持した状態で、通過気体Aの風圧により無端回動帯3に押し付けられる濾材Eを無端回動帯3で支持する。
【0027】
濾材Eの巻き取り運転は正逆転切り換え可能にしてあり、正転運転では、第1濾材ロール2Aを巻取側濾材ロールXとし、かつ、第2濾材ロール2Bを繰出側濾材ロールYとして、巻取側の第1濾材ロール2Aの正転駆動回転により濾材Eを第1濾材ロール2Aに巻き取り、一方、逆転運転では、第2濾材ロール2Bを巻取側濾材ロールXとし、かつ、第1濾材ロール2Aを繰出側濾材ロールYとして、巻取側の第2濾材ロール2Bの逆転駆動回転により濾材Eを第2濾材ロール2Bに巻き取る。
【0028】
また、正転運転では、風圧による無端回動帯3への濾材押し付け状態で無端回動帯3を、図1及び図2に示す如く巻取側濾材ロールXとしての第1濾材ロール2A及び繰出側濾材ロールYとしての第2濾材ロール2Bとは非接触の状態で正転駆動回転させ、これにより、第1濾材ロール2Aの正転駆動回転による濾材巻き取りに並行して無端回動帯3により濾材Eを第1濾材ロール2Aの側に送り、同様に、逆転運転では、風圧による無端回動帯3への濾材押し付け状態で無端回動帯3を、同図1及び図2に示す如く巻取側濾材ロールXとしての第2濾材ロール2B及び繰出側濾材ロールYとしての第1濾材ロール2Aとは非接触の状態で逆転駆動回転させ、これにより、第2濾材ロール2Bの逆転駆動回転による濾材巻き取りに並行して無端回動帯3により濾材Eを第2濾材ロール2Bの側に送る。
【0029】
図中、実線の矢印は正転運転の際の回転方向を示し、破線の矢印は逆転運転の際の回転方向を示す。
【0030】
通常の濾過処理運転では、第1濾材ロール2Aを巻取側濾材ロールXとし、タイマー制御により所定時間毎に、あるいは、処理対象気体Aの通過抵抗検出において検出通過抵抗が所定上限値に至る毎に、正転運転を設定時間だけ実施して、気体通過路Fにおける使用済の濾材Eを第1濾材ロール2Aに巻き取るとともに、この巻き取りに伴い第2濾材ロール2Bから新たな濾材Eを気体通過路Fに繰り出す濾材更新を行う。また、この濾材更新の際には、第1濾材ロール2A寄りの下部側において濾材上流側から濾材Eに近接させた吸引管5により、塵埃やオイルミストなどの濾材捕捉物を濾材Eから吸引除去することで、第1濾材ロール2Aに巻き取る濾材Eを再生処理する。
【0031】
そして、この濾材更新の繰り返しにより繰出側の第2濾材ロール2Bにおける濾材Eのほぼ全量を使い切ると、第2濾材ロール2Bを巻取側濾材ロールXとし、かつ、第1濾材ロール2Aを繰出側濾材ロールYとする逆転運転を実施して、一旦、第1濾材ロール2Aにおける巻き取り濾材Eのほぼ全量を第2濾材ロール2Bに巻き戻し、また、この巻き戻しの際に、前記の吸引管5により巻き戻し濾材Eに対し再度の再生処理を施し、この巻き戻しの後、濾材Eの再使用運転として、再び、前記の濾材更新を繰り返しながら濾材Eにより処理対象気体Aを濾過処理する運転に戻る。
【0032】
駆動構造については、装置ケーシング1の一側において、無端回動帯3に対する下側巻回ローラ6Aのローラ軸6aに取り付けた受動スプロケット8と、駆動手段としての電動モータ9の回転軸9a(ないしはモータ9に連結した減速機の出力軸)に取り付けた駆動スプロケット10とを主伝動チェーンで連結し、他方、装置ケーシング1の他側下部において、無端回動帯3に対する下側巻回ローラ6Aのローラ軸6aに取り付けた下側連動用スプロケット12aと、第1濾材ロール2Aのロール軸2aに支持した下側受動用スプロケット13aとを下側連動用チェーン14aで連結し、さらに、装置ケーシング1の他側上部において、無端回動帯3に対する上側巻回ローラ6Bのローラ軸6bに取り付けた上側連動用スプロケット12bと、第2濾材ロール2Bのロール軸2bに支持した上側受動用スプロケット13bとを上側連動用チェーン14bで連結してある。
【0033】
また、無端回動帯3に対する下側巻回ローラ6A及び上側巻回ローラ6Bの夫々には、無端回動帯3そのものを巻き掛け伝動具として下側巻回ローラ6Aから上側巻回ローラ6Bへ動力伝達するためのスプロケット部15a,15bをローラ両端部に設けてある。
【0034】
図5に示す如く、第1濾材ロール2Aのロール軸2aに支持する下側受動用スプロケット13aは、第1濾材ロール2Aのロール軸2aに相対回転自在に外嵌させた下側筒軸16aに対し、第1濾材ロール用の一方向クラッチ機構17Aを介して連結し、さらに、この下側筒軸16aは、ツバ部18a、ボルト部19a、及び、第1濾材ロール用の滑りクラッチ機構20Aを介して第1濾材ロール2Aのロール軸2aに連結してあり、また同様に、第2濾材ロール2Bのロール軸2bに支持する上側受動用スプロケット13bは、第2濾材ロール2Bのロール軸2bに相対回転自在に外嵌させた上側筒軸16bに対し、第2濾材ロール用の一方向クラッチ機構17Bを介して連結し、さらに、この上側筒軸16bは、ツバ部18b、ボルト部19b、及び、第2濾材ロール用の滑りクラッチ機構20Bを介して第2濾材ロール2Bのロール軸2bに連結してある。
【0035】
つまり、この駆動構造において、下側連動用スプロケット12aから第1濾材ロール用の滑りクラッチ機構20Aにわたる伝動系が、モータ9の回転動力を第1濾材ロール2Aに伝達する第1伝動系となり、一方、巻き掛け伝動具としての無端回動帯3から上側連動用スプロケット12bを介して第2濾材ロール用の滑りクラッチ機構20Bにわたる伝動系が、第1伝動系とは並列の状態でモータ9の回転動力を第2濾材ロール2Bに伝達する第2伝動系となる。
【0036】
上記の一方向クラッチ機構17A,17Bは、夫々、受動用スプロケット13a,13bを外嵌状態で取り付ける外輪17mと、ロール軸2a,2bに対し相対回転自在に支持した状態で筒軸16a,16bに連結する内輪17nとを備え、これら外輪17mと内輪17nとの間での回転動力の伝達を断続するものであり、外輪17mと内輪17nとの間に介在させた多数のカム部材の作用により、外輪17mの一方側への回転については、内輪17nを外輪17mと一体的に回転させる伝動状態となり、かつ、外輪17mの他方側への回転については、外輪17mを内輪17nに対し遊転(空転)させる非伝動状態となる。
【0037】
そして、これら一方向クラッチ機構17A,17Bの介装にあたり、第1濾材ロール用の一方向クラッチ機構17Aは、前記モータ9の正転駆動時に下側連動用チェーン14aから下側受動用スプロケット13aに伝達される正転回転動力に対し伝動状態となって、モータ9の逆転駆動時には下側連動用チェーン14aから下側受動用スプロケット13aに伝達される逆転回転動力に対し非伝動状態となるように動作方向を設定してあり、これに対し、第2濾材ロール用の一方向クラッチ機構17Bは、逆に、モータ9の正転駆動時には上側連動用チェーン14bから上側受動用スプロケット13bに伝達される正転回転動力に対し非伝動状態となって、モータ9の逆転駆動時に上側連動用チェーン14bから上側受動用スプロケット13bに伝達される逆転回転動力に対し伝動状態となるように動作方向を設定してある。
【0038】
つまり、前記の正転運転では、モータ9を正転駆動状態にすることで、下側巻回ローラ6Aへの正転回転動力の伝達による無端回動帯3の正転駆動回転とともに、第1濾材ロール用の一方向クラッチ機構17Aの伝動状態への切り換わりにより、モータ9の正転回転動力を第1濾材ロール2Aに伝達して、第1濾材ロール2Aを巻取側濾材ロールXとして正転駆動回転させ、これに対し、第2濾材ロール用の一方向クラッチ機構17Bの非伝動状態への切り換わりにより、第2濾材ロール2Bへの正転回転動力の伝達を断って、第2濾材ロール2Bを遊転状態で濾材巻き取りに対し正転従動回転させる。
【0039】
また、前記の逆転運転では、モータ9を逆転駆動状態にすることで、下側巻回ローラ6Aへの逆転回転動力の伝達による無端回動帯3の逆転駆動回転とともに、第2濾材ロール用の一方向クラッチ機構17Bの伝動状態への切り換わりにより、モータ9の逆転回転動力を第2濾材ロール2Bに伝達して、第2濾材ロール2Bを巻取側濾材ロールXとして逆転駆動回転させ、これに対し、第1濾材ロール用の一方向クラッチ機構17Aの非伝動状態への切り換わりにより、第1濾材ロール2Aへの逆転回転動力の伝達を断って、第1濾材ロール2Aを遊転状態で濾材巻き取りに対し逆転従動回転させる。
【0040】
一方、前記の滑りクラッチ機構20A,20Bは、夫々、ボルト部19a,19bを介して前記の筒軸16a,16bに連結するフランジ部材20f、ロール軸2a,2bに連結するハブ部材20h、このハブ部材20hにおけるツバ部との間でフランジ部材20fを挟み込む押さえ部材20p、並びに、この押さえ部材20pをフランジ部材20fに対する挟圧側に付勢する皿バネ20sを備え、ハブ部材20hにおけるツバ部とフランジ部材20fとの接触面ssでの摩擦により、フランジ部材20fからハブ部材20hへ回転動力を伝達するものであり、接触面ssの静止摩擦抵抗に打ち勝つ相対トルクがフランジ部材20fとハブ部材20hとの間にかかると、接触面ssで滑りを生じて接触面ssの滑り摩擦抵抗(動摩擦)でフランジ部材20fからハブ部材20hへトルク伝達する滑り伝動状態となり、また、この滑り伝動状態で上記相対トルクが低下して接触面ssの滑り摩擦抵抗を下回る状態になると非滑り状態に復帰する。
