JP3583910B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP3583910B2
JP3583910B2 JP27967797A JP27967797A JP3583910B2 JP 3583910 B2 JP3583910 B2 JP 3583910B2 JP 27967797 A JP27967797 A JP 27967797A JP 27967797 A JP27967797 A JP 27967797A JP 3583910 B2 JP3583910 B2 JP 3583910B2
Authority
JP
Japan
Prior art keywords
refrigerator
compartment
cooler
duct
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27967797A
Other languages
Japanese (ja)
Other versions
JPH1194435A (en
Inventor
修 望月
隆 加藤
裕 柿沼
基幸 村社
宏 木部
清 片貝
治 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27967797A priority Critical patent/JP3583910B2/en
Publication of JPH1194435A publication Critical patent/JPH1194435A/en
Application granted granted Critical
Publication of JP3583910B2 publication Critical patent/JP3583910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、断熱箱体内に冷却器と送風機を設置し、この冷却器にて冷却された冷気を送風機にて庫内に循環して成る冷蔵庫に関するものである。
【0002】
【従来の技術】
従来よりこの種冷蔵庫は、例えば実公平6−12301号公報(F25D23/00)に示される如く断熱箱体内に冷凍室や冷蔵室を構成すると共に、冷凍室の奥部に画成された冷却室内に冷却器と送風機を設置して、この冷却器にて冷却された冷気を送風機により前記各室に供給し、循環させて冷却する方式が採られている。
【0003】
また、この種冷却器は、所定間隔で複数枚配列されたアルミニウム薄板から成るフィンと、各フィンを貫通する冷媒配管とから構成されており、冷媒配管内で蒸発する冷媒にて生じる冷却作用は各フィンに伝達される。そして、各フィン間には送風機にて送風が成され、その際に空気とフィン(及び冷媒配管)とを接触させて熱交換を生じさせ、それによって冷気を生成するものであった。
【0004】
【発明が解決しようとする課題】
しかしながら、特に冷蔵室を循環して冷却器に戻ってくる冷気中には多量の湿気が含まれており、この水分が冷却器と熱交換する過程で霜となってフィンや冷媒配管の表面に付着する。係る霜が成長すると冷却器内の通風抵抗が増加し、冷気の流通量が激減する。そして、最悪の場合には冷却器全体が霜によって閉塞されてしまう場合もある。また、霜自体がフィンと通風冷気との間を断熱する作用を発揮するため、冷却器と流通冷気との間の熱交換効率も著しく低下し、これらによって、特に凍結温度での冷却が必要な冷凍室の温度が異常に上昇してしまう問題があった。
【0005】
そこで、この種冷蔵庫においては定期的に電気ヒータなどにて冷却器を加熱し、除霜を行っているが、除霜が開始されるまでの間の霜の悪影響は避けられず、結論としては如何に霜の成長による冷凍室の冷却能力の低下を防止するかがこの種冷蔵庫の課題となっている。
【0006】
本発明は、係る従来の技術的課題を解決するために成されたものであり、冷却器の着霜による庫内の冷却能力の低下を防止した冷蔵庫を提供するものである。
【0007】
【課題を解決するための手段】
本発明の冷蔵庫は、断熱箱体内に冷凍室と冷蔵室を区画形成すると共に、断熱箱体内に構成した冷却室に冷却器と送風機を設置し、冷却器により冷却された冷気を送風機にて 凍室及び冷蔵室内に循環して成るものであって、冷却器は、所定間隔で複数枚配列されたフィンと、各フィンを貫通する冷媒配管とから構成されており、冷気流入側の端部よりも下流側の部分にフィン密度が疎の領域を構成すると共に、当該領域に冷凍室内からの吸込冷気を流入させ、冷気流入側の端部に冷蔵室内からの吸込冷気を流入させたものである。
【0008】
本発明によれば、断熱箱体内に冷凍室と冷蔵室を区画形成すると共に、断熱箱体内に構成した冷却室に冷却器と送風機を設置し、冷却器により冷却された冷気を送風機にて冷凍室及び冷蔵室内に循環して成る冷蔵庫において、冷却器は、所定間隔で複数枚配列されたフィンと、各フィンを貫通する冷媒配管とから構成されており、冷気流入側の端部よりも下流側の部分にフィン密度が疎の領域を構成すると共に、当該領域に冷凍室内からの吸込冷気を流入させ、冷気流入側の端部に冷蔵室内からの吸込冷気を流入させたので、冷却器の冷気流入側の端部が湿気の多い冷蔵室からの吸込冷気による霜の成長によって閉塞されてしまった場合にも、冷凍室内からの吸込冷気はその下流側のフィン密度疎の領域に流入できる。
【0009】
従って、冷却器の冷気流入側端部における着霜によって冷凍室内の冷気流通が阻害されることを抑制若しくは防止できるようになり、特に凍結温度で冷却される冷凍室の冷却能力を良好に維持することができるようになる。
【0010】
請求項2の冷蔵庫は、上記において送風機の上流側に対応してフィン密度疎の領域を構成すると共に、当該領域の下流側のフィン密度は密としたものである。
【0011】
請求項2の発明によれば、上記に加えて送風機の上流側に対応してフィン密度疎の領域を構成すると共に、当該領域の下流側のフィン密度は密としたので、冷却器の冷却能力を冷凍室内の冷却に効果的に利用することができるようになり、冷凍室内の冷却効果の改善に一層寄与することが可能となるものである。
【0012】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の冷蔵庫の正面図、図2は断熱扉を除く冷蔵庫の正面図、図3は容器などを取り外した同じく断熱扉を除く冷蔵庫の正面図、図4は本発明の冷蔵庫の縦断側面図、図5は冷蔵庫のもう一つの縦断側面図、図6は冷蔵庫の更にもう一つの縦断側面図である。
【0013】
冷蔵庫1は鋼板製の外箱2と、ABSなどの硬質樹脂製の内箱3間に発泡ポリウレタン等の断熱材4を現場発泡方式にて充填して成る前面開口の断熱箱体6から構成されている。この断熱箱体6の庫内は、上仕切壁8、中仕切壁7及び下仕切壁9によって上下四室に区画されており、上仕切壁8の上方を冷蔵室11、下仕切壁9の下方を野菜室12、上仕切壁8と中仕切壁7の間を氷温室10、中仕切壁7と下仕切壁9の間を冷凍室13としている。また、中仕切壁7と下仕切壁9の中間における開口縁には仕切前部材15が取り付けられている。
【0014】
そして、冷蔵室11の前面開口は観音開き式の断熱扉14、14によって開閉自在に閉塞されると共に、冷凍室13及び野菜室12は、上面開口の容器16A、17A、18Aを備えた引き出し式の断熱扉16、17(冷凍室13はこれら上下二段)、18によりそれぞれ開閉自在に閉塞されている。また、氷温室10も、上面開口の容器19Aを備えた引き出し式の断熱扉19により開閉自在に閉塞されている。
【0015】
また、冷凍室13の上左隅部には自動製氷機21が設置されている。更に、冷凍室13の奥部は仕切板22及び冷却器前板23にて前後に区画され、冷却器前板23の後側に冷却室24が区画形成されており、この冷却室24内に冷却器26が縦設されている。この冷却器26の中央上方には送風機29が設けられており、冷却器26の下方には除霜ヒータ31が設けられている。
【0016】
そして、仕切板22の上部及び中央部には複数の冷凍室吐出口13A・・が形成されると共に、仕切板22の下部左右には冷凍室吸込口13B、13Bが、また、これらの間の下部中央部にも冷凍室吸込口13C、13Cが隣接してそれぞれ形成されている。
【0017】