【0041】
つまり、これら滑りクラッチ機構20A,20Bは、巻取側濾材ロールXの巻取トルクを目標適正範囲に保って濾材Eに対する巻き取り張力を適正に保つように、巻取側濾材ロールXの巻き取りトルクを自動調整するトルク制御手段Tとして機能し、正転運転(すなわち、本例では濾材更新の際)では、第1濾材ロール2Aの正転駆動回転による濾材巻き取りにおいて、巻き取り抵抗が設定値以上になると、第1濾材ロール用の滑りクラッチ機構20Aが滑り伝動状態になり、これにより、第1濾材ロール2Aの巻き取りトルクが過大になることが防止されて、その巻き取りトルクが目標適正範囲に保たれる。また、逆転運転(すなわち、本例では巻き戻しの際)では、第2濾材ロール2Bの逆転駆動回転による濾材巻き取りにおいて、巻き取り抵抗が設定値以上になると、第2濾材ロール用の滑りクラッチ機構20Bが滑り伝動状態になり、これにより、第2濾材ロール2Bの巻き取りトルクが過大になることが防止されて、その巻き取りトルクが目標適正範囲に保たれる。
【0042】
そして、これら滑りクラッチ機構20A,20Bの装備に対し、正転運転及び逆転運転の夫々における巻取側濾材ロールXの濾材巻き取り速度(ロール周速度)は、各スプロケットの歯数選定により、巻取側濾材ロールXのロール径が最小径の段階から既に無端回動帯3の濾材送り速度よりも大きくなるように設定してあり、これにより、この速度差に起因する巻き取り抵抗(設定値以上の巻き取り抵抗)に対し、上記の滑りクラッチ機構20A,20Bにおいてトルク伝達に滑りを生じさせることで、この滑りをもって巻取側濾材ロールXの実際の濾材巻き取り速度を制限して無端回動帯3の濾材送り速度に一致させるようにしながら、濾材Eのうち無端回動帯3から巻取側濾材ロールXに渡る部分に対し適度な巻き取り張力を巻取側濾材ロールXのロール径が最小径の段階から確実に与えた状態で、濾材Eを弛みなく適切に巻き取れるようにしてある。
【0043】
なお、20nはねじ込み位置の調整により皿バネ20sの付勢力を変更して巻き取りトルクの調整範囲を変更する調整ナットである。
【0044】
第1濾材ロール2A及び第2濾材ロール2B夫々のロール軸端部には、これら濾材ロール2A,2Bが繰出側濾材ロールYとして遊転回転することにおいて、この遊転回転に所定の回転抵抗を与える抵抗付与機構21A,21Bを設けてあり、正転運転では、非伝動状態となる第2濾材ロール用の一方向クラッチ機構17Bにおいて僅かに生じる正転側へのトルク伝達に対し、この非伝動状態の伝達トルク(空転トルク)よりもある程度大きな回転抵抗(停動トルク)を、第2濾材ロール2Bのロール軸端部に設けた第2濾材ロール用の抵抗付与機構21Bにより第2濾材ロール2Bに与えることで、上記の非伝動状態の伝達トルクの為に繰出側の第2濾材ロール2Bが濾材繰り出し側に過度に回転して濾材Eに弛みを生じるといったことを確実に防止する。
【0045】
また同様に、逆転運転では、非伝動状態となる第1濾材ロール用の一方向クラッチ機構17Aにおいて僅かに生じる逆転側へのトルク伝達に対し、この非伝動状態の伝達トルク(空転トルク)よりもある程度大きな回転抵抗(停動トルク)を、第1濾材ロール2Aのロール軸端部に設けた第1濾材ロール用の抵抗付与機構21Aにより第1濾材ロール2Aに与えることで、上記の非伝動状態の伝達トルクの為に繰出側の第1濾材ロール2Aが濾材繰り出し側に過度に回転して濾材に弛みを生じるといったことを確実に防止する。
【0046】
これら抵抗付与機構21A,21Bは、軸芯方向への融通移動を自在にし、かつ、ピン21pによりロール軸2a,2bとの相対回転を阻止した状態でロール軸2a,2bに外嵌させるハブ部材21h、装置ケーシング1等に対し固定した状態でハブ部材21hに外嵌させるフランジ部材21f、ハブ部材21hにおけるツバ部との間でフランジ部材21fにおける内ツバ部を滑り板21eを介して挟圧するコイルスプリング21sを備え、ハブ部材21hにおけるツバ部とフランジ部材21fにおける内ツバ部との間での滑り板21eを介しての摩擦、及び、スプリング側の滑り板21eとフランジ部材21fにおける内ツバ部との間での摩擦により、ロール軸2a,2bに回転抵抗を与える。
【0047】
21nはねじ込み位置の調整によりコイルスプリング21sの付勢力を変更して付与回転抵抗を変更する調整ナットである。
【0048】
第2濾材ロール2Bにおけるロール軸2aの端部には、第2濾材ロール2Aが一回転する毎にリミットスイッチ23を操作するカム22を設けてあり、正転運転による前記濾材更新の繰り返しにおいてリミットスイッチ23の操作回数が設定回数に達すると、逆転運転による前記巻き戻しを自動的に実施し、また、この逆転運転による巻き戻しにおいてリミットスイッチ23の操作回数が設定回数に達すると、逆転運転を停止して、正転運転による濾材更新を繰り返しながら処理対象気体Aを濾過処理する運転状態に自動的に戻るようにしてある。なお、この自動運転とは別に、濾材ロール2A,2Bの交換などの為に人為指令による正転運転及び逆転運転の実施も可能にしてある。
【0049】
〔別の実施形態〕
次に本発明の別の実施形態を列記する。
前記の実施形態では、トルク制御手段Tとして滑りクラッチ機構20A,20Bを採用したが、このトルク制御手段Tには、トルク調整機能を有するものであれば各種形式のものを採用でき、例えば、駆動手段としてのモータ9に対する制御でモータトルクそのものを調整することにより、巻取側濾材ロールXの巻き取りトルクを目標設定範囲に保つように自動調整する形式を採ってもよい。
【0050】
滑りクラッチ機構20A,20Bを採用する場合、その具体構造は前記の実施形態で示した構造に限定されるものではなく種々の構造のものを採用でき、また、固体どうしの摩擦でトルク伝達するものに限らず、流体摩擦によりトルク伝達する形式の滑りクラッチ機構や、電磁的吸着力によりトルク伝達する形式の滑りクラッチ機構など、各種形式を採用できる。
【0051】
駆動手段は電動モータに限定されるものではなく種々の駆動形式のものを採用できる。
【0052】
前述の実施形態では、正転運転と逆転運転とを切り換え実施するものを示したが、一方向の運転のみを実施するものであってもよい。
【0053】
また、正逆転運転の切り換えが可能な構成とするのに一方向クラッチ機構17A,17Bを用いる場合、その具体構造は前記の実施形態で示した構造に限定されるものではなく種々の構造の一方向クラッチ機構を採用できる。
0054
繰出側濾材ロールYの遊転回転に所定の回転抵抗を付与する抵抗付与機構21A,21Bを装備する場合、この抵抗付与機構の具体構造は前記の実施形態で示した構造に限定されるものではなく、各種構造のものを採用できる。
0055
濾材Eによる気体処理の内容は、塵埃捕捉や、オイルミストなどの気体中ミストの捕捉を初め、どのような処理内容であってもよい。また、濾材Eには各種材質のものを採用でき、物理的濾過に限らず、電気的に気体中の対象物を捕集する濾材や、化学的に気体中の対象物を捕集する濾材などであってもよい。
【図面の簡単な説明】
【図1】伝動構成を示す斜視図
【図2】装置側面図
【図3】図2におけるイ−イ線矢視図
【図4】図2におけるロ−ロ線矢視図
【図5】要部の拡大断面図
【図6】従来例を示す装置側面図
【符号の説明】
X 巻取側濾材ロール
Y 繰出側濾材ロール
A 処理対象気体
F 通過路
E 濾材
9 駆動手段
T トルク制御手段
2A 第1濾材ロール
2B 第2濾材ロール
17A,17B 一方向クラッチ機構
20A,20B 滑りクラッチ機構
3 無端回動帯
21A,21B 抵抗付与機構
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a take-up filter device, and more specifically, a driving device for rotating a take-up filter material roll by a driving unit by passing a filter material passed from the supply-side filter material roll to the take-up filter material roll through a passage of a gas to be treated. The present invention relates to a take-up filter device that takes up a take-up-side filter medium roll with the use of a filter.
[0002]
[Prior art]
Conventionally, in a general winding type filter device, a winding electric motor (usually a geared motor) is simply attached to a roll shaft of a winding side filter medium roll through a transmission mechanism such as a chain type, a belt type or a gear type. The filter medium roll on the winding side is driven and rotated by a simple rotation power transmission that only transmits the rotation power.
[0003]
However, when the filter medium has a sufficient strength, in this general winding filter apparatus, a large winding torque is applied to the filter medium roll on the winding side with respect to a large winding resistance. Even if it is applied to the filter medium, there is no particular risk of damage to the filter medium. However, if the strength of the filter medium is low because the type of filter medium is restricted depending on the application, there is a risk of damage to the filter medium.
[0004]
For the purpose of protecting the filter medium, as shown in FIG. 6, a net-shaped endless rotating band 3 is provided downstream of the filter medium E in the passage F of the gas A to be treated. A, the filter medium E is pressed by the wind pressure by A, and each of the freely rotatable winding-side filter medium roll X and the unwinding-side filter medium roll Y is pressed against the endless rotating belt 3 by the bias of gravity or the bias of a spring. In this configuration, the endless turning band 3 is driven to rotate, and the endless turning band 3 rotates the winding-side filter medium roll X and the feeding-side filter medium roll Y with the rotation of the endless turning band 3. E has been proposed, in which the filter medium E is wound around a take-up filter medium roll X (see Japanese Patent Application No. 8-8645).
[Problems to be solved by the invention]
However, in this proposed device, although the filter medium can be effectively prevented from being damaged even with a low-strength filter medium, the rotation of the take-up side filter medium roll X during winding takes place in an endless manner in a state in which the roll X is pressed against the endless rotating band 3. Since the rotation is driven by the rotation of the rotating belt 3, a slip may occur between the winding-side filter medium roll X and the endless rotating belt 3, and the slip may cause a slip on the winding-side filter medium roll X. In some cases, there is a tendency for the winding filter medium E to take a loosening tendency, or for the winding filter medium E to have a meandering tendency due to variations in the physical properties of the filtering medium in the width direction, resulting in a form in which the loosening due to slip occurs unevenly in the width direction of the filtering medium.
[0005]
Then, due to the looseness or meandering, the winding state of the filter medium E on the winding-side filter medium roll X is unsuitable or uneven (for example, an unusually distorted roll cross-section, or a filter medium wound in a bamboo-like shape). In some cases, the operation of the apparatus may be hindered. In particular, in the case where the take-up filter medium roll X, on which the filter medium E has been wound up, is used again as the supply-side filter medium roll Y, this impairment is not possible. In some cases, proper rewinding may hinder reuse operation.
[0006]
Further, in the proposed device, in the case of a filter medium having compressibility or elasticity, the difference in the roll diameter between the press side portion of the filter rolls X and Y against the endless rotating band 3 and the free side portion opposite thereto is different. Therefore, there is a tendency that the filter medium E is loosened in the supply-side filter medium roll Y, and the loosening of the supply-side filter medium roll Y may interfere with the operation of the apparatus.