一方、冷却器前板23は仕切板22の後側に少許間隔を存して設けられており、その上部には送風機29のファン32が臨むグリル23Aが形成されている。ファン32の前側の仕切板22と冷却器前板23間の空間は前記冷凍室13A・・・に連通している。また、冷却器前板23の下部中央部には開口23Bが形成され、前記冷凍室吸込口13C、13Cと冷却室24内に連通している。また、冷凍室吸込口13B、13Bは冷却器前板23の下端を経て冷却室24の最下部に連通している。
【0018】
ここで、前記冷却器26は、図11〜図13に示す如く所定間隔を存して複数枚設けられ、上下方向に延在したアルミニウム薄板製のフィン27・・・と、これらフィン27・・・を貫通する冷媒配管28から成る所謂プレートフィン型の熱交換器であり、冷却器26の下端部のフィン密度(ピッチ)は疎とされ、更に、中央部を除く左右前後部のフィン密度も疎とされている。
【0019】
即ち、各フィン27・・・の上下寸法は、二枚乃至三枚のフィン27・・が連続して短く、それらを挟んだ左右のフィン27が長く構成され、中央部においては短いフィン27の上下寸法が一枚置きに更に短くなっている。また、左右に位置する各フィン27・・・の前後幅も一枚置きに狭く構成されている。
【0020】
これによって、冷却器26の下縁部にはフィン密度疎の領域26Aが、また、中央部には領域26Aから連続して立ち上がり、上下における中央部よりやや下まで延びるフィン密度疎の領域26Bが、また、左右の前後縁(冷気が流通する上下方向に延在するフィン27の縁部が位置する冷却器26の外側部分)にもフィン密度疎の領域26C・・・が構成されている。そして、領域26Bは前記送風機29の下方に対応すると共に、前記開口23Bはこの領域26Bの前側に対応している(図8)。
【0021】
送風機29の上方には中仕切壁7内に挿入された成形断熱材38の後部を上下に貫通するかたちで案内ダクト39が形成されており、この案内ダクト39の下部はファン32前方の空間に連通し、上部には成形断熱材41内に構成された分岐ダクト42が連通接続されている。そして、この分岐ダクト42は冷蔵室用バッフル43と氷温室用バッフル44を備えたモータダンパー46を経て、一方は冷蔵室背面ダクト47に、他方は氷温室ダクト48に連通されている。そして、前記冷蔵室用バッフル43は冷蔵室背面ダクト47の入口に、氷温室用バッフル44は氷温室ダクト48の入口に位置している。
【0022】
冷蔵室11の奥部には内箱3背面と間隔を存して背面ダクト板49が取り付けられており、この背面ダクト板49と内箱3間に上下に延在する前記冷蔵室背面ダクト47が形成されている。背面ダクト板49の前面には冷蔵室吐出口11Aが形成されている。また、冷蔵室11内には棚51・・が複数段架設されている。また、冷蔵室11背面の背面ダクト板49の右下隅部には冷蔵室後吸込口61が形成されており、この冷蔵室後吸込口61は氷温室10の背面板62の後側の成形断熱材38、41側方に形成された帰還ダクト63上部に連通している。
【0023】
更に、冷蔵室11の左下隅部には前記自動製氷機21に給水するための給水タンク52が収納されている。この給水タンク52は、図17〜図19に示す如く前後に細長く上面に開口したタンク本体53と、このタンク本体53の上面開口を閉塞するカバー54と、このカバー54に取り付けられた蓋部材56などから構成されている。
【0024】
この場合、カバー54の前部には矩形状の凹陥部54Aが形成されており、この凹陥部54Aの底面にはこれも矩形状の注入口57が形成されている。そして、前記蓋部材56は後縁両側のヒンジ部56A、56Aを、注入口57後方のカバー54に回動自在に枢支されて当該注入口57を開閉自在に閉塞する。
【0025】
この蓋部材56は凹陥部54Aの内面形状に沿った凹陥形状を呈しており、それによって、蓋部材56には充分に手指がかけられるように構成されている。また、カバー54の後部には吸水筒部54Bがタンク本体53内に降下しており、この吸水筒部54Bはカバー54後端において後方に開口する連結部54Cに連通している。
【0026】
係る給水タンク52を設置する際には前方から冷蔵室11内に挿入し、その奥部に設けられた給水パイプ59に連結部54Cを着脱自在に連結させる。この給水パイプ59は前記自動製氷機21に連通しており、タンク本体53内の水は吸水筒部54Bから吸い上げられて連結部54C、給水パイプ59を経て自動製氷機21に供給され、そこで製氷運転が行われる。生成された氷は冷凍室13内に貯えられることになる。
【0027】
係る製氷運転によってタンク本体53内の水が無くなった場合には、給水タンク52を冷蔵室11内から引き出すものであるが、この場合は凹陥した蓋部材56内に手指を挿入して引っかけ、手前に引くことにより、容易に給水タンク52を引き出すことができる。
【0028】
そして、蓋部材56を手前から上に回動させて注入口57を開放し、水をタンク本体53内に補充するものであるが、この場合にも蓋部材56は容易に開閉できるので、注入作業も容易となる。また、補充後は蓋部材56を閉めて持ち運ぶことになるが、この場合、蓋部材56はカバー54の凹陥部54Aの内面に沿って位置しており、注入口57を閉塞しているので(図19)、注入口57から搬送時の揺れなどによって水が漏れてしまうことも防止できる。
【0029】
一方、前記上仕切壁8は図14、図15に示す如く硬質樹脂製の上板66、下板67と、これら上板66の下面に沿って設けられた成形断熱材68とから構成されており、この成形断熱材68と下板67間に前記氷温室ダクト48が構成されている。氷温室ダクト48は下板67上面に立設された袋小路状の隔壁69により後部の入口48Aから前方に拡開するように構成されており、その中途部及び前部に位置する下板67には氷温室吐出口71・・・が複数形成されている。
【0030】
また、隔壁69の前方及び右方の下板67には隔壁72〜74が立設されており、これらによって氷温室ダクト48の外側の上仕切壁8内には、二条の冷蔵室吸込ダクト77、78が左右に並んで構成されている。そして、上板66の前部には左右に冷蔵室前吸込口79、81が形成されており、左側の冷蔵室前吸込口79は左側の冷蔵室吸込ダクト77の入口部77Aに、また、右側の冷蔵室前吸込口81は右側の冷蔵室吸込ダクト78の入口部78Aにそれぞれ連通している。また、各冷蔵室吸込ダクト77、78の後端は前記帰還ダクト63に連通している。
【0031】
この場合、左側の冷蔵室吸込ダクト77の通路断面積は右側の冷蔵室吸込ダクト78の通路断面積よりも大きく形成されており、吸込部77Aも吸込部78Aよりも拡張されている(図15)。ここで、各冷蔵室吸込ダクト77、78は氷温室ダクト48の前側から右側に迂回して形成されているため、左側の冷蔵室吸込ダクト77の通路長は右側の冷蔵室吸込ダクト78の通路長よりも長くなっている。
【0032】
また、隔壁72と隔壁69間には幅の狭い連通路83が形成されており、この連通路83によって氷温室ダクト48の前端と冷蔵室吸込ダクト77の吸込部77Aとは連通されている。そして、氷温室10の背面板62右側には氷温室吸込口84が形成され、帰還ダクト63に連通されている。
【0033】
他方、成形断熱材38の右部には野菜室ダクト部材86の上端が連結され、冷却室24の右側を下方に降下しており、その内部に野菜室ダクト87を構成している。この野菜室ダクト87の上端は前記帰還ダクト63に連通すると共に、下端は野菜室12右奥上部の野菜室吐出口88にて開口している。
【0034】
下仕切壁9内には野菜室吸込ダクト91が形成されており、この野菜室吸込ダクト91は野菜室12の奥部上面に開口した野菜室吸込口92にて開口し、且つ、冷却室24の下端部に連通されている。
【0035】
前記仕切前部材15は図16に示す如く硬質樹脂製の本体93と、この本体93内に設けられた成形断熱材94と、鋼板製の前板96と、その裏面に取り付けられた結露防止用の高温冷媒配管97から構成されており、本体93の下壁は前部93Aが低く後部93Bが段差状に高くなった形状を呈している。
【0036】
また、この前部93Aの後端にはその下面よりも少許上の位置に、後部93Bの下側に間隔を存して後方に突出する係合部93Cが一体に形成されている。そして、この係合部93Cにはシール部材98の基部98Aが後方から係合して取り付けられ、その軟質ヒレ片98Bは前下方に突出する。
【0037】
このシール部材98の軟質ヒレ片98Bは断熱扉17が閉じられた状態で、容器17Aの前縁後面に密着してシールするものであるが、この場合、シール部材98の基部98Aの下面は本体93の前部93Aの下面と略面一とされている。即ち、シール部材98の基部98A、或いは、その取付部分(仕切前部材15に形成される)が下方に突出していないので、容器17Aが引っかかることも無く、その分容器17Aの上下寸法を拡大して有効容積を拡張することができるようになる。
【0038】
尚、係る構造は他の仕切壁7、8、9においても同様に形成されているものである。また、104は冷蔵室11内の温度を検出する冷蔵室温度センサーであり、背面ダクト板49に取り付けられ、106は氷温室10内の温度を検出する氷温室温度センサーであり、下板67に取り付けられている。
【0039】
更に、断熱箱体6の下部には機械室99が構成されており、この機械室99内後部には前記冷却器26と周知の冷凍サイクルを構成する圧縮機101や図示しない凝縮器、機械室送風機などが設置されている。また、断熱扉18の下側には機械室99の前端に位置してキックプレート102が取り付けられており、このキックプレート102には機械室99内に通風するための吸気口103が穿設されている。
【0040】
以上の構成で、圧縮機101及び送風機29が運転されると、冷却器26にて冷却された冷却室24内の冷気は送風機29のファン32により上方に吸い上げられ、前方の冷凍室吐出口13A・・より冷凍室13内に吹き出される。そして、冷凍室13内の容器16A、17A内を循環して冷却した後、冷気は下部の冷凍室吸込口13B、13B、13C、13Cから冷却室24内に帰還する。これによって、冷凍室13は所定の冷凍温度(−20℃程)に維持される。尚、圧縮機101及び送風機29の運転は冷凍室13内の温度を検出する冷凍室温度センサーに基づいて制御される。
【0041】
ここで、冷凍室吸込口13B、13Bから流入した冷気は冷却器26の下端の領域26Aから冷却器26内に流入し、各フィン27・・・間を上昇するが、冷凍室吸込口13C、13Cから流入した冷気は冷却器26の上下における中央部よりやや下側の領域26Bから冷却器26内に流入する。
【0042】
後述する如く野菜室吸込ダクト91からは冷蔵室11、氷温室10及び野菜室12内を循環して来た湿気の多い冷気が冷却器26の下端の領域26Aから流入するため、冷却器26の領域26Aには多量の霜が付着成長するが、冷凍室吸込口13C、13Cから流入した冷気はその上方(下流側)から冷却器26のフィン密度疎の領域26Bに流入し、その後フィン密度が密の送風機29下方の領域に導入されるので、領域26Bから流入する冷気は領域26Aに成長した霜によって流通を阻害されることは無い。
【0043】
従って、冷却器26の冷気流入側端部となる領域26Aが霜の成長によって閉塞されてしまった場合にも、冷凍室13からの吸込冷気はその下流側のフィン密度疎の領域26bに流入できるので、冷凍室13の冷却能力を良好に維持することができるようになる。
【0044】
また、送風機29の下方に対応する領域26Bの下流側のフィン密度は密であるので、冷却器26の冷却能力を冷凍室13の冷却に効果的に利用することができるようになる。
【0045】
更に、冷却器26の左右の前後縁にもフィン密度疎の領域26C・・・が構成されているので、領域26Aが霜の成長によって閉塞されてしまった場合にも、領域26Cが存在する分、霜閉塞は遅れる。
【0046】
従って、係る場合にも領域26Cから冷気を冷却器26内に導入し、熱交換させることができるようになるので、総じてフィン27と流通冷気との熱交換を維持し、冷却器26の冷却能力を著しく改善することができるようになる。
【0047】
また、送風機29に対応する冷却器26の中央部以外の左右において領域26Cを構成しているので、冷却器26において冷気が最も流通する部分のフィン密度が前述の如く密となる。従って、霜の無い、或いは、少ない状態における熱交換効率を維持しつつ、霜が成長して来た場合には、領域26Bや26Cから前述の如く冷気の流通を維持し、熱交換を確保することができるようになる。
【0048】
送風機29より吹き出された冷気の一部は案内ダクト39に流入し、分岐ダクト42で二方向に分流された後、一方はモータダンパー46の冷蔵室用バッフル43を経て冷蔵室背面ダクト47に流入する。冷蔵室背面ダクト47に流入した冷気は冷蔵室吐出口11A・・・から冷蔵室11内に吹き出され、内部を循環して冷却した後、冷蔵室後吸込口61及び冷蔵室前吸込口79、81に流入する。
【0049】
また、分岐ダクト42で分流された他方はモータダンパー46の氷温室用バッフル44を経て氷温室ダクト48に流入する。氷温室ダクト48に流入した冷気は氷温室吐出口71・・から氷温室10内に吹き出され、内部を循環して冷却した後、氷温室吸込口84に流入する。
【0050】
モータダンパー46は前記冷蔵室温度センサー104の出力に基づいてバッフル43を開閉し、冷蔵室11内を+5℃程の冷蔵温度に維持する。また、氷温室温度センサー106の出力に基づいてバッフル44を開閉し、氷温室10内の容器19A内を例えば0℃〜−3℃程の氷温領域に維持する。
【0051】
前記冷蔵室後吸込口61と氷温室吸込口84に流入した冷気は、そのまま帰還ダクト63内に流入するが、冷蔵室前吸込口79と81から流入した冷気は、冷蔵室吸込ダクト77と78内をそれぞれ通って帰還ダクト63に流入する。また、氷温室ダクト48内に流入した冷気の一部(少量)は、氷温室10内を通ること無く、連通路83を通って直接冷蔵室吸込ダクト77内に流入し、吸込口79からの冷気と合流して帰還ダクト63に流入することになる。
【0052】
ここで、前述の如く左側の冷蔵室吸込ダクト77の通路長は右側の冷蔵室吸込ダクト78の通路長よりも長くなっている。従って、同一の通路断面積及び吸込部面積では冷蔵室吸込ダクト77の流路抵抗が冷蔵室吸込ダクト78の流路抵抗より大きくなるため、冷蔵室前吸込口79から吸引される冷気量は冷蔵室前吸込口81から吸引される冷気量よりも少なくなってしまう。
【0053】
このような吸込冷気量が冷蔵室11の左と右とで異なると、冷蔵室11内前部の冷却効果が左右で偏ってしまい、実施例では右よりも左が冷えなくなってしまうが、前述の如く左側の冷蔵室吸込ダクト77の通路断面積を右側の冷蔵室吸込ダクト78の通路断面積よりも大きく形成し、吸込部77Aも吸込部78Aより拡張して形成しているので、両ダクト77、78の流路抵抗が略均一化されている。従って、係る冷蔵室前吸込口79、81への冷気流入量が略均一化され、冷蔵室11内を均一に冷却できるようになる。
【0054】
次ぎに、帰還ダクト63内に流入した冷気は、野菜室ダクト87に流入し、そこを降下して野菜室吐出口88より野菜室12内に吐出される。そして、野菜室12内を循環し、容器18A内を間接的に冷却した後、野菜室92から吸い込まれ、下仕切壁9内に形成した野菜室吸込ダクト91内を経て冷却室24内の最下部に帰還する。そして、前述の如く冷却器26の領域26Aに再び流入する。
【0055】
これによって、容器18A内の野菜は乾燥が防がれた状態で+3℃〜+5℃程の温度に保冷されることになるが、前述の如く帰還ダクト63には連通路83からの冷気、即ち、氷温室10や冷蔵室11内を経ていない低温の冷気(冷却器26にて冷却されたそのままの冷気)が流入しているので、仮に、冷蔵室11や氷温室10内の負荷が大きくなり、冷気温度が上昇したような場合にも、野菜室12内の冷却能力は確保されることになる。
【0056】
尚、実施例では冷却器26を縦設して冷気流通方向を上下方向としたが、それに限らず、水平に設置して、冷気を水平方向に流しても良い。その場合は、領域26Cは冷却器26の上側と下側の部分に形成されることになる。
【0057】
【発明の効果】
以上詳述した如く本発明によれば、断熱箱体内に冷凍室と冷蔵室を区画形成すると共に、断熱箱体内に構成した冷却室に冷却器と送風機を設置し、冷却器により冷却された冷気を送風機にて冷凍室及び冷蔵室内に循環して成る冷蔵庫において、冷却器は、所定間隔で複数枚配列されたフィンと、各フィンを貫通する冷媒配管とから構成されており、冷気流入側の端部よりも下流側の部分にフィン密度が疎の領域を構成すると共に、当該領域に冷凍室内からの吸込冷気を流入させ、冷気流入側の端部に冷蔵室内からの吸込冷気を流入させたので、冷却器の冷気流入側の端部が湿気の多い冷蔵室からの吸込冷気による霜の成長によって閉塞されてしまった場合にも、冷凍室内からの吸込冷気はその下流側のフィン密度疎の領域に流入できる。