[0007]
In view of the above circumstances, a main problem of the present invention is to enable the filter medium to be stably wound in an appropriate state while sufficiently protecting the filter medium.
[0008]
[Means for Solving the Problems]
[1] In the invention of claim 1,An endless rotating band for supporting the filter medium is provided on the downstream side of the filter medium in the passage of the gas to be treated, and the filter medium is pressed against the endless rotating band by the wind pressure of the passing gas, and the endless rotating band by the wind pressure is provided. In the state in which the filter medium is pressed against the filter medium, the endless rotating band is driven and rotated in a non-contact state with the take-up filter medium roll and the unwinding filter medium roll along with the filter medium winding by the drive rotation of the take-up side filter medium roll. The filter medium is sent to the filter medium roll on the winding side by the endless rotating band.
[0009]
That is, in this configuration, the endless rotating band is in a non-contact state.Since the filter medium is wound by the drive rotation of the winding-side filter medium roll itself, the winding-side filter medium roll caused by the slipping operation of the winding-side filter medium roll as generated in the above-mentioned proposed device (FIG. 6). Avoid loosening and meandering of the filter mediaCome, filterThe material can be appropriately and stably wound up on the winding-side filter medium roll.
[0010]
In addition, in this configuration, the filter medium in the passage of the gas to be treated is received and supported by the endless rotating band for supporting the filter medium, and the driving rotation of the endless rotating band is performed in parallel with the driving rotation of the winding-side filter medium roll. As a result, the filter medium is sent to the take-up side filter medium roll side, so that a higher filter medium protection effect can be obtained and the required strength of the filter medium can be further reduced.
[0011]
Further, in the proposed device (FIG. 6), as described above, in the case of a filter medium having compressibility and elasticity, the filter medium roll has a pressing side portion against the endless rotating band and a free side portion opposite thereto. In order to cause a difference in the roll diameter, the filter medium tends to be loosened in the supply-side filter medium roll, but in the above configuration, the supply-side filter medium roll is in a non-contact state with respect to the endless rotating band. There is no problem, and in this regard, the winding operation can be made better and more stable.
[0012]
[2] In the invention according to claim 2, since the winding torque of the winding-side filter medium roll is automatically adjusted by the torque control means so as to maintain the winding torque in the target appropriate range, a large winding in the winding of the filter medium. Even if there is a factor that causes the take-up resistance, it is possible to prevent the take-up torque from being excessively large due to the take-up torque, thereby preventing the filter medium from being applied with an excessive tension. Can be prevented.
[0013]
[3] In the invention according to claim 3, in an operation in which the filter medium winding speed of the winding-side filter medium roll is set to be higher than the filter medium feeding speed of the endless rotating belt, the winding resistance caused by this speed difference is reduced. With the torque adjustment by the torque control means, the actual filter medium winding speed of the filter medium roll on the winding side is limited to match the filter medium feeding speed of the endless rotating band.
[0014]
That is, the filter material take-up speed (roll peripheral speed) of the take-up filter material roll gradually increases as the amount of filter material taken up and the roll diameter of the take-up filter material roll increase. For example, since an operation is performed in which the filter medium winding speed of the winding-side filter medium roll is set to be higher than the filter medium feeding speed of the endless rotating belt in advance, torque adjustment of the torque control means is performed with respect to the winding resistance caused by this speed difference. By adjusting the torque, the actual filter material winding speed of the winding-side filter medium roll matches the filter medium feeding speed of the endless rotating band, and a portion of the filter medium that extends from the endless rotating band to the winding-side filter medium roll. Therefore, the filter medium can be appropriately wound without slack in a state where an appropriate winding tension is reliably applied from the stage where the roll diameter of the winding-side filter medium roll is still small.
[0015]
[4] In the invention of claim 4,With the first filter medium roll as the winding side and the second filter medium roll as the unwinding side, the normal rotation operation of winding the filter medium around the first filter medium roll by the forward rotation of the first filter medium roll, and vice versa. Since the first filter medium roll is set as the feeding side and the second filter medium roll is set as the winding side, the second filter medium roll can be switched to the reverse rotation operation in which the filter medium is wound around the second filter medium roll by the reverse drive rotation. The re-use operation of the filter medium, that is, the operation of using the filter medium once wound up after being used for the gas treatment and again for the gas treatment, can be easily performed by switching the forward / reverse operation.
[0016]
In the above-described second aspect of the present invention, the winding torque of the first filter medium roll and the winding of the second filter medium roll are controlled in the normal rotation operation in which the first filter medium roll is on the winding side. In the reverse operation, the winding torque of the second filter medium roll is automatically adjusted by the torque control means so as to maintain the target appropriate range, respectively. Damage can be reliably prevented, and the filter medium can be appropriately and stably wound on the winding-side filter medium roll.
[0017]
[5] In the invention as set forth in claim 5, the first transmission system for transmitting the rotational power of the driving means to the first filter medium roll is in a transmission state when the driving means is driven to rotate forward, and the driving means is rotated in the reverse direction. A one-way clutch mechanism for the first filter medium roll, which is in a non-transmission state at the time of driving, is interposed, and a second power transmission mechanism for transmitting the rotational power of the driving means to the second filter medium roll in a state parallel to the first transmission system. (2) A one-way clutch mechanism for the second filter medium roll, which is in a non-transmission state when the driving means is driven in the forward direction and is in a transmission state when the driving means is driven in the reverse direction, is interposed in the transmission system. The switching between the forward rotation operation in which the first filter medium roll is on the winding side and the reverse rotation operation in which the second filter medium roll is on the winding side can be easily performed only by the drive switching operation.
[0018]
That is, at the time of forward rotation driving of the driving means, the one-way clutch mechanism for the first filter medium roll is switched to the transmission state, thereby transmitting the forward rotation power of the driving means to the first filter medium roll via the first transmission system. Then, the first filter medium roll is driven to rotate in the forward direction, and the one-way clutch mechanism for the second filter medium roll is switched to the non-transmission state, thereby cutting off the power transmission by the second transmission system. Then, the second filter medium roll is rotated forward and driven to rotate as the feeding side.
[0019]
Further, at the time of reverse rotation driving of the driving means, by switching to the transmission state of the one-way clutch mechanism for the second filter medium roll, the reverse rotation power of the driving means is transmitted to the second filter medium roll via the second transmission system, The second filter medium roll is rotated in the reverse direction with the winding side, and the one-way clutch mechanism for the first filter medium roll is switched to the non-transmission state to cut off the power transmission by the first transmission system. 1 Reverse rotation is performed with the filter medium roll as the feeding side.
[0020]
[6] In the invention according to claim 6, as the torque control means, a slip clutch mechanism which causes a slip in torque transmission from the drive means to the take-up filter medium roll when the take-up resistance of the filter medium exceeds a set value. Provide.
[0021]
That is, while the winding resistance is equal to or higher than the set value, the slip is generated in the slip clutch mechanism, so that the torque transmission rate from the driving means to the winding-side filter medium roll is reduced. The winding torque of the filter medium roll is prevented from becoming excessive, and the winding torque is maintained in a target appropriate range.
[0022]
Therefore, according to this configuration, for example, the motor torque itself is adjusted by controlling the motor as the driving means, so that the winding torque of the winding-side filter medium roll is maintained in the target appropriate range. The winding torque can be properly maintained only by interposing the clutch mechanism in the transmission system from the driving means to the winding-side filter medium roll, and the improvement cost can be reduced.