【0058】
従って、冷却器の冷気流入側端部における着霜によって冷凍室内の冷気流通が阻害されることを抑制若しくは防止できるようになり、特に凍結温度で冷却される冷凍室の冷却能力を良好に維持することができるようになる。
【0059】
請求項2の発明によれば、上記に加えて送風機の上流側に対応してフィン密度疎の領域を構成すると共に、当該領域の下流側のフィン密度は密としたので、冷却器の冷却能力を冷凍室内の冷却に効果的に利用することができるようになり、冷凍室内の冷却効果の改善に一層寄与することが可能となるものである。
【図面の簡単な説明】
【図1】本発明の冷蔵庫の正面図である。
【図2】断熱扉を除く本発明の冷蔵庫の正面図である。
【図3】容器などを取り外した同じく断熱扉を除く冷蔵庫の正面図である。
【図4】本発明の冷蔵庫の縦断側面図である。
【図5】本発明の冷蔵庫のもう一つの縦断側面図である。
【図6】本発明の冷蔵庫の更にもう一つの縦断側面図である。
【図7】本発明の冷蔵庫の冷凍室の斜視図である。
【図8】本発明の冷蔵庫の冷凍室奥部の仕切板の透視正面図である。
【図9】本発明の冷蔵庫の冷却器下部の拡大縦断側面図である。
【図10】本発明の冷蔵庫の冷却器下部のもう一つの拡大縦断側面図である。
【図11】本発明の冷蔵庫の冷却器の正面図である。
【図12】本発明の冷蔵庫の冷却器の平面図である。
【図13】本発明の冷蔵庫の冷却器の側面図である。
【図14】本発明の冷蔵庫の上仕切壁の分解斜視図である。
【図15】本発明の冷蔵庫の上仕切壁部分の平断面図である。
【図16】本発明の冷蔵庫の仕切前部材の縦断側面図である。
【図17】本発明の冷蔵庫の自動製氷機用の給水タンクの分解斜視図である。
【図18】本発明の冷蔵庫の自動製氷機用の給水タンクの縦断側面図である。
【図19】本発明の冷蔵庫の自動製氷機用の給水タンクの縦断正面図である。
【符号の説明】
1 冷蔵庫
6 断熱箱体
7 中仕切壁
8 上仕切壁
9 下仕切壁
10 氷温室
11 冷蔵室
11A 冷蔵室吐出口
12 野菜室
13 冷凍室
13A 冷凍室吐出口
13B、13C 冷凍室吸込口
22 仕切板
23 冷却器前板
24 冷却室
26 冷却器
26A、26B、26C フィン密度疎の領域
27 フィン
28 冷媒配管
29 送風機
48 氷温室ダクト
63 帰還ダクト
77、78 冷蔵室吸込ダクト
79、81 冷蔵室前吸込口
83 連通路
87 野菜室ダクト
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a refrigerator in which a cooler and a blower are installed in an insulated box, and cool air cooled by the cooler is circulated in a refrigerator by a blower.
[0002]
[Prior art]
Conventionally, this type of refrigerator has a freezing room and a refrigerating room in an insulated box body as shown in, for example, Japanese Utility Model Publication No. 6-12301 (F25D23 / 00), and a cooling room defined in the back of the freezing room. A cooler and a blower are installed in the refrigerator, and the cool air cooled by the cooler is supplied to each of the chambers by the blower and circulated to cool the room.
[0003]
Further, this type of cooler is composed of fins made of a plurality of aluminum thin plates arranged at predetermined intervals and a refrigerant pipe penetrating each fin. It is transmitted to each fin. Then, air is blown between the fins by a blower. At that time, the air is brought into contact with the fins (and the refrigerant pipes) to generate heat exchange, thereby generating cool air.
[0004]
[Problems to be solved by the invention]
However, especially the cool air circulating in the refrigerator compartment and returning to the cooler contains a large amount of moisture, and this moisture becomes frost in the process of exchanging heat with the cooler and forms on the surfaces of the fins and refrigerant pipes. Adhere to. When such frost grows, the ventilation resistance in the cooler increases, and the flow rate of cool air decreases sharply. In the worst case, the entire cooler may be blocked by frost. In addition, since the frost itself exerts an insulating effect between the fins and the cool air, the heat exchange efficiency between the cooler and the flowing cool air is significantly reduced, and thus cooling at the freezing temperature is particularly necessary. There has been a problem that the temperature of the freezing room rises abnormally.
[0005]
Therefore, in this type of refrigerator, the cooler is periodically heated by an electric heater or the like to perform defrosting, but the adverse effect of frost until the start of defrosting is inevitable. How to prevent a decrease in the cooling capacity of the freezer compartment due to the growth of frost has been an issue of this kind of refrigerator.
[0006]
The present invention has been made to solve such a conventional technical problem, and it is an object of the present invention to provide a refrigerator in which a decrease in cooling capacity in a refrigerator due to frost formation of a cooler is prevented.
[0007]
[Means for Solving the Problems]
Refrigerator of the present invention, cooling with defining a freezing compartment and refrigerating compartment in the heat-insulating main body, established a cooler and a blower to a cooling chamber which is constituted in the heat insulating box body, at the cold air cooled by the cooler fan The cooler is circulated in the freezing chamber and the refrigerator compartment, and the cooler is composed of a plurality of fins arranged at predetermined intervals and a refrigerant pipe penetrating each fin, and an end portion on a cold air inflow side. A region where the fin density is low is formed in a portion on the downstream side, and suction cold air from the freezing room flows into the region, and suction cold air from the refrigerator room flows into the end of the cold air inflow side. is there.
[0008]
According to the present invention, a freezer compartment and a refrigerator compartment are formed in the heat insulating box, and a cooler and a blower are installed in the cooling chamber formed in the heat insulating box, and the cool air cooled by the cooler is frozen by the blower. In a refrigerator circulating in a room and a refrigerator , a cooler is composed of a plurality of fins arranged at predetermined intervals and a refrigerant pipe penetrating each fin, and is located downstream from an end on a cold air inflow side. A fin-density region was formed in the portion on the side, and the cold air sucked in from the freezer room was allowed to flow into the region, and the cold air sucked from the cold room was allowed to flow into the end of the cold air inflow side . Even if the end on the cold air inflow side is blocked by the growth of frost due to the cold air sucked from the humid cold room, the cold air sucked from the freezer room can flow into a region with low fin density downstream.
[0009]
Therefore, it is possible to suppress or prevent the cold air from flowing into the freezing chamber from being hindered by the frost at the cool air inflow side end of the cooler , and particularly to maintain the cooling capacity of the freezing chamber cooled at the freezing temperature in a favorable state. Will be able to do it.
[0010]
In the refrigerator according to the second aspect of the present invention, a region having a low fin density is formed corresponding to the upstream side of the blower, and the fin density downstream of the region is high.
[0011]
According to the invention of claim 2, in addition to the above, a region having a low fin density is formed corresponding to the upstream side of the blower, and the fin density on the downstream side of the region is made high. effectively to be able to be utilized to cool the freezing chamber in which it is possible to further contribute to the improvement of the cooling effect of the refrigerating chamber.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings. 1 is a front view of the refrigerator of the present invention, FIG. 2 is a front view of the refrigerator without the heat-insulating door, FIG. 3 is a front view of the refrigerator without the heat-insulating door from which containers and the like are removed, and FIG. FIG. 5 is another longitudinal side view of the refrigerator, and FIG. 6 is still another longitudinal side view of the refrigerator.
[0013]
The refrigerator 1 includes an outer box 2 made of a steel plate and an inner box 3 made of a hard resin such as ABS filled with a heat insulating material 4 such as polyurethane foam by an in-situ foaming method. ing. The interior of the heat-insulating box 6 is divided into upper and lower four chambers by an upper partition wall 8, a middle partition wall 7, and a lower partition wall 9, and the upper part of the upper partition wall 8 is refrigerated room 11 and the lower partition wall 9. The lower part is a vegetable room 12, the space between the upper partition 8 and the middle partition 7 is an ice temperature room 10, and the space between the middle partition 7 and the lower partition 9 is a freezing room 13. A pre-partitioning member 15 is attached to an opening edge in the middle between the middle partition wall 7 and the lower partition wall 9.
[0014]
The front opening of the refrigerator compartment 11 is openably and closably closed by a double door type heat insulating door 14, and the freezer compartment 13 and the vegetable compartment 12 are of a drawer type provided with containers 16 A, 17 A and 18 A having top openings. Insulated doors 16, 17 (the freezer compartment 13 has these two upper and lower stages) and 18 are openably closed, respectively. The ice temperature chamber 10 is also closed by a drawer-type heat-insulating door 19 provided with a container 19A having an upper surface opening.
[0015]
In the upper left corner of the freezer compartment 13, an automatic ice maker 21 is installed. Further, the interior of the freezer compartment 13 is partitioned forward and backward by a partition plate 22 and a cooler front plate 23, and a cooling chamber 24 is defined behind the cooler front plate 23. A cooler 26 is provided vertically. A blower 29 is provided above the center of the cooler 26, and a defrost heater 31 is provided below the cooler 26.
[0016]
A plurality of freezer compartment discharge ports 13A,... Are formed in the upper part and the central part of the partition plate 22, and the freezer compartment suction ports 13B, 13B are provided on the lower left and right sides of the partition plate 22, respectively. The freezer compartment suction ports 13C, 13C are formed adjacent to each other also in the lower central part.
[0017]
On the other hand, the cooler front plate 23 is provided behind the partition plate 22 at a small interval, and a grill 23A facing the fan 32 of the blower 29 is formed above the cooler front plate 23. The space between the partition plate 22 on the front side of the fan 32 and the cooler front plate 23 communicates with the freezing compartments 13A. Further, an opening 23B is formed in the lower central portion of the cooler front plate 23, and communicates with the freezing chamber suction ports 13C, 13C and the inside of the cooling chamber 24. Further, the freezing compartment suction ports 13B, 13B communicate with the lowermost part of the cooling chamber 24 via the lower end of the cooler front plate 23.
[0018]
Here, a plurality of the coolers 26 are provided at predetermined intervals as shown in FIGS. 11 to 13, and the fins 27 are made of an aluminum thin plate extending vertically and these fins 27. This is a so-called plate fin type heat exchanger composed of a refrigerant pipe 28 penetrating through the fin. The fin density (pitch) at the lower end of the cooler 26 is low, and the fin density at the left, right, front and rear excluding the center is also low It is sparse.
[0019]
That is, the vertical dimension of each fin 27... Is such that two or three fins 27 are consecutively short, the left and right fins 27 sandwiching them are long, and the short fin 27 is centrally located. The vertical dimension is shorter every other sheet. Also, the front and rear widths of the fins 27... Located on the left and right are configured to be narrow every other sheet.
[0020]
As a result, a region 26A having a low fin density is formed at the lower edge of the cooler 26, and a region 26B having a low fin density is continuously formed at the center from the region 26A and extends slightly below the upper and lower central portions. Further, regions 26C... Of low fin density are also formed at the left and right front and rear edges (outside portions of the cooler 26 where the edges of the fins 27 extending in the vertical direction through which the cool air flows). The area 26B corresponds to a position below the blower 29, and the opening 23B corresponds to a front side of the area 26B (FIG. 8).
[0021]
A guide duct 39 is formed above the blower 29 so as to vertically penetrate a rear portion of the molded heat insulating material 38 inserted into the partition wall 7, and a lower portion of the guide duct 39 is provided in a space in front of the fan 32. A branch duct 42 formed in the molded heat insulating material 41 is connected to the upper portion thereof. The branch duct 42 passes through a motor damper 46 having a refrigerator compartment baffle 43 and an ice temperature compartment baffle 44, one of which is connected to a refrigerator compartment rear duct 47 and the other of which is connected to an ice compartment compartment 48. The baffle 43 for the refrigerator compartment is located at the entrance of the duct 47 on the back of the refrigerator compartment, and the baffle 44 for the ice compartment is located at the entrance of the duct 48 for the ice compartment.