[0023]
[7] In the invention according to claim 7, a resistance imparting mechanism for providing a predetermined rotational resistance to the idle rotation of the feeding-side filter medium roll accompanying the winding of the filter medium on the winding-side filter medium roll is provided. It is possible to prevent the side filter medium roll from excessively rotating to the filter medium supply side due to some factor and causing the filter medium to be loosened by braking the supply side filter medium roll by applying the rotation resistance, thereby further improving the winding operation. And it can be stable.
[0024]
In particular, the above claims5In carrying out the described invention, some of the one-way clutch mechanisms generate a small amount of torque even in the non-transmission state, so that the rotation torque is somewhat larger than the transmission torque (idling torque) in the non-transmission state. The resistance (stopping torque) is applied to the supply-side filter medium roll by the above-described resistance imparting mechanism, so that the supply-side filter medium roll excessively rotates to the filter medium supply side by the transmission torque in the non-transmission state of the one-way clutch mechanism, and the filter medium is supplied. It is possible to reliably prevent the slack from being generated.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 1 to 4 show a take-up filter device according to the present invention, in which a first filter medium roll 2A is arranged below a gas passage F through which a gas A to be treated passes inside a device casing 1, The second filter medium roll 2B is arranged above the gas passage F, and the passing gas A in the gas passage F is filtered by the filter medium E wrapped around the filter medium rolls 2A and 2B.
[0026]
On the downstream side of the filter medium E in the gas passage F,As shown in FIGS. 1 and 2, each of the filter media rolls 2A and 2B is in a non-contact arrangement.A net-shaped endless swivel band 3 for supporting the filter medium is provided in proximity to the filter medium E, and is located on the upstream side of the filter medium E so as to sandwich the filter medium E between the endless swivel band 3 and While the filter medium E is supported between the guide rollers by the upper guide rollers 4A and 4B so as to be along the endless rotation band 3, the filter medium E pressed against the endless rotation band 3 by the wind pressure of the passing gas A is endless. It is supported by the rotating band 3.
[0027]
The winding operation of the filter medium E can be switched between forward and reverse rotations. In the normal rotation operation, the first filter medium roll 2A is used as the take-up side filter medium roll X, and the second filter medium roll 2B is used as the unwinding side filter medium roll Y. The filter medium E is wound around the first filter medium roll 2A by the forward rotation of the first filter medium roll 2A on the take-up side. On the other hand, in the reverse operation, the second filter medium roll 2B is used as the take-up side filter medium roll X, and The filter medium roll 2A is used as the supply-side filter medium roll Y, and the filter medium E is wound around the second filter medium roll 2B by the reverse rotation of the second filter medium roll 2B on the winding side.
[0028]
In the normal rotation operation, the endless rotating band 3 is pressed in a state where the filter medium is pressed against the endless rotating band 3 by wind pressure.As shown in FIGS. 1 and 2, the first filter medium roll 2A as the take-up side filter medium roll X and the second filter medium roll 2B as the unwinding side filter medium roll Y are in a non-contact state.The first rotation of the first filter medium roll 2A causes the filter medium E to be sent to the first filter medium roll 2A side by the endless rotating band 3 in parallel with the winding of the filter medium by the forward rotation of the first filter medium roll 2A. In operation, the endless rotating band 3 is pressed while the filter medium is pressed against the endless rotating band 3 by wind pressure.As shown in FIGS. 1 and 2, the second filter medium roll 2B as the winding side filter medium roll X and the first filter medium roll 2A as the unwinding side filter medium roll Y are in a non-contact state.The filter medium E is sent to the second filter medium roll 2B side by the endless rotating band 3 in parallel with the winding of the filter medium by the reverse rotation of the second filter medium roll 2B.
[0029]
In the figure, solid-line arrows indicate the rotation direction during forward rotation operation, and broken-line arrows indicate the rotation direction during reverse rotation operation.
[0030]
In a normal filtration process operation, the first filter medium roll 2A is used as a take-up side filter medium roll X, and at predetermined time intervals by a timer control, or every time when the detected passage resistance in the passage resistance detection of the gas A to be treated reaches a predetermined upper limit value. In addition, the normal rotation operation is performed for a set time, and the used filter medium E in the gas passage F is wound up on the first filter medium roll 2A, and a new filter medium E is removed from the second filter medium roll 2B with this winding. The filter medium to be fed out to the gas passage F is updated. When the filter medium is renewed, the filter medium trapping material such as dust and oil mist is suctioned and removed from the filter medium E by the suction pipe 5 which is located on the lower side near the first filter medium roll 2A and close to the filter medium E from the upstream side of the filter medium. Thereby, the filter medium E wound around the first filter medium roll 2A is subjected to a regenerating process.
[0031]
When almost all of the filter medium E in the second filter medium roll 2B on the supply side is used up by repeating this renewal of the filter medium, the second filter medium roll 2B is used as the take-up side filter medium roll X, and the first filter medium roll 2A is used as the supply side. By performing a reverse rotation operation with the filter medium roll Y, once the substantially entire amount of the wound filter medium E in the first filter medium roll 2A is rewound to the second filter medium roll 2B. 5, a regenerating process is performed on the unwound filter medium E, and after this unwinding, as a reuse operation of the filter medium E, an operation of filtering the gas A to be treated by the filter medium E while repeating the above-described renewal of the filter medium again. Return to
[0032]
Regarding the drive structure, on one side of the device casing 1, a passive sprocket 8 attached to the roller shaft 6a of the lower winding roller 6A for the endless rotating belt 3, and a rotating shaft 9a (or a rotating shaft 9a of an electric motor 9 as driving means). Main drive chain with a drive sprocket 10 mounted on the output shaft of a reduction gear connected to the motor 9)HOn the other hand, a lower interlocking sprocket 12a attached to the roller shaft 6a of the lower winding roller 6A for the endless rotating belt 3 and a roll shaft of the first filter medium roll 2A on the other lower side of the device casing 1 on the other side. The lower passive sprocket 13a supported by 2a is connected to a lower interlocking chain 14a by a lower interlocking chain 14a, and further attached to the roller shaft 6b of the upper winding roller 6B for the endless rotation belt 3 on the other upper side of the apparatus casing 1. The upper interlocking sprocket 12b and the upper passive sprocket 13b supported on the roll shaft 2b of the second filter medium roll 2B are connected by an upper interlocking chain 14b.
[0033]
In addition, the lower winding roller 6A and the upper winding roller 6B for the endless rotating belt 3 are respectively wound around the endless rotating belt 3 itself as a power transmission from the lower winding roller 6A to the upper winding roller 6B. Sprocket portions 15a and 15b for transmitting power are provided at both ends of the roller.
[0034]
As shown in FIG. 5, the lower passive sprocket 13a supported by the roll shaft 2a of the first filter medium roll 2A is attached to a lower cylindrical shaft 16a which is fitted to the roll shaft 2a of the first filter medium roll 2A so as to be relatively rotatable. On the other hand, it is connected via a one-way clutch mechanism 17A for the first filter medium roll, and further, the lower cylindrical shaft 16a is connected to the brim section 18a, the bolt section 19a, and the sliding clutch mechanism 20A for the first filter medium roll. Similarly, the upper passive sprocket 13b supported on the roll shaft 2b of the second filter medium roll 2B is connected to the roll shaft 2a of the first filter medium roll 2A via the roll shaft 2b of the second filter medium roll 2B. The upper cylindrical shaft 16b is rotatably fitted to the outer cylindrical shaft 16b via a one-way clutch mechanism 17B for the second filter medium roll. The upper cylindrical shaft 16b is further connected to a brim portion 18b and a bolt portion. 9b, and it is connected to the roll shaft 2b of the second filter media roll 2B via a slip clutch mechanism 20B for the second filter medium roll.