[0022]
A rear duct plate 49 is attached to the back of the refrigerator compartment 11 at a distance from the rear of the inner box 3, and the refrigerator rear duct 47 extending vertically between the rear duct plate 49 and the inner box 3. Is formed. On the front surface of the rear duct plate 49, a refrigerator outlet 11A is formed. Further, a plurality of shelves 51 are provided in the refrigerator compartment 11. Further, at the lower right corner of the rear duct plate 49 on the back of the refrigerator compartment 11, a rear refrigerator compartment suction port 61 is formed, and the rear refrigerator compartment suction port 61 is formed on the rear side of the rear plate 62 of the ice warm room 10. It communicates with the upper part of the return duct 63 formed on the side of the members 38 and 41.
[0023]
Further, a water supply tank 52 for supplying water to the automatic ice maker 21 is accommodated in a lower left corner of the refrigerator compartment 11. As shown in FIGS. 17 to 19, the water supply tank 52 has a tank body 53 which is long and narrow and opens on the upper surface, a cover 54 for closing the upper surface opening of the tank body 53, and a lid member 56 attached to the cover 54. It is composed of
[0024]
In this case, a rectangular recess 54A is formed at the front of the cover 54, and a rectangular injection port 57 is also formed at the bottom of the recess 54A. The lid member 56 pivotally supports the hinge portions 56A, 56A on both sides of the rear edge of the cover 54 at the rear of the inlet 57 so as to close and close the inlet 57 in an openable and closable manner.
[0025]
The lid member 56 has a concave shape along the inner surface shape of the concave portion 54A, whereby the lid member 56 is configured so that a finger can be sufficiently applied thereto. At the rear of the cover 54, a water-absorbing cylinder 54B descends into the tank body 53, and the water-absorbing cylinder 54B communicates with a connecting portion 54C that opens rearward at the rear end of the cover 54.
[0026]
When the water supply tank 52 is installed, the water supply tank 52 is inserted into the refrigerator compartment 11 from the front, and the connection portion 54C is detachably connected to a water supply pipe 59 provided at the back. The water supply pipe 59 communicates with the automatic ice making machine 21. Water in the tank main body 53 is sucked up from the water absorption cylinder 54B and supplied to the automatic ice making machine 21 through the connecting part 54C and the water supply pipe 59, where the ice is made. Driving is performed. The generated ice is stored in the freezer 13.
[0027]
When the water in the tank main body 53 is exhausted due to the ice making operation, the water supply tank 52 is pulled out from the refrigerator compartment 11. In this case, fingers are inserted into the recessed lid member 56 to be hooked. , The water supply tank 52 can be easily pulled out.
[0028]
Then, the lid member 56 is pivoted upward from the near side to open the injection port 57 and replenish the water into the tank body 53. In this case, too, the lid member 56 can be easily opened and closed. Work is also easy. After replenishment, the lid member 56 is closed and carried. In this case, since the lid member 56 is located along the inner surface of the concave portion 54A of the cover 54 and closes the inlet 57 ( 19), it is possible to prevent water from leaking from the injection port 57 due to shaking during transportation or the like.
[0029]
On the other hand, the upper partition wall 8 is composed of an upper plate 66 and a lower plate 67 made of a hard resin and a molded heat insulating material 68 provided along the lower surface of the upper plate 66 as shown in FIGS. The ice greenhouse duct 48 is formed between the molded heat insulating material 68 and the lower plate 67. The ice greenhouse duct 48 is configured so as to expand forward from a rear entrance 48A by a blind lane-shaped partition wall 69 erected on the upper surface of the lower plate 67, and is connected to the lower plate 67 located in the middle and front thereof. Are formed with a plurality of discharge ports 71...
[0030]
In addition, partitions 72 to 74 are provided upright on a lower plate 67 in front of and on the right side of the partition 69, whereby two refrigerating compartment suction ducts 77 are provided in the upper partition wall 8 outside the ice greenhouse duct 48. , 78 are arranged side by side. The front of the upper plate 66 is formed with left and right refrigerator compartment suction ports 79 and 81 at the left and right, and the left refrigerator compartment front suction port 79 is provided at the inlet 77A of the left refrigerator compartment suction duct 77, The right refrigerator compartment suction port 81 communicates with the inlet portion 78A of the right refrigerator compartment suction duct 78, respectively. The rear end of each refrigerator compartment suction duct 77, 78 communicates with the return duct 63.
[0031]
In this case, the passage cross-sectional area of the left refrigerator compartment suction duct 77 is formed larger than the passage cross-sectional area of the right refrigerator compartment suction duct 78, and the suction portion 77A is also expanded beyond the suction portion 78A (FIG. 15). ). Here, since each of the refrigerator compartment suction ducts 77 and 78 is formed so as to detour from the front side of the ice greenhouse duct 48 to the right side, the passage length of the left refrigerator compartment suction duct 77 is equal to that of the right refrigerator compartment suction duct 78. It is longer than long.
[0032]
A narrow communication passage 83 is formed between the partition wall 72 and the partition wall 69, and the communication passage 83 connects the front end of the ice temperature chamber duct 48 and the suction portion 77 </ b> A of the refrigerator compartment suction duct 77. An ice greenhouse suction port 84 is formed on the right side of the back plate 62 of the ice greenhouse 10 and communicates with the return duct 63.
[0033]
On the other hand, the upper end of the vegetable compartment duct member 86 is connected to the right portion of the molded heat insulating material 38, and descends downward on the right side of the cooling room 24, thereby forming a vegetable compartment duct 87 inside. The upper end of the vegetable compartment duct 87 communicates with the return duct 63, and the lower end is opened at a vegetable compartment discharge port 88 at the upper right rear of the vegetable compartment 12.
[0034]
A vegetable compartment suction duct 91 is formed in the lower partition wall 9, and the vegetable compartment suction duct 91 opens at a vegetable compartment suction port 92 opened on the upper surface at the back of the vegetable compartment 12, and the cooling chamber 24. Is communicated with the lower end portion.
[0035]
As shown in FIG. 16, the pre-partitioning member 15 includes a main body 93 made of hard resin, a molded heat insulating material 94 provided in the main body 93, a front plate 96 made of a steel plate, and a dew-prevention attached to the back surface thereof. The lower wall of the main body 93 has a shape in which the front part 93A is low and the rear part 93B is stepwise high.
[0036]
At the rear end of the front portion 93A, an engagement portion 93C that projects rearward with a space below the rear portion 93B is integrally formed at a position slightly above the lower surface thereof. The base portion 98A of the seal member 98 is attached to the engaging portion 93C by engaging from behind, and the soft fin piece 98B projects forward and downward.
[0037]
The soft fin piece 98B of the sealing member 98 is to be tightly sealed to the rear surface of the front edge of the container 17A in a state where the heat insulating door 17 is closed. In this case, the lower surface of the base 98A of the sealing member 98 is The lower surface of the front portion 93A is substantially flush with the lower surface of the front portion 93A. That is, since the base portion 98A of the seal member 98 or its mounting portion (formed on the pre-partitioning member 15) does not protrude downward, the container 17A does not get caught, and the vertical dimension of the container 17A is enlarged accordingly. Thus, the effective volume can be expanded.
[0038]
Note that such a structure is similarly formed on the other partition walls 7, 8, and 9. Reference numeral 104 denotes a refrigerator compartment temperature sensor for detecting the temperature in the refrigerator compartment 11, which is attached to the rear duct plate 49, reference numeral 106 denotes an ice temperature compartment temperature sensor for detecting the temperature in the ice compartment 10, and the lower plate 67 Installed.