[0035]
That is, in this drive structure, the transmission system extending from the lower interlocking sprocket 12a to the first filter medium roll sliding clutch mechanism 20A becomes the first transmission system for transmitting the rotational power of the motor 9 to the first filter medium roll 2A. The transmission system extending from the endless rotating belt 3 as the wrapping transmission device through the upper interlocking sprocket 12b to the sliding clutch mechanism 20B for the second filter medium roll rotates the motor 9 in parallel with the first transmission system. The second transmission system transmits power to the second filter medium roll 2B.
[0036]
The one-way clutch mechanisms 17A and 17B are respectively attached to the outer ring 17m to which the passive sprockets 13a and 13b are fitted in an externally fitted state and the cylindrical shafts 16a and 16b in a state of being rotatably supported relative to the roll shafts 2a and 2b. It has an inner ring 17n to be connected, and interrupts transmission of rotational power between the outer ring 17m and the inner ring 17n. By the action of a large number of cam members interposed between the outer ring 17m and the inner ring 17n, The rotation of the outer ring 17m to one side is in a transmission state in which the inner ring 17n is rotated integrally with the outer ring 17m, and the rotation of the outer ring 17m to the other side is the free rotation of the outer ring 17m with respect to the inner ring 17n (idling). ).
[0037]
When the one-way clutch mechanisms 17A and 17B are interposed, the one-way clutch mechanism 17A for the first filter medium roll is moved from the lower interlocking chain 14a to the lower passive sprocket 13a when the motor 9 is normally driven. It becomes a state of transmission with respect to the transmitted forward rotation power, and becomes a state of non-transmission with respect to the reverse rotation power transmitted from the lower interlocking chain 14a to the lower passive sprocket 13a when the motor 9 is driven in reverse. On the contrary, the one-way clutch mechanism 17B for the second filter medium roll is transmitted to the upper passive sprocket 13b from the upper interlocking chain 14b when the motor 9 is normally driven. When the motor 9 rotates in the reverse direction, the upper interlocking chain 14b moves to the upper passive sprocket 13b. To reverse rotation power transmitted is set the operation direction so that the transmission state.
[0038]
That is, in the normal rotation operation, the motor 9 is set to the normal rotation driving state, so that the normal rotation driving rotation of the endless rotation belt 3 due to the transmission of the normal rotation power to the lower winding roller 6A is performed. When the one-way clutch mechanism 17A for the filter medium roll is switched to the transmission state, the forward rotation power of the motor 9 is transmitted to the first filter medium roll 2A, and the first filter medium roll 2A is positively used as the take-up side filter medium roll X. The transmission of the forward rotation power to the second filter medium roll 2B is cut off by switching the one-way clutch mechanism 17B for the second filter medium roll to the non-transmission state, thereby turning off the second filter medium. The roll 2B is driven to rotate forward and backward with respect to the filter medium winding in the idle state.
[0039]
In the above-described reverse rotation operation, the motor 9 is set to the reverse rotation driving state, so that the rotation of the endless rotation band 3 is reversely driven by the transmission of the reverse rotation power to the lower winding roller 6A, and the rotation for the second filter medium roll is performed. By the switching of the one-way clutch mechanism 17B to the transmission state, the reverse rotation power of the motor 9 is transmitted to the second filter medium roll 2B, and the second filter medium roll 2B is reversely driven and rotated as the take-up side filter medium roll X. On the other hand, by switching the one-way clutch mechanism 17A for the first filter medium roll to the non-transmission state, transmission of the reverse rotation power to the first filter medium roll 2A is cut off, and the first filter medium roll 2A is rotated in the idle state. It is driven to rotate in reverse to the take-up of the filter medium.
[0040]
On the other hand, the slip clutch mechanisms 20A and 20B are respectively composed of a flange member 20f connected to the cylindrical shafts 16a and 16b via bolt portions 19a and 19b, a hub member 20h connected to the roll shafts 2a and 2b, and the hub 20h. A holding member 20p for sandwiching the flange member 20f between the flange member 20h and the flange member 20h, and a disc spring 20s for urging the holding member 20p toward the pressure side of the flange member 20f, the flange member and the flange member of the hub member 20h. The rotational force is transmitted from the flange member 20f to the hub member 20h by friction at the contact surface ss with the flange member 20f, and a relative torque that overcomes the static friction resistance of the contact surface ss is generated between the flange member 20f and the hub member 20h. Causes sliding on the contact surface ss, and the sliding friction resistance (dynamic friction) Becomes slippery transmission state of the torque transmission from the di member 20f to the hub member 20h, also, the relative torque in this slip transmission state is restored to the non-slip state in a state below the sliding frictional resistance of the contact surface ss decreases.
[0041]
That is, these slip clutch mechanisms 20A and 20B take up the winding-side filter medium roll X so that the winding torque of the winding-side filter medium roll X is maintained in the target appropriate range and the winding tension on the filter medium E is maintained appropriately. It functions as torque control means T for automatically adjusting the torque. In the normal rotation operation (that is, in the case of updating the filter medium in this example), the winding resistance is set in the winding of the filter medium by the forward rotation of the first filter medium roll 2A. When the value is greater than or equal to the value, the slipping clutch mechanism 20A for the first filter medium roll is in a slip transmission state, thereby preventing the winding torque of the first filter medium roll 2A from becoming excessive, and the winding torque is set to the target value. It is kept in an appropriate range. Further, in the reverse rotation operation (ie, in the case of rewinding in this example), in the winding of the filter medium by the reverse rotation rotation of the second filter medium roll 2B, when the winding resistance exceeds a set value, the slip clutch for the second filter medium roll is used. The mechanism 20B enters the sliding transmission state, thereby preventing the winding torque of the second filter medium roll 2B from becoming excessive, and keeping the winding torque in the target appropriate range.
[0042]
For each of the slip clutch mechanisms 20A and 20B, the filter material winding speed (roll peripheral speed) of the winding-side filter medium roll X in each of the normal rotation operation and the reverse rotation operation is determined by selecting the number of teeth of each sprocket. The roll diameter of the take-side filter medium roll X is already set to be greater than the filter medium feed speed of the endless rotating band 3 from the stage of the minimum diameter, whereby the winding resistance (set value) caused by this speed difference is set. With respect to the above-described winding resistance), the slippage is generated in the torque transmission in the slip clutch mechanisms 20A and 20B, so that the actual filtering medium winding speed of the winding-side filter medium roll X is limited by the slipping so that the endless rotation is performed. An appropriate winding tension is applied to a portion of the filter medium E extending from the endless rotating band 3 to the winding-side filter medium roll X while maintaining the same speed as the filter medium feeding speed of the moving band 3. In a state where the roll diameter of Lumpur X gave reliably from the minimum diameter of the stages, it is so taken up the filter media E, without slack appropriate.
[0043]
Reference numeral 20n denotes an adjustment nut for changing the biasing force of the disc spring 20s by adjusting the screwing position to change the adjustment range of the winding torque.
[0044]
At the ends of the first and second filter medium rolls 2A and 2B, the filter medium rolls 2A and 2B rotate idle as the supply-side filter medium roll Y. In the forward rotation operation, the torque transmission to the forward rotation side, which is slightly generated in the one-way clutch mechanism 17B for the second filter medium roll in the non-transmission state, is provided. A rotation resistance (stopping torque) somewhat larger than the transmission torque (idling torque) in the state is applied to the second filter medium roll 2B by the second filter medium roll resistance applying mechanism 21B provided at the end of the roll shaft of the second filter medium roll 2B. , The second filter medium roll 2B on the delivery side excessively rotates toward the filter medium delivery side due to the transmission torque in the non-transmission state, causing the filter medium E to be slackened. Indeed to prevent.
[0045]
Similarly, in the reverse rotation operation, the torque transmitted to the reverse rotation slightly generated in the one-way clutch mechanism 17A for the first filter medium roll in the non-transmission state is smaller than the transmission torque (idling torque) in the non-transmission state. By applying a relatively large rotation resistance (stopping torque) to the first filter medium roll 2A by the first filter medium roll resistance applying mechanism 21A provided at the end of the roll shaft of the first filter medium roll 2A, the above-mentioned non-transmission state is achieved. Therefore, it is possible to reliably prevent the first filter medium roll 2A on the supply side from excessively rotating toward the filter medium supply side due to the transmission torque and causing the filter medium to be loosened.
[0046]
These resistance imparting mechanisms 21A and 21B are hub members that are fitted to the roll shafts 2a and 2b in a state in which they can freely move in the axial direction and prevent relative rotation with the roll shafts 2a and 2b by the pins 21p. 21h, a flange member 21f externally fitted to the hub member 21h while being fixed to the device casing 1 and the like, and a coil for pressing the inner flange portion of the flange member 21f via the slide plate 21e between the flange member 21f and the flange portion of the hub member 21h. It is provided with a spring 21s, friction between the flange portion of the hub member 21h and the inner flange portion of the flange member 21f via the sliding plate 21e, and the spring-side sliding plate 21e and the inner flange portion of the flange member 21f. Between the roller shafts 2a and 2b by the friction between them.
[0047]
21n is an adjustment nut for changing the biasing force of the coil spring 21s by adjusting the screwing position to change the applied rotation resistance.
[0048]
At the end of the roll shaft 2a of the second filter medium roll 2B, a cam 22 for operating a limit switch 23 every time the second filter medium roll 2A makes one rotation is provided. When the number of operations of the switch 23 reaches the set number of times, the rewinding by the reverse operation is automatically performed. When the number of operations of the limit switch 23 reaches the set number of times in the rewind by the reverse operation, the reverse operation is performed. It stops and automatically returns to the operation state of filtering the gas A to be treated while repeating the renewal of the filter medium by the normal rotation operation. In addition to the automatic operation, it is also possible to perform a forward rotation operation and a reverse rotation operation by an artificial command for replacing the filter medium rolls 2A and 2B.
[0049]
[Another embodiment]
Next, another embodiment of the present invention will be described.
In the above-described embodiment, the slip clutch mechanisms 20A and 20B are used as the torque control means T. However, various types of torque control means T may be used as long as they have a torque adjusting function. A form may be adopted in which the motor torque itself is adjusted by controlling the motor 9 as a means, so that the winding torque of the winding-side filter medium roll X is automatically adjusted so as to be kept within a target set range.
[0050]
When the slip clutch mechanisms 20A and 20B are used, the specific structure is not limited to the structure shown in the above-described embodiment, and various structures can be used. Not limited to this, various types such as a slip clutch mechanism that transmits torque by fluid friction and a slip clutch mechanism that transmits torque by electromagnetic attraction force can be adopted.
[0051]
The driving means is not limited to the electric motor, but may employ various driving types.
[0052]
In the above-described embodiment, an example in which the normal rotation operation and the reverse rotation operation are switched is described. However, only one-way operation may be performed.
[0053]
In the case where the one-way clutch mechanisms 17A and 17B are used to switch between the forward and reverse rotation operation, the specific structure is not limited to the structure described in the above embodiment, but may be various structures. A direction clutch mechanism can be adopted.
[0054]
When the resistance applying mechanisms 21A and 21B for applying a predetermined rotational resistance to the idle rotation of the supply-side filter medium roll Y are provided, the specific structure of the resistance applying mechanism is not limited to the structure described in the above embodiment. Instead, those having various structures can be adopted.
[0055]
The content of the gas treatment by the filter medium E may be any treatment content such as dust capture and capture of gas mist such as oil mist. In addition, the filter medium E can be made of various materials, and is not limited to the physical filtration. The filter medium electrically collects an object in a gas and the filter medium chemically collects an object in a gas. It may be.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a transmission configuration.
FIG. 2 is a side view of the apparatus.
FIG. 3 is a view taken along a line II in FIG. 2;
FIG. 4 is a view as seen from the direction of the arrows in FIG. 2;
FIG. 5 is an enlarged sectional view of a main part.
FIG. 6 is a side view of an apparatus showing a conventional example.
[Explanation of symbols]
X Filter media roll on take-up side
Y Feeding media roll
A Gas to be treated
F Passageway
E Filter media
9 Driving means
T torque control means
2A First media roll
2B 2nd filter media roll
17A, 17B One-way clutch mechanism
20A, 20B Sliding clutch mechanism
3 Endless rotating belt
21A, 21B resistance applying mechanism

Claims (7)

繰出側濾材ロールから処理対象気体の通過路を介して巻取側濾材ロールに掛け渡した濾材を、駆動手段による前記巻取側濾材ロールの駆動回転により前記巻取側濾材ロールに巻き取る巻取式フィルタ装置であって、
前記通過路における前記濾材の下流側に濾材支持用の無端回動帯を設け、通過気体による風圧で前記濾材を前記無端回動帯に押し付ける構成とし、
この風圧による前記無端回動帯への濾材押し付け状態で、前記巻取側濾材ロールの駆動回転による濾材巻き取りに伴い、前記無端回動帯を前記巻取側濾材ロール及び前記繰出側濾材ロールとは非接触の状態で駆動回転させて、この無端回動帯により前記濾材を前記巻取側濾材ロールの側へ送る構成としてある巻取式フィルタ装置。
Winding up the filter medium, which has been passed from the supply-side filter medium roll to the take-up-side filter medium roll through the passage of the gas to be treated, by driving rotation of the take-up-side filter medium roll by drive means. A filter device comprising:
An endless rotating band for filter medium support is provided on the downstream side of the filter medium in the passage, and the filter medium is pressed against the endless rotating band by wind pressure of passing gas,
In the state in which the filter medium is pressed against the endless rotating band by the wind pressure, the filter medium is wound by the drive rotation of the winding-side filter medium roll, and the endless rotating band is moved to the winding-side filter medium roll and the unwinding-side filter medium roll. Is a winding type filter device which is driven and rotated in a non-contact state, and sends the filter medium to the winding side filter medium roll side by the endless rotating band .