[0039]
Further, a machine room 99 is formed at a lower portion of the heat insulating box 6, and a compressor 101, a condenser (not shown) and a machine room which constitute a well-known refrigeration cycle together with the cooler 26 are provided at a rear portion inside the machine room 99. Blowers are installed. A kick plate 102 is attached to the lower side of the heat insulating door 18 at the front end of the machine room 99. The kick plate 102 is provided with an air inlet 103 for ventilating the inside of the machine room 99. ing.
[0040]
With the above configuration, when the compressor 101 and the blower 29 are operated, the cool air in the cooling chamber 24 cooled by the cooler 26 is sucked upward by the fan 32 of the blower 29, and the front freezing chamber discharge port 13A is provided. .. It is blown out into the freezer compartment 13. Then, after circulating and cooling the containers 16A and 17A in the freezing room 13, the cool air returns to the cooling room 24 from the lower freezing room suction ports 13B, 13B, 13C and 13C. As a result, the freezing compartment 13 is maintained at a predetermined freezing temperature (about −20 ° C.). The operation of the compressor 101 and the blower 29 is controlled based on a freezing room temperature sensor that detects the temperature in the freezing room 13.
[0041]
Here, the cold air flowing from the freezer compartment inlets 13B, 13B flows into the cooler 26 from the region 26A at the lower end of the cooler 26 and rises between the fins 27. The cool air that has flowed in from 13C flows into cooler 26 from a region 26B slightly below the upper and lower central portions of cooler 26.
[0042]
As will be described later, since the humid cold air circulating in the refrigerator compartment 11, the ice warming compartment 10 and the vegetable compartment 12 flows from the vegetable compartment suction duct 91 from the area 26A at the lower end of the cooler 26, Although a large amount of frost adheres and grows in the region 26A, the cool air flowing from the freezing compartment suction ports 13C, 13C flows from above (downstream side) into the region 26B of the cooler 26 where the fin density is low. Since it is introduced into the area below the dense blower 29, the cool air flowing from the area 26B is not hindered from flowing by the frost that has grown in the area 26A.
[0043]
Therefore, even when the region 26A, which is the cool air inflow side end of the cooler 26, is blocked by the growth of frost, the suctioned cool air from the freezing compartment 13 can flow into the region 26b having a low fin density downstream thereof. Therefore, the cooling capacity of the freezing compartment 13 can be maintained satisfactorily.
[0044]
Further, since the fin density on the downstream side of the region 26B corresponding to the lower side of the blower 29 is high, the cooling capacity of the cooler 26 can be effectively used for cooling the freezing compartment 13.
[0045]
Furthermore, since the regions 26C... Of low fin density are also formed on the left and right front and rear edges of the cooler 26, even if the region 26A is closed by the growth of frost, the region 26C is not removed. Frost blockage is delayed.
[0046]
Therefore, even in such a case, since the cool air can be introduced from the region 26C into the cooler 26 and heat exchange can be performed, the heat exchange between the fins 27 and the flowing cool air is generally maintained, and the cooling capacity of the cooler 26 is maintained. Can be significantly improved.
[0047]
Further, since the regions 26C are formed on the left and right other than the center of the cooler 26 corresponding to the blower 29, the fin density of the cooler 26 where the cool air flows most becomes dense as described above. Therefore, when the frost grows while maintaining the heat exchange efficiency in a state where there is no or little frost, the flow of the cool air is maintained from the regions 26B and 26C as described above, and the heat exchange is secured. Will be able to do it.
[0048]
A part of the cool air blown out from the blower 29 flows into the guide duct 39 and is divided into two directions by the branch duct 42, and one of the cool air flows into the refrigerator room rear duct 47 through the refrigerator room baffle 43 of the motor damper 46. I do. The cold air that has flowed into the refrigerator compartment rear duct 47 is blown into the refrigerator compartment 11 from the refrigerator compartment discharge ports 11A, and circulates through the inside of the refrigerator compartment for cooling. After that, the refrigerator compartment suction port 61 and the refrigerator compartment front suction port 79, It flows into 81.
[0049]
In addition, the other flow split by the branch duct 42 flows into the ice greenhouse duct 48 via the ice greenhouse baffle 44 of the motor damper 46. The cold air that has flowed into the ice greenhouse duct 48 is blown out of the ice greenhouse 10 through the ice greenhouse discharge ports 71, circulates through the inside, and then flows into the ice greenhouse suction port 84.
[0050]
The motor damper 46 opens and closes the baffle 43 based on the output of the refrigerator compartment temperature sensor 104, and maintains the refrigerator compartment 11 at a refrigerator temperature of about + 5 ° C. Further, the baffle 44 is opened and closed based on the output of the ice temperature chamber temperature sensor 106 to maintain the inside of the container 19A in the ice temperature chamber 10 in an ice temperature region of, for example, about 0 ° C. to −3 ° C.
[0051]
The cold air flowing into the post-refrigeration room suction port 61 and the ice hot room suction port 84 flows into the return duct 63 as it is, but the cool air flowing from the cooling chamber front suction ports 79 and 81 is cooled by the cold room suction ducts 77 and 78. Then, the air flows into the return duct 63 through the inside. Further, a part (a small amount) of the cold air flowing into the ice greenhouse duct 48 flows directly into the cold storage chamber suction duct 77 through the communication passage 83 without passing through the ice greenhouse 10, and flows from the suction port 79. The air merges with the cool air and flows into the return duct 63.
[0052]
Here, as described above, the passage length of the left refrigerator compartment suction duct 77 is longer than the passage length of the right refrigerator compartment suction duct 78. Therefore, at the same passage cross-sectional area and suction area, the flow path resistance of the refrigerator compartment suction duct 77 becomes larger than the flow path resistance of the refrigerator compartment suction duct 78, so that the amount of cold air sucked from the refrigerator compartment front suction port 79 is refrigerated. This is smaller than the amount of cool air sucked from the front suction port 81.
[0053]
If the amount of the intake cold air differs between the left and right sides of the refrigerator compartment 11, the cooling effect of the front part inside the refrigerator compartment 11 is deviated left and right, and in the embodiment, the left cools less than the right. The passage cross-sectional area of the left refrigerator compartment suction duct 77 is formed larger than the passage cross-sectional area of the right refrigerator compartment suction duct 78, and the suction portion 77A is formed to be larger than the suction portion 78A. The channel resistances of 77 and 78 are made substantially uniform. Therefore, the amount of cold air flowing into the inlets 79 and 81 in front of the refrigerator compartments is made substantially uniform, and the inside of the refrigerator compartment 11 can be cooled uniformly.
[0054]
Next, the cool air flowing into the return duct 63 flows into the vegetable compartment duct 87, descends there, and is discharged into the vegetable compartment 12 through the vegetable compartment discharge port 88. Then, after circulating in the vegetable compartment 12 and indirectly cooling the inside of the container 18A, it is sucked from the vegetable compartment 92, passes through the vegetable compartment suction duct 91 formed in the lower partition wall 9, and reaches the uppermost portion of the cooling chamber 24. Return to the bottom. Then, it flows again into the region 26A of the cooler 26 as described above.
[0055]
Thereby, the vegetables in the container 18A are kept cool at a temperature of about + 3 ° C. to + 5 ° C. in a state where drying is prevented. Since the low-temperature cold air (as it is cooled by the cooler 26) which has not passed through the ice room 10 and the refrigerator room 11 flows into the refrigerator, the load in the refrigerator room 11 and the ice room 10 increases temporarily. Even when the temperature of the cold air rises, the cooling capacity in the vegetable compartment 12 is ensured.
[0056]
In the embodiment, the cooler 26 is installed vertically and the cool air circulation direction is the vertical direction. However, the cooler 26 is not limited to this and may be installed horizontally and cool air may flow in the horizontal direction. In that case, the region 26C is formed in the upper and lower portions of the cooler 26.
[0057]
【The invention's effect】
As described above in detail, according to the present invention, a freezer compartment and a refrigerator compartment are formed in a heat insulating box, and a cooler and a blower are installed in a cooling chamber formed in the heat insulating box. In the refrigerator that is circulated in the freezer compartment and the refrigerator compartment by a blower, the cooler is composed of a plurality of fins arranged at predetermined intervals and a refrigerant pipe penetrating each fin, A region having a low fin density was formed in a portion downstream of the end portion , suction cold air from the freezing chamber was allowed to flow into the region, and suction cold air from the refrigerator compartment was allowed to flow into the cold air inflow side end. Therefore, even if the end of the cooler on the cool air inflow side is blocked due to the growth of frost due to the cool air sucked from the humid cold room, the cool air sucked from the freezer room has low fin density downstream. Can flow into the area.
[0058]
Therefore, it is possible to suppress or prevent the cold air from flowing into the freezing chamber from being hindered by the frost at the cool air inflow side end of the cooler , and particularly to maintain the cooling capacity of the freezing chamber cooled at the freezing temperature in a favorable state. Will be able to do it.
[0059]
According to the invention of claim 2, in addition to the above, a region having a low fin density is formed corresponding to the upstream side of the blower, and the fin density on the downstream side of the region is made high. effectively to be able to be utilized to cool the freezing chamber in which it is possible to further contribute to the improvement of the cooling effect of the refrigerating chamber.
[Brief description of the drawings]
FIG. 1 is a front view of a refrigerator according to the present invention.
FIG. 2 is a front view of the refrigerator of the present invention, excluding a heat insulating door.
FIG. 3 is a front view of the refrigerator excluding the heat insulating door from which the container and the like are removed.
FIG. 4 is a vertical sectional side view of the refrigerator of the present invention.
FIG. 5 is another vertical sectional side view of the refrigerator of the present invention.
FIG. 6 is still another vertical sectional side view of the refrigerator of the present invention.
FIG. 7 is a perspective view of a freezer compartment of the refrigerator of the present invention.
FIG. 8 is a transparent front view of a partition plate at the back of the freezer compartment of the refrigerator of the present invention.
FIG. 9 is an enlarged vertical sectional side view of a lower part of a cooler of the refrigerator of the present invention.
FIG. 10 is another enlarged vertical sectional side view of the lower part of the cooler of the refrigerator of the present invention.
FIG. 11 is a front view of a refrigerator of the refrigerator of the present invention.
FIG. 12 is a plan view of a refrigerator of the refrigerator of the present invention.
FIG. 13 is a side view of a refrigerator of the refrigerator of the present invention.
FIG. 14 is an exploded perspective view of an upper partition wall of the refrigerator of the present invention.
FIG. 15 is a plan sectional view of the upper partition wall of the refrigerator of the present invention.
FIG. 16 is a longitudinal sectional side view of a pre-partitioning member of the refrigerator of the present invention.
FIG. 17 is an exploded perspective view of a water supply tank for an automatic ice maker of the refrigerator of the present invention.
FIG. 18 is a vertical sectional side view of a water supply tank for an automatic ice maker of the refrigerator of the present invention.
FIG. 19 is a vertical sectional front view of a water supply tank for an automatic ice maker of the refrigerator of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Refrigerator 6 Insulated box 7 Middle partition wall 8 Upper partition wall 9 Lower partition wall 10 Ice warm room 11 Cold room 11A Cold room discharge port 12 Vegetable room 13 Freezer room 13A Freezer room discharge openings 13B, 13C Freezer room inlet 22 Partition plate 23 Cooler front plate 24 Cooling room 26 Coolers 26A, 26B, 26C Fin-sparse area 27 Fin 28 Refrigerant pipe 29 Blower 48 Ice greenhouse duct 63 Return duct 77, 78 Refrigerator room suction duct 79, 81 Refrigerator room front inlet 83 Connecting passage 87 Vegetable room duct

Claims (2)

断熱箱体内に冷凍室と冷蔵室を区画形成すると共に、前記断熱箱体内に構成した冷却室に冷却器と送風機を設置し、前記冷却器により冷却された冷気を前記送風機にて前記冷凍室及び冷蔵室内に循環して成る冷蔵庫において、
前記冷却器は、所定間隔で複数枚配列されたフィンと、各フィンを貫通する冷媒配管とから構成されており、冷気流入側の端部よりも下流側の部分に前記フィン密度が疎の領域を構成すると共に、当該領域に前記冷凍室内からの吸込冷気を流入させ、前記冷気流入側の端部に前記冷蔵室内からの吸込冷気を流入させたことを特徴とする冷蔵庫。
While forming a freezer compartment and a refrigeration compartment in the heat insulating box, a cooler and a blower are installed in a cooling chamber formed in the heat insulating box, and the cool air cooled by the cooler is cooled by the blower into the freezing compartment and In a refrigerator circulating in the refrigerator compartment ,
The cooler is composed of a plurality of fins arranged at predetermined intervals, and a refrigerant pipe penetrating each fin, and a region where the fin density is low at a portion downstream of an end on the cold air inflow side. And the cold air sucked in from the freezer compartment is caused to flow into the region, and the cold air sucked from the refrigerator compartment is caused to flow into an end of the cold air inlet side .
送風機の上流側に対応してフィン密度疎の領域を構成すると共に、当該領域の下流側のフィン密度は密としたことを特徴とする請求項1の冷蔵庫。2. The refrigerator according to claim 1, wherein a region having a low fin density is formed corresponding to an upstream side of the blower, and a fin density downstream of the region is high.
JP27967797A 1997-09-25 1997-09-25 refrigerator Expired - Lifetime JP3583910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27967797A JP3583910B2 (en) 1997-09-25 1997-09-25 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27967797A JP3583910B2 (en) 1997-09-25 1997-09-25 refrigerator

Publications (2)

Publication Number Publication Date
JPH1194435A JPH1194435A (en) 1999-04-09
JP3583910B2 true JP3583910B2 (en) 2004-11-04

Family

ID=17614337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27967797A Expired - Lifetime JP3583910B2 (en) 1997-09-25 1997-09-25 refrigerator

Country Status (1)

Country Link
JP (1) JP3583910B2 (en)

Also Published As

Publication number Publication date
JPH1194435A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
US7036334B2 (en) Refrigerator having temperature controlled chamber
JP3540571B2 (en) refrigerator
JPH11101538A (en) Refrigerator
JP3547954B2 (en) refrigerator
JP3469757B2 (en) refrigerator
JPH11101544A (en) Refrigerator
JP3583910B2 (en) refrigerator
JPH11101566A (en) Refrigerator
JP3524741B2 (en) refrigerator
JPH1194428A (en) Refrigerator
JP3883668B2 (en) refrigerator
JP3599946B2 (en) refrigerator
JPH1194439A (en) Refrigerator
JP2005241246A (en) Refrigerator
JPH09269173A (en) Refrigerator
JP2005016903A (en) Refrigerator
JPH1194453A (en) Refrigerator
JP4201807B2 (en) refrigerator
JP2005283119A (en) Refrigerator
JP3599984B2 (en) refrigerator
JPH09138050A (en) Refrigerator
JPS608294Y2 (en) Freezer refrigerator
JP2001099546A (en) Refrigerator
JP3394499B2 (en) refrigerator
JP2760616B2 (en) Cold storage

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term