前記巻取側濾材ロールの駆動回転において、前記巻取側濾材ロールの巻き取りトルクを目標適正範囲に保つように、この巻き取りトルクを自動調整するトルク制御手段を設けてある請求項1記載の巻取式フィルタ装置。 2. A torque control means for automatically adjusting a winding torque of the winding-side filter medium roll so as to keep the winding torque of the winding-side filter medium roll in a target appropriate range during driving rotation of the winding-side filter medium roll. Rewind type filter device. 前記巻取側濾材ロールの濾材巻き取り速度を前記無端回動帯の濾材送り速度よりも大きく設定した運転において、この速度差により生じる巻き取り抵抗に対し、前記トルク制御手段によるトルク調整で、前記巻取側濾材ロールの実際の濾材巻き取り速度を制限して前記無端回動帯の濾材送り速度に一致させる構成としてある請求項2記載の巻取式フィルタ装置。 In an operation in which the filter medium take-up speed of the take-up side filter medium roll is set to be higher than the filter medium feed speed of the endless rotating band, the winding resistance generated by this speed difference is adjusted by the torque adjustment by the torque control means. 3. The take-up filter device according to claim 2, wherein an actual filter material take-up speed of the take-up side filter material roll is limited so as to match a filter material feed speed of the endless rotating band . 前記通過路の一側方に位置する第1濾材ロールを前記巻取側濾材ロールとし、かつ、前記通過路の他側方に位置する第2濾材ロールを前記繰出側濾材ロールとして、これら濾材ロールに掛け渡した前記濾材を、前記駆動手段による前記第1濾材ロールの正転駆動回転により前記第1濾材ロールに巻き取る正転運転と、
これとは逆に、前記第1濾材ロールを前記繰出側濾材ロールとし、かつ、前記第2濾材ロールを前記巻取側濾材ロールとして、これら濾材ロールに掛け渡した前記濾材を、前記駆動手段による前記第2濾材ロールの逆転駆動回転により前記第2濾材ロールに巻き取る逆転運転とに切り換え自在な構成としてある請求項1〜3のいずれか1項に記載の巻取式フィルタ装置。
A first filter medium roll located on one side of the passage is defined as the take-up filter medium roll, and a second filter medium roll located on the other side of the passage is defined as the delivery-side filter medium roll. A forward rotation operation of winding the filter medium wound on the first filter medium roll by a forward rotation of the first filter medium roll by the driving unit;
Conversely, the first filter medium roll is used as the unwinding-side filter medium roll, and the second filter medium roll is used as the take-up side filter medium roll. The winding filter device according to any one of claims 1 to 3, wherein the winding filter device is configured to be switchable to a reverse rotation operation of winding the second filter medium roll by the reverse rotation of the second filter medium roll .
前記駆動手段の回転動力を前記第1濾材ロールに伝達する第1伝動系に、前記駆動手段の正転駆動時には伝動状態になり、かつ、前記駆動手段の逆転駆動時には非伝動状態になる第1濾材ロール用の一方向クラッチ機構を介装し、
前記第1伝動系とは並列状態で前記駆動手段の回転動力を前記第2濾材ロールに伝達する第2伝動系に、前記駆動手段の正転駆動時には非伝動状態となり、かつ、前記駆動手段の逆転駆動時には伝動状態になる第2濾材ロール用の一方向クラッチ機構を介装してある請求項4記載の巻取式フィルタ装置。
A first transmission system for transmitting the rotational power of the driving unit to the first filter medium roll is in a transmission state when the driving unit is driven in a forward direction, and is in a non-transmission state when the driving unit is driven in a reverse direction. With a one-way clutch mechanism for the filter media roll,
The second transmission system, which transmits the rotational power of the driving means to the second filter medium roll in a state parallel to the first transmission system, is in a non-transmission state when the driving means is driven to rotate forward, and 5. The take-up filter device according to claim 4, further comprising a one-way clutch mechanism for the second filter medium roll, which is in a transmission state at the time of reverse rotation driving .
前記トルク制御手段として、前記濾材の巻き取り抵抗が設定値以上になると、前記駆動手段から前記巻取側濾材ロールへのトルク伝達に滑りを生じさせる滑りクラッチ機構を設けてある請求項2〜5のいずれか1項に記載の巻取式フィルタ装置。 6. A torque clutch according to claim 2, wherein said torque control means includes a slip clutch mechanism for causing a slip in torque transmission from said drive means to said take-up filter medium roll when a take-up resistance of said filter medium exceeds a set value. The roll-up filter device according to any one of the above . 前記巻取側濾材ロールへの濾材巻き取りに伴う前記繰出側濾材ロールの遊転回転に所定の回転抵抗を与える抵抗付与機構を設けてある請求項1〜6のいずれか1項に記載の巻取式フィルタ装置。The winding according to any one of claims 1 to 6, further comprising a resistance imparting mechanism for giving a predetermined rotational resistance to idle rotation of the supply-side filter medium roll accompanying winding of the filter medium onto the take-up filter medium roll. Type filter device.
JP34476196A 1996-12-25 1996-12-25 Winding filter device Expired - Fee Related JP3585682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34476196A JP3585682B2 (en) 1996-12-25 1996-12-25 Winding filter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34476196A JP3585682B2 (en) 1996-12-25 1996-12-25 Winding filter device

Publications (2)

Publication Number Publication Date
JPH10180025A JPH10180025A (en) 1998-07-07
JP3585682B2 true JP3585682B2 (en) 2004-11-04

Family

ID=18371780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34476196A Expired - Fee Related JP3585682B2 (en) 1996-12-25 1996-12-25 Winding filter device

Country Status (1)

Country Link
JP (1) JP3585682B2 (en)

Also Published As

Publication number Publication date
JPH10180025A (en) 1998-07-07

Similar Documents

Publication Publication Date Title
WO2006133024A2 (en) Method and apparatus for a tape-rewinding substrate cleaner
JPS63295349A (en) Storage device
JPH0542751A (en) Meandering preventing taking-up mechanism of carbon ribbon
CA1239917A (en) Controlled tension unwinding system
US20060272678A1 (en) Method and apparatus for a tape-rewinding substrate cleaner
US6145770A (en) Friction coupling for the torque-limiting transmission of force between a coil core for winding or unwinding a tape and a rotary support
JP3585682B2 (en) Winding filter device
JP3571157B2 (en) Winding filter device
FR2766472A1 (en) BACKUP DEVICE IN THE EVENT OF PAPER WEB BREAKAGE IN A ROTARY PRINTING MACHINE IN OPERATION
US3486317A (en) Tensioning device for helical wrapping
CN1649740A (en) Thermal ribbon cartridge or roll with slack ribbon retraction
JP6899691B2 (en) Transport device, transport method
JP4502243B2 (en) Coil packaging method and coil packaging apparatus
US6786265B1 (en) Laminating machine
US6292646B1 (en) Anti-unraveling device for a fuser oil supply web
US3974976A (en) Apparatus for suppressing rotational fluctuation of supply roll
WO2019007585A1 (en) Device and method for winding and transferring a tape from a full reel onto an empty reel
CN210854537U (en) Packaging tape winding machine
AU3379701A (en) Dispenser with conveyor coil
JP3435347B2 (en) How to wind up a mobile doctor blade
EP0070750B1 (en) Absorber stage
CN219971330U (en) Winding device and belt material supply equipment
US4579292A (en) Apparatus for unwinding a roll of blocking-prone web material
US4602750A (en) Device for inherently adjusting paper transport modes for rolled or separated output
CN219278978U (en) Automatic winding machine with inertia-proof automatic braking function

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees