JP3582662B2 - Mica powder and cosmetics containing the mica powder - Google Patents

Mica powder and cosmetics containing the mica powder Download PDF

Info

Publication number
JP3582662B2
JP3582662B2 JP16978693A JP16978693A JP3582662B2 JP 3582662 B2 JP3582662 B2 JP 3582662B2 JP 16978693 A JP16978693 A JP 16978693A JP 16978693 A JP16978693 A JP 16978693A JP 3582662 B2 JP3582662 B2 JP 3582662B2
Authority
JP
Japan
Prior art keywords
average particle
acid
powder
mica powder
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16978693A
Other languages
Japanese (ja)
Other versions
JPH072619A (en
Inventor
和久 大野
重則 熊谷
克基 小川
勝 山本
健一郎 杉森
亮 鈴村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Shiseido Co Ltd
Original Assignee
Topy Industries Ltd
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd, Shiseido Co Ltd filed Critical Topy Industries Ltd
Priority to JP16978693A priority Critical patent/JP3582662B2/en
Publication of JPH072619A publication Critical patent/JPH072619A/en
Application granted granted Critical
Publication of JP3582662B2 publication Critical patent/JP3582662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、成型性が良好でしかも光沢が低い性質があるため化粧料の基材として極めて優れた雲母粉体及び該雲母粉体を配合した使用性及び仕上がりに優れた化粧料に関するものである。
【0002】
【従来の技術】
化粧料には、製品の伸展性、付着性、隠蔽力及び成形性等を向上させる目的で、各種の体質顔料が使用されている。このような体質顔料としては、タルク、カオリン、セリサイト、雲母等の無機粉末及びナイロンパウダー、ポリエチレンパウダー、アクリル樹脂パウダー及びエポキシ樹脂パウダー等の有機粉末が挙げられる。これらの中で雲母は、透明感に優れ、艶があり、使用感触に優れ伸展性がある等の利点があることから多く使用されている。最近では、天然雲母だけでなく、合成雲母も開発されてきた。化粧料用合成雲母については、例えば特開昭63−183962号、特開昭63−185810号及び特開昭63−241072号に開示されている。
【0003】
上記したように、雲母は、化粧料の基材として優れた性質を持つ反面、光沢が高く、成型性が劣る欠点があった。それ故、化粧料に配合した場合、化粧料の艶が高すぎ、しわが目立ち、仕上がりが奇麗でないとか、耐衝撃性が悪い等の傾向があった。一方、天然雲母の1種であるセリサイトは、成型性に優れ、且つ光沢が少ない性質があり、しかも使用感触にも優れているため、化粧料の基材として広く使用されている。しかしながら、近年は、セリサイトの良質品は枯渇してきており、セリサイトに代替し得る材料の要求は強くなってきているが、使用感触、成型性に優れ、且つ光沢の少ないセリサイトに代替できる雲母粉体は未だ知られていない。
【0004】
【発明が解決しようとする課題】
この発明は、このような点に着目してなされたものであり、使用感触、成型性に優れ、且つ光沢の少ないセリサイトに代替できる化粧料に好適な雲母粉体を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため本発明者等は鋭意研究の結果、レ−ザー回折法平均粒子径(A)及び(A)と沈降法平均粒子径(B)の比で示される厚み指数(A/B)を特定の範囲内とすることにより、使用感触、成型性に優れ、且つ光沢の少ないセリサイトに代替できる化粧料用雲母粉体が得られるという画期的な事実を見いだし、本発明に到達した。
【0006】
即ち本発明は、熱処理した合成雲母粉体で、レーザー回折法平均粒子径(A)が、5μm≦A≦20μmで、且つ上記(A)と沈降法平均粒子径(B)の比で示される厚み指数(A/B)が、1.5≦A/B≦3.5であることを特徴とする雲母粉体及び該雲母粉体を含有する化粧料である。
また本発明は、熱処理した合成雲母粉体を粉砕後、自然沈降法により分級することを特徴とするレーザー回折法平均粒子径(A)が、5μm≦A≦20μmで、且つ上記(A)と沈降法平均粒子径(B)の比で示される厚み指数(A/B)が、1.5≦A/B≦3.5である雲母粉体の製造方法である。
【0007】
本発明の雲母は、白雲母、金雲母、黒雲母若しくは合成雲母であり、合成雲母は、鉄等の着色元素を含有しないため、白色度の高い本発明の合成雲母が得られると共に、成型性、光沢及び使用感触の全てが著しく改善されるため特に好ましい。白雲母、金雲母若しくは黒雲母の場合は、成型性及び光沢はかなり改善されるが、感触は多少改善される程度である。
合成雲母は、溶融法、水熱法若しくは固体間反応法によって得られるフエロケイ酸塩鉱物であり、良質の結晶の合成雲母粉体は、カリウム、ナトリウム、マグネシウム、アルミニウム、ケイ素、フッ素等を含有する化合物を一定の割合で混合し、これを溶融、晶出、冷却後、機械的粉砕を行うことにより得られる。代表的な合成雲母としては、次のようなものが挙げられる。
KMg(AlSi10)F カリウムフッ素金雲母
KMg2.5(Si10)F カリウム4ケイ素雲母
NaMg(AlSi10)F ナトリウムフッ素金雲母
【0008】
本発明の雲母のレーザー回折法平均粒子径(A)は、5μm≦A≦20μmである必要があり、5μm未満であると使用感触が悪く、20μmを越えると、成型性が悪く、光沢も強くなるため、本発明の効果を発揮しない。また、本発明の雲母は、上記(A)と沈降法平均粒子径(B)の比で示される厚み指数(A/B)が、1.5≦A/B≦3.5である必要があり、1.5未満であると使用感触が悪く、3.5を越えると、成型性が悪く、光沢も強くなり、本発明の効果を発揮しない。
レーザー回折法によって測定された平均粒子径(A)は、別の方法で測定した粉末の面方向の粒径に近似することから、レーザー回折法平均粒子径(A)は、粉末の面方向の粒径を表わすと考えられている。沈降法平均粒子径(B)は、水中での粉末の沈降速度をストークスの式を用いて粉末が球形であった場合の粒径に換算した直径(単位球の直径)を表すものである。この比をとった厚み指数(A/B)は、単位球の直径当たりの板の大きさの比(面方向の粒径は単位球の直径の何倍であるか)を表し、この比が大きいと(厚みが)薄く、小さいと厚いことを意味する。
【0009】
次に、本発明の雲母粉体の製造方法を説明する。
原料雲母は、白雲母、金雲母、黒雲母若しくは合成雲母である。合成雲母は、公知の方法で製造すればよく、例えば合成フッ素金雲母の場合、無水ケイ酸約40部、無水マグネシウム約30部、酸化アルミニウム約13部及びケイフッ化カリウム約17部を配合した後、1400℃〜1500℃で溶融し、次いで1300℃〜1400℃で晶出させて、合成フッ素金雲母を得る。
これらの原料雲母を、順次粗砕機、中粉砕機、微粉砕機にかけた後、レザー回折法平均粒子径(A)が、5μm≦A≦20μmで、且つ上記(A)と沈降法平均粒子径(B)の比で示される厚み指数(A/B)が、1.5≦A/B≦3.5であるように分級して、本発明の雲母粉体を得る。
【0010】
粗砕機、中粉砕機としては、圧縮破砕機、せん断粗砕機、衝撃破砕機、ロール式,スタンプ式の粗砕機,中粉砕機等が使用できるが、特にこれらに限定されない。
微粉砕機としては、ボール媒体ミル、媒体撹拌式媒体ミル、ジエツト粉砕機、湿式高速回転ミル、石臼式ミル等が使用できるが、特にこれらに限定されない。
分級方法は、自然沈降法、遠心沈降法、サイクロン法等により行えば良い。
分級後若しくは分級前に、酸処理、熱処理若しくは酸処理と熱処理との併用処理を行っても良い。合成雲母は、酸処理により粒子端面を薄葉化することができ、また熱処理により、フッ素イオンの溶出がなく、表面活性を少なくすることができる。
【0011】
上記酸処理に使用する酸は、無機酸、有機酸のいずれであってもであっても良いが、強酸を用いた場合は、雲母の構造が破壊されることがあるので、弱酸を使用するのが好ましい。
無機酸としては、例えば、塩酸、硝酸、硫酸、塩素酸、過塩素酸、過ヨウ素酸、臭素酸、リン酸、ホウ酸、炭酸等が挙げられる。
有機酸としては、例えば、ギ酸,酢酸、アクリル酸,安息香酸,シュウ酸,マロン酸,コハク酸,グルタル酸,アジピン酸,ピメリン酸,フタル酸等のカルボン酸、乳酸,リンゴ酸,酒石酸,クエン酸等のオキシカルボン酸、グリシン,アラニン,バリン,ロイシン,チロシン,トレオニン,セリン,プロリン,トリプトフアン,メチオニン,シスチン,チロキシン,アスパラギン酸,グルタミン酸,リジン,アルギン等のアミノ酸等が挙げられる。
【0012】
雲母を熱処理する設備方式は、例えば外熱式加熱炉、内熱式加熱炉、ロータリーキルン等公知のあらゆる方法を適用することができる。
熱処理雰囲気は、酸化雰囲気、還元雰囲気、アルゴンガス雰囲気、窒素ガス雰囲気、アンモニアガス雰囲気、真空中等のいずれでも、或はこれらを組み合わせても良く、目的とする雲母粉体の用途、機能等に応じて適宜選択すれば良い。
雲母の熱処理温度は、600〜1350℃、好ましくは700〜1200℃である。
【0013】
本発明の雲母粉体の化粧料への配合量は、化粧料全量中の1〜100重量%である。
本発明の化粧料としては、フエーシャル化粧料、メーキャップ化粧料、ヘア化粧料、浴用剤等広い範囲の化粧料が含まれるが、特にメーキャップ化粧料、例えばフアンデーション、粉白粉、アイシャドー、ブラッシャー、化粧下地、ネイルエナメル、アイライナー、マスカラ、口紅、フアンシーパウダー等に好適である。
本発明の雲母粉体は、化粧料に配合されるに当たって必要に応じ、シリコーン処理、フッ素処理、金属石鹸処理、脂肪酸処理、界面活性剤処理、或は酸、アルカリ、無機酸類による処理、更にはこれらの複合処理を行った後配合させても良い。
【0014】
本発明の化粧料には、本発明の合成雲母粉体の他に、通常化粧料に用いられる他の成分を必要に応じて適宜配合することができる。例えばタルク,カオリン,セリサイト,白雲母,金雲母,紅雲母,黒雲母,合成雲母,リチア雲母,バーミキュライト,炭酸マグネシウム,炭酸カルシウム,珪ソウ土,ケイ酸マグネシウム,ケイ酸カルシウム,ケイ酸アルミニウム,ケイ酸バリウム,硫酸バリウム,ケイ酸ストロンチウム,タングステン酸金属塩,シリカ,ヒドロキシアパタイト,ゼオライト,窒化ホウ素,セラミックスパウダー等の無機粉末、ナイロンパウダー,ポリエチレンパウダー,ポリスチレンパウダー,ベンゾグアナミンパウダー,ポリ四弗化エチレンパウダー,ジスチレンベンゼンポリマーパウダー,エポキシパウダー,アクリルパウダー,シリコ−ンパウダー,微結晶性セルロース等の有機粉体、酸化チタン,酸化亜鉛等の無機白色顔料、酸化鉄(ベンガラ),チタン酸鉄等の無機赤色系顔料、γ酸化鉄等の無機褐色系顔料、黄酸鉄,黄土等の
【0015】
無機黄色系顔料、四酸酸化鉄,カーボンブラック等の無機黒色系顔料,マンゴバイオレット,コバルトバイオレット等の無機紫色系顔料、酸化クロム,水酸化クロム,チタン酸コバルト等の無機緑色顔料,群青,紺青等の無機青色系顔料、酸化チタン被覆雲母,酸化チタン被覆オキシ塩化ビスマス,オキシ塩化ビスマス,酸化チタン被覆タルク,魚鱗箔,着色酸化チタン被覆雲母等のパール顔料、アルミニウムパウダー,カッパーパウダー等の金属粉末顔料、赤色201号,赤色202号,赤色204号,赤色205号,赤色220号,赤色226号,赤色228号,赤色405号,橙色203号,橙色204号,黄色205号,黄色401号及び青色404号等の有機顔料、赤色3号,赤色104号,赤色106号,赤
【0016】
色227号,赤色230号,赤色401号,赤色505号,橙色205号,黄色4号,黄色5号,黄色202号,黄色203号,橙色3号及び青色1号のジルコニウム,バリウム,若しくはアルミニウムレーキ等の有機顔料、クロロフイル,β−カロチン等の天然色素、スクワラン,流動パラフイン,ワセリン,マイクロクリスタリンワックス,オゾケライト,セレシン,ミリスチン酸,パルミチン酸,ステアリン酸,オレイン酸,イソステアリン酸,セチルアルコール,ヘキサデシルアルコール,オレイルアルコール,2−エチルヘキサン酸セチル,パルミチン酸2−エチルヘキシル,ミリスチン酸2ーオクチルドデシル,ジ2ーエチルヘキサン酸ネオペンチルグリコール,トリ−2−エチルヘキサン酸グリセロール,オレイン酸2ーオクチルドデシル,ミリスチン酸イソプロピル,トリイソステアリン酸グリセロール,トリヤシ油脂肪酸グリセロール,オリーブ油,アボガド油,ミツロウ,ミリスチン酸ミリスチル,ミンク油,ラノリン等の各種炭化水素、シリコーン油,高級脂肪酸,油脂類のエステル類、高級アルコール,ロウ類等の油性成分、アセトン,トルエン,酢酸ブチル,酢酸エステル等の有機溶剤、アル
【0017】
キッド樹脂,尿素樹脂等の樹脂、カンフアー,クエン酸アセトルトリブチル等の可塑剤、紫外線吸収剤、酸化防止剤、防腐剤、界面活性剤、保湿剤、香料、水、アルコール、増粘剤等が挙げられる。
本発明による化粧料の形態は、特に限定されず、例えば粉末状、ケーキ状、ペンシル状、スチック状、ペレット状、軟膏状、液状、乳液状、クリーム状等とすることができる。
本発明の雲母粉体は、化粧料用として特に有用なものであるが、塗料、プラスチック、ゴム等の添加剤、ゴム等の離型剤、潤滑剤として使用することもできる。
【0018】
【実施例】
次に、実施例、参考例を挙げて本発明を更に説明するが、本発明はこれら実施例に限定されない。
実施例、参考例中のレーザー回折法平均粒子径、沈降法平均粒子径、成型性、光沢の測定値は、以下の方法により測定したものである。
(レーザー回折法平均粒子径)
レーザー回折法平均粒子径は、体積基準のメジアン径、累積分布の50%に相当する粒子径であり、レーザー回折式粒度分布測定装置(堀場製作所製、型式 LAー500)により測定した。
【0019】
(沈降法平均粒子径)
沈降法平均粒子径は、体積基準のメジアン径、累積分布の50%に相当する粒子径であり、超遠心式自動粒度分布測定装置(堀場製作所製、 型式CAPAー700)により測定した。
(成型性)
雲母粉60部に対し、タルク30部、流動パラフイン9部、界面活性剤1部を混合した。これを、80kg/cmの圧力でプレス成型し、表面硬度をオルゼン硬度計(針入硬度)で測定した。
評価は、下記基準により行った。
◎ 40未満
○ 40以上50未満
× 50以上
(光沢)
アート紙に張り付けたセロテープ粘着面に粉体を塗布し、日本電色製デジタル携帯用光沢計VG−2P型で60°ー60°の光沢を測定した。
評価は、下記基準により行った。
−× 3.0未満
−○ 3.0以上3.5未満
◎ 3.5以上4.5未満
+○ 4.5以上5.0未満
+× 5.0以上
【0020】
実施例 1
無水ケイ酸約40部、酸化マグネシウム約30部、酸化アルミニウム約13部及びケイフッ化カリウム約17部を配合した後、1400℃〜1500℃で溶融し、次いで1300℃〜1400℃で晶出させて、合成フッ素金雲母を得た。この合成フッ素金雲母10kgを、湿式媒体ミルで粉砕した後、0.2Mクエン酸により1時間酸処理し、マッフル炉で900℃、1時間熱処理した。その後、自然沈降法により分級し、レーザー回折法平均粒子径(A)10.9μm、沈降法平均粒子径(B)4.0μm、厚み指数(A/B)2.7の本発明の雲母粉体900gを得た。評価結果を後記表ー1に示す。
【0021】
実施例 2
無水ケイ酸約40部、酸化マグネシウム約30部、酸化アルミニウム約13部及びケイフッ化カリウム約17部を配合した後、1400℃〜1500℃で溶融し、次いで1300℃〜1400℃で晶出させて、合成フッ素金雲母を得た。この合成フッ素金雲母10kgを、湿式高速回転ミルで粉砕した後、0.3Mクエン酸により30分間酸処理し、マッフル炉で900℃、1時間熱処理した。その後、自然沈降法により分級し、レーザー回折法平均粒子径(A)11.5μm、沈降法平均粒子径(B)4.3μm、厚み指数(A/B)2.7の本発明の雲母粉体950gを得た。評価結果を後記表ー1に示す。
【0022】
実施例 3
無水ケイ酸約40部、酸化マグネシウム約30部、酸化アルミニウム約13部及びケイフッ化カリウム約17部を配合した後、1400℃〜1500℃で溶融し、次いで1300℃〜1400℃で晶出させて、合成フッ素金雲母を得た。この合成フッ素金雲母10kgを、湿式媒体ミルで粉砕した後、1N塩酸により1時間酸処理し、マッフル炉で900℃、1時間熱処理した。その後、自然沈降法により分級し、レーザー回折法平均粒子径(A)20.0μm、沈降法平均粒子径(B)5.7μm、厚み指数(A/B)3.5の本発明の雲母粉体1Kgを得た。評価結果を後記表ー1に示す。
【0023】
実施例 4
無水ケイ酸約40部、酸化マグネシウム約30部、酸化アルミニウム約13部及びケイフッ化カリウム約17部を配合した後、1400℃〜1500℃で溶融し、次いで1300℃〜1400℃で晶出させて、合成フッ素金雲母を得た。この合成フッ素金雲母10kgを、ボール媒体ミルで粉砕した後、1N塩酸により1時間酸処理し、マッフル炉で900℃、1時間熱処理した。その後、自然沈降法により分級し、レーザー回折法平均粒子径(A)5.0μm、沈降法平均粒子径(B)3.3μm、厚み指数(A/B)1.5の本発明の雲母粉体1Kgを得た。評価結果を後記表ー1に示す。
【0024】
実施例 5
白雲母2kgを、ボール媒体ミルで粉砕した後、自然沈降法により分級し、レーザー回折法平均粒子径(A)10.3μm、沈降法平均粒子径(B)4.3μm、厚み指数(A/B)4.3の本発明の雲母粉体300gを得た。評価結果を後記表ー1に示す。
実施例 6
金雲母2kgを、湿式高速回転ミルで粉砕した後、自然沈降法により分級し、レーザー回折法平均粒子径(A)12.5μm、沈降法平均粒子径(B)5.0μm、厚み指数(A/B)2.5の本発明の雲母粉体300gを得た。評価結果を後記表ー1に示す。
【0025】
比較例 1
無水ケイ酸約40部、酸化マグネシウム約30部、酸化アルミニウム約13部及びケイフッ化カリウム約17部を配合した後、1400℃〜1500℃で溶融し、次いで1300℃〜1400℃で晶出させて、合成フッ素金雲母を得た。この合成フッ素金雲母10kgを、湿式媒体ミルで粉砕した後、0.3Mクエン酸により1時間酸処理し、マッフル炉で900℃、1時間熱処理した。その後、自然沈降法により分級し、レーザー回折法平均粒子径(A)11.0μm、沈降法平均粒子径(B)2.5μm、厚み指数(A/B)4.4の雲母粉体1Kgを得た。評価結果を後記表ー1に示す。
【0026】
比較例 2
無水ケイ酸約40部、酸化マグネシウム約30部、酸化アルミニウム約13部及びケイフッ化カリウム約17部を配合した後、1400℃〜1500℃で溶融し、次いで1300℃〜1400℃で晶出させて、合成フッ素金雲母を得た。この合成フッ素金雲母10kgを、湿式高速回転ミルで粉砕した後、1N塩酸により1時間酸処理し、マッフル炉で900℃、1時間熱処理した。その後、自然沈降法により分級し、レーザー回折法平均粒子径(A)10.0μm、沈降法平均粒子径(B)7.0μm、厚み指数(A/B)1.4の雲母粉体1Kgを得た。評価結果を後記表ー1に示す。
【0027】
比較例 3
無水ケイ酸約40部、酸化マグネシウム約30部、酸化アルミニウム約13部及びケイフッ化カリウム約17部を配合した後、1400℃〜1500℃で溶融し、次いで1300℃〜1400℃で晶出させて、合成フッ素金雲母を得た。この合成フッ素金雲母5kgを、湿式媒体ミルで粉砕した後、1N塩酸により1時間酸処理し、マッフル炉で900℃、1時間熱処理した。その後、自然沈降法により分級し、レーザー回折法平均粒子径(A)25μm、沈降法平均粒子径(B)10μm、厚み指数(A/B)2.5の雲母粉体500gを得た。評価結果を後記表ー1に示す。
【0028】
比較例 4
無水ケイ酸約40部、酸化マグネシウム約30部、酸化アルミニウム約13部及びケイフッ化カリウム約17部を配合した後、1400℃〜1500℃で溶融し、次いで1300℃〜1400℃で晶出させて、合成フッ素金雲母を得た。この合成フッ素金雲母5kgを、湿式媒体ミルで粉砕した後、1N塩酸により1時間酸処理し、マッフル炉で900℃、1時間熱処理した。その後、自然沈降法により分級し、レーザー回折法平均粒子径(A)4.4μm、沈降法平均粒子径(B)1.2μm、厚み指数(A/B)3.3の雲母粉体500gを得た。評価結果を後記表ー1に示す。
【0029】
【表−1】
【0030】
次に、本発明の合成雲母粉体を配合した化粧料の実施例を示す。
なお、化粧料の性能は、次表−2に挙げた項目について、専門パネル20名による5段階官能評価を行い、20名の平均値に基づき、下記の記号によって示した。
【0031】
【表−2】

Figure 0003582662
【0032】
(1)つやの評価基準
+× 4.5以上5.0まで
+△ 3.5以上4.5未満
◎ 2.5以上3.5未満
−△ 1.5以上2.5未満
−× 1.0以上1.5未満
(2)のび、つき、なめらかな使用感、化粧肌のきれいさ、なじみ、密着感の評
価基準
◎ 4.5以上5.0まで
○ 3.5以上4.5未満
□ 2.5以上3.5未満
△ 1.5以上2.5未満
× 1.0以上1.5未満
【0033】
実施例7〜12:両用フアンデション
以下の各成分から、本発明の両用フアンデション7〜12を調製した。
(重量%)
1 酸化チタン 7
2 シリコーン処理微粒子酸化チタン※ 10
3 白雲母 8
4 実施例1〜6それぞれの雲母粉体のシリコーン処理品※ 65
5 ナイロンパウダー 2
6 赤色酸化鉄 0.5
7 黄色酸化鉄 1
8 黒色酸化鉄 0.1
9 シリコ−ンオイル 1
10 パルミチン酸2ーエチルヘキシル 9
11 セスキオレイン酸ソルビタン 1
12 防腐剤 0.3
13 香料 0.1
※ 3部のメチルハイドロジエンポリシロキサンを5部のジクロルメタンに溶解したものに、粉体97部を混合し、乾燥後180℃で3時間熱処理した。
【0034】
上記成分1〜8をヘンシエルミキサーで混合し、この混合物に、加熱溶解混合した成分9〜13を添加混合した後、5HPパルベライザー(細川ミクロン製)で粉砕し、これを直径5.3cmの中皿中160kg/cmの圧力で成形して両用フアンデションを得た。
上記成分4の雲母粉体の代わりに、比較例1〜4の雲母粉体及び絹雲母のシリコーン処理した粉体を上記と同量使用する以外は上記と同様にして、比較用両用フアンデション5〜9を調製した。
【0035】
上記のように調製した両用フアンデションの官能評価及び成型したときの針入硬度(オルゼン硬度計、荷重1ポンド)を測定した。
針入硬度は、成型性に対応し、評価は下記基準により行った。
◎ 20未満
○ 20以上30未満
□ 30以上40未満
△ 40以上50未満
× 50以上
結果を次表ー3に示す。
【0036】
【表−3】
Figure 0003582662
【0037】
上記表の結果から、本発明の両用フアンデションは、比較例の両用フアンデションよりも、高い評価を受けていることがわかる。
実施例13:ブラッシャー
以下の各成分から本発明のブラッシャー13を調製した。
(重量%)
1 タルク 15.1
2 絹雲母 8.1
3 マイカ 5.0
4 実施例1の合成雲母粉体 60.0
5 赤色226号 0.4
6 チタンマイカ 3.0
7 スクワラン 3.0
8 パルミチン酸2ーエチルヘキシル 5.0
9 防腐剤 0.3
10 香料 0.2
【0038】
上記成分1〜5をヘンシエルミキサーで混合し、この混合物に、加熱溶解混合した成分7〜10を吹き付け、更に混合した後、5HPパルベライザー(細川ミクロン製)で粉砕し、更に成分6を加えて混合した後、4×6cmの中皿中120kg/cmの圧力で成形して、本発明のブラッシャー13を得た。
上記成分4の合成雲母粉60.0重量%をセリサイト60.0重量%に置換する以外は、上記と同様にして、比較用ブラッシャー10を調製した。
上記のように調製したブラッシャーの官能評価を前記実施例と同様に行い、結果を次表ー4に示す。
【0039】
【表−4】
Figure 0003582662
【0040】
上記表から明らかなように、本発明のブラッシャー13は、官能評価項目のいずれにおいても優れていることがわかる。
またブラッシャーの硬度は、本発明のブラッシャー13が25であり、比較用ブラッシャー10が35であり、本発明のブラッシャーの方が成形性が良いことがわかる。
更に成形品の外観色を日立カラーアナライザー607で測定した結果、本発明のブラッシャーが彩度11.8、比較用ブラッシャーが彩度10.6であり、本発明のブラッシャーのほうが彩度が高く、あざやかな外観色であることがわかった。
【0041】
実施例14:フアンシーパウダー
以下の各成分から本発明のフアンシーパウダー14を調製した。
(重量%)
1 実施例2の合成雲母粉体 95
2 タルク 4
3 香料 1
4 酸化鉄顔料 適量
【0042】
上記成分1、2、4を混合した後、これに成分3を加えて更に混合し、容器に充填して本発明のフアンシーパウダー14を得た。
上記成分1の合成雲母粉95重量%の代わりにタルク同量(従ってタルク合計99重量%)を使用する以外は、上記と同様にして、比較用フアンシーパウダー11を調製した。
上記のように調製したフアンシーパウダーを、37℃の恒温槽に1ケ月保存したサンプルと、各々のコントロール(同じ処方で製造したフアンシーパウダーの製造直後のもの)とについて、官能評価により匂い安定性を比較した。
結果は、本発明のフアンシーパウダーは、1ケ月保存後のサンプルとコントロールとは殆ど変わらなかったが、比較用フアンシーパウダーの場合は、1ケ月保存後のサンプルは、コントロールと比べてかなりの変臭していた。
【0043】
実施例15:ネイルエナメル
以下の各成分から本発明のネイルエナメルを調製した。
(重量%)
1 ニトロセルロース 12
2 変性アルキッド樹脂 12
3 クエン酸アセチルトリブチル 5
4 酢酸n−ブチル 36.4
5 酢酸エチル 6
6 n−ブチルアルコール 2
7 トルエン 21
8 酸化鉄顔料 0.5
9 二酸化チタン 0.1
10 パール顔料 2
11 実施例4の合成雲母粉体 2
12 有機変性モンモリロナイト 1
【0044】
上記成分1〜7(但し、成分4は一部分)を溶解し、この溶液に、成分12と成分4の残分とを混合してゲル状にしたものを添加混合し、更に成分8〜11を添加混合し、容器に充填し、本発明のネイルエナメル15を得た。
上記成分11の合成雲母粉体の代わりにセリサイト同量を使用する以外は、上記と同様にして、比較用ネイルエナメル12を調製した。
上記のように調製したネイルエナメルの官能評価を次表ー5に示す。
【0045】
【表−5】
Figure 0003582662
【0046】
上記表から明らかなように、本発明のネイルエナメルは、官能評価においても優れていることがわかる。
実施例16:乳化フアンデーション
以下の各成分から本発明の乳化フアンデーションを調製した。
(重量%)
1 ステアリン酸 0.4
2 イソステアリン酸 0.3
3 2−エチルヘキサン酸セチル 4
4 流動パラフイン 11
5 ポリオキシエチレン(10)ステアリルエーテル 2
6 タルク 15
7 顔料 4
8 セチルアルコール 0.3
9 防腐剤 0.07
10 実施例5の雲母粉体 3
11 トリエタノールアミン 0.42
12 プロピレングリコール 5
13 防腐剤 0.02
14 イオン交換水 54.19
15 香料 0.3
【0047】
上記成分1〜9を85℃で加熱溶解混合した後、成分10を添加して均一に分散させた。これに、85℃で加熱溶解混合した成分11〜14の混合物を徐々に添加して乳化させた。乳化時の温度を10分間保持して撹拌した後、撹拌しながら冷却して45℃にした。これに成分15を加え、35℃まで撹拌冷却を続けた後、生成物を取り出し、容器に充填して、本発明の乳化フアンデーション15を得た。
上記成分10の雲母粉体の代わりにタルク同量を使用する以外は、前記と同様の方法により、比較用乳化フアンデーション13を調製した。
上記のように調製した乳化フアンデーションの官能評価を次表ー6に示す。
【0048】
【表−6】
Figure 0003582662
【0049】
上記表から明らかなように、本発明の乳化フアンデーション15は、比較用乳化フアンデーション13に比べて優れていることがわかる。
実施例17:浴用剤
以下の各成分から本発明の錠剤タイプの浴用剤を調製した。
(重量%)
1 硫酸ナトリウム 45
2 炭酸水素ナトリウム 15
3 炭酸ナトリウム 8
4 コハク酸 22
5 実施例1の合成雲母粉体 15
6 色素 適量
7 顔料 適量
上記成分をヘンシエルミキサーで均一に混合し、打錠機にて円形に成型し、本発明の浴用剤を調製した。
【0050】
【効果】
以上述べた如く、本発明の雲母粉末は、使用感触、成型性に優れ、しかも光沢が少ないので、化粧品の基材として、従来の雲母粉を使用した場合と比べて、画期的な効果を奏するものであるから、良質品が枯渇し、その代替品の要求が強い、セリサイトに十分代替できるものであり、この業界に貢献するところ極めて大きい。
【表1】
Figure 0003582662
[0001]
[Industrial applications]
TECHNICAL FIELD The present invention relates to a mica powder which is excellent in moldability and has a low gloss property as a base material of a cosmetic, and a cosmetic prepared by blending the mica powder and having excellent usability and finish. .
[0002]
[Prior art]
Various extender pigments have been used in cosmetics for the purpose of improving the extensibility, adhesion, hiding power, moldability, and the like of products. Examples of such extenders include inorganic powders such as talc, kaolin, sericite and mica, and organic powders such as nylon powder, polyethylene powder, acrylic resin powder and epoxy resin powder. Among them, mica is widely used because of its advantages such as excellent transparency, glossiness, excellent feel in use, and extensibility. Recently, not only natural mica but also synthetic mica has been developed. Synthetic mica for cosmetics is disclosed in, for example, JP-A-63-183962, JP-A-63-185810 and JP-A-63-241072.
[0003]
As described above, mica has excellent properties as a base material for cosmetics, but has disadvantages of high gloss and poor moldability. Therefore, when blended in cosmetics, the cosmetics tend to have too high gloss, noticeable wrinkles, unfinished finish and poor impact resistance. On the other hand, sericite, which is a kind of natural mica, is widely used as a base material for cosmetics because it has excellent moldability, low gloss, and excellent use feel. However, in recent years, high-quality products of sericite have been depleted, and the demand for a material that can be substituted for sericite has been increasing. However, it can be replaced with sericite having excellent feel in use, excellent moldability, and low gloss. Mica powder is not yet known.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of such a point, and it is an object of the present invention to provide a mica powder suitable for cosmetics that can be used as a substitute for sericite with low gloss and excellent use feel and moldability. I do.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted intensive studies and as a result, have found that a laser diffraction average particle size (A) and a thickness index (A / A) expressed by the ratio of (A) to the sedimentation average particle size (B). By setting B) within a specific range, the inventors have found an epoch-making fact that a mica powder for cosmetics which is excellent in use feeling and moldability and can be substituted for sericite with low gloss is obtained. Reached.
[0006]
That is, the present inventionHeat treatedIn the synthetic mica powder, the average particle size (A) of the laser diffraction method is 5 μm ≦ A ≦ 20 μm, and the thickness index (A / B) is indicated by the ratio of the above (A) to the average particle size of the sedimentation method (B). Is 1.5 ≦ A / B ≦ 3.5, and a cosmetic containing the mica powder.
Also, the present inventionHeat treatedAfter the synthetic mica powder is crushed, it is classified by the natural sedimentation method.,The average particle diameter (A) of the laser diffraction method is 5 μm ≦ A ≦ 20 μm, and the thickness index (A / B) represented by the ratio of the above (A) to the average particle diameter of the sedimentation method (B) is 1.5 ≦ This is a method for producing mica powder in which A / B ≦ 3.5.
[0007]
The mica of the present invention is muscovite, phlogopite, biotite or synthetic mica.Since synthetic mica does not contain a coloring element such as iron, the synthetic mica of the present invention having high whiteness can be obtained, and the moldability can be improved. , Gloss and use feeling are all significantly improved. In the case of muscovite, phlogopite or biotite, the moldability and gloss are considerably improved, but the feel is slightly improved.
Synthetic mica is a ferrosilicate mineral obtained by a melting method, a hydrothermal method or a solid-solid reaction method, and synthetic mica powder of high-quality crystals contains potassium, sodium, magnesium, aluminum, silicon, fluorine, etc. The compound is obtained by mixing the compounds at a certain ratio, melting, crystallizing, cooling, and then mechanically pulverizing. Representative synthetic mica includes the following.
KMg3(AlSi3O10) F2      Potassium fluorophlogopite
KMg2.5(Si4O10) F2        Potassium 4 silicon mica
NaMg3(AlSi3O10) F2    Sodium fluorophlogopite
[0008]
The average particle diameter (A) of the mica of the present invention by laser diffraction method must be 5 μm ≦ A ≦ 20 μm, and if it is less than 5 μm, the feeling of use is poor, and if it exceeds 20 μm, moldability is poor and gloss is strong. Therefore, the effect of the present invention is not exhibited. In the mica of the present invention, the thickness index (A / B) represented by the ratio of the above (A) to the average particle diameter by precipitation (B) needs to satisfy 1.5 ≦ A / B ≦ 3.5. If it is less than 1.5, the feeling of use will be poor, and if it exceeds 3.5, the moldability will be poor and the gloss will be strong, and the effect of the present invention will not be exhibited.
Since the average particle diameter (A) measured by the laser diffraction method is close to the particle diameter in the plane direction of the powder measured by another method, the average particle diameter (A) of the laser diffraction method is It is believed to represent particle size. The average particle diameter (B) of the sedimentation method represents a diameter (diameter of a unit sphere) obtained by converting the sedimentation velocity of the powder in water into a particle diameter when the powder is spherical by using Stokes' formula. The thickness index (A / B) taking this ratio represents the ratio of the size of the plate per unit sphere diameter (how many times the grain size in the plane direction is the diameter of the unit sphere). Large means thin (thickness), small means thick.
[0009]
Next, the method for producing mica powder of the present invention will be described.
The raw mica is muscovite, phlogopite, biotite or synthetic mica. Synthetic mica may be produced by a known method. For example, in the case of synthetic fluorophlogopite, after blending about 40 parts of silicic anhydride, about 30 parts of anhydrous magnesium, about 13 parts of aluminum oxide and about 17 parts of potassium silicofluoride. Melting at 1400 ° C to 1500 ° C and then crystallization at 1300 ° C to 1400 ° C to obtain synthetic fluorophlogopite.
These raw material mica were sequentially subjected to a coarse crusher, a medium crusher, and a fine crusher, and the average particle diameter (A) of the laser diffraction method was 5 μm ≦ A ≦ 20 μm, and the average particle diameter of the sedimentation method was the same as that of the above (A). Classification is performed so that the thickness index (A / B) represented by the ratio (B) satisfies 1.5 ≦ A / B ≦ 3.5 to obtain the mica powder of the present invention.
[0010]
Examples of the crusher and the medium crusher include a compression crusher, a shear crusher, an impact crusher, a roll-type and a stamp-type crusher, and a medium crusher, but are not particularly limited thereto.
Examples of the fine pulverizer include, but are not limited to, a ball media mill, a media stirring type media mill, a jet pulverizer, a wet high-speed rotation mill, and a millstone mill.
The classification may be performed by a natural sedimentation method, a centrifugal sedimentation method, a cyclone method, or the like.
After or before classification, an acid treatment, a heat treatment, or a combination treatment of an acid treatment and a heat treatment may be performed. Synthetic mica can be made thinner at the particle end face by acid treatment, and the heat treatment does not elute fluorine ions and can reduce the surface activity.
[0011]
The acid used for the acid treatment may be any of an inorganic acid and an organic acid, but when a strong acid is used, the structure of mica may be destroyed, so a weak acid is used. Is preferred.
Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, chloric acid, perchloric acid, periodic acid, bromic acid, phosphoric acid, boric acid, and carbonic acid.
Examples of the organic acid include carboxylic acids such as formic acid, acetic acid, acrylic acid, benzoic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, and phthalic acid, lactic acid, malic acid, tartaric acid, and citric acid. Examples include oxycarboxylic acids such as acids, and amino acids such as glycine, alanine, valine, leucine, tyrosine, threonine, serine, proline, tryptophan, methionine, cystine, thyroxine, aspartic acid, glutamic acid, lysine, and algin.
[0012]
As a system for heat-treating mica, any known method such as an external heating furnace, an internal heating furnace, and a rotary kiln can be applied.
The heat treatment atmosphere may be any of an oxidizing atmosphere, a reducing atmosphere, an argon gas atmosphere, a nitrogen gas atmosphere, an ammonia gas atmosphere, a vacuum or the like, or may be a combination thereof, depending on the intended use and function of the mica powder. May be selected as appropriate.
The heat treatment temperature of mica is 600 to 1350 ° C, preferably 700 to 1200 ° C.
[0013]
The mixing amount of the mica powder of the present invention in the cosmetic is 1 to 100% by weight based on the total amount of the cosmetic.
The cosmetics of the present invention include a wide range of cosmetics such as facial cosmetics, makeup cosmetics, hair cosmetics, bath preparations, and in particular, makeup cosmetics, for example, foundation, powdered white powder, eye shadow, brusher, It is suitable for makeup base, nail enamel, eyeliner, mascara, lipstick, fancy powder and the like.
The mica powder of the present invention is, when necessary, blended in a cosmetic, treated with silicone, treated with fluorine, treated with metal soap, treated with a fatty acid, treated with a surfactant, or treated with an acid, an alkali or an inorganic acid. You may mix after performing these composite processing.
[0014]
In the cosmetic of the present invention, in addition to the synthetic mica powder of the present invention, other components usually used in cosmetics can be appropriately compounded as needed. For example, talc, kaolin, sericite, muscovite, phlogopite, mica, biotite, synthetic mica, lithia mica, vermiculite, magnesium carbonate, calcium carbonate, diatomaceous earth, magnesium silicate, calcium silicate, aluminum silicate, Barium silicate, barium sulfate, strontium silicate, metal tungstate, inorganic powder such as silica, hydroxyapatite, zeolite, boron nitride, ceramic powder, nylon powder, polyethylene powder, polystyrene powder, benzoguanamine powder, polytetrafluoroethylene Organic powders such as powder, distyrene benzene polymer powder, epoxy powder, acrylic powder, silicone powder, microcrystalline cellulose, inorganic white pigments such as titanium oxide and zinc oxide, iron oxide Inorganic red pigments such as titanium acid iron, inorganic brown pigments such as γ-iron oxide, Kisantetsu, loess, etc.
[0015]
Inorganic yellow pigments, inorganic black pigments such as iron tetroxide, and carbon black; inorganic purple pigments such as mango violet and cobalt violet; inorganic green pigments such as chromium oxide, chromium hydroxide, and cobalt titanate; Blue pigments such as titanium oxide, mica coated with titanium oxide, bismuth oxychloride coated with titanium oxide, bismuth oxychloride, talc coated with titanium oxide, pearl pigments such as fish scale foil, colored mica coated with titanium oxide, metal powders such as aluminum powder and copper powder Pigments, red 201, red 202, red 204, red 205, red 220, red 226, red 228, red 405, orange 203, orange 204, yellow 205, yellow 401 and Organic pigments such as Blue No. 404, Red No. 3, Red No. 104, Red No. 106, Red
[0016]
No. 227, Red No. 230, Red No. 401, Red No. 505, Orange No. 205, Yellow No. 4, Yellow No. 5, Yellow No. 202, Yellow No. 203, Orange No. 3, and Blue No. 1 zirconium, barium, or aluminum Organic pigments such as lakes, natural pigments such as chlorophyll and β-carotene, squalane, liquid paraffin, petrolatum, microcrystalline wax, ozokerite, ceresin, myristic acid, palmitic acid, stearic acid, oleic acid, isostearic acid, cetyl alcohol, hexa Decyl alcohol, oleyl alcohol, cetyl 2-ethylhexanoate, 2-ethylhexyl palmitate, 2-octyldodecyl myristate, neopentyl glycol di-2-ethylhexanoate, glycerol tri-2-ethylhexanoate, 2-octyl oleate Various hydrocarbons such as rudodecyl, isopropyl myristate, glycerol triisostearate, glycerol of coconut oil, olive oil, avocado oil, beeswax, myristyl myristate, mink oil, and lanolin; Oily components such as alcohols and waxes, organic solvents such as acetone, toluene, butyl acetate, acetate, etc.
[0017]
Resins such as kid resin and urea resin, plasticizers such as camphor and acetol tributyl citrate, ultraviolet absorbers, antioxidants, preservatives, surfactants, humectants, fragrances, water, alcohol, thickeners, etc. No.
The form of the cosmetic according to the present invention is not particularly limited, and may be, for example, a powder, a cake, a pencil, a stick, a pellet, an ointment, a liquid, an emulsion, a cream, and the like.
The mica powder of the present invention is particularly useful for cosmetics, but can also be used as additives such as paints, plastics and rubbers, release agents such as rubbers, and lubricants.
[0018]
【Example】
Next, the present invention will be further described with reference to examples and reference examples, but the present invention is not limited to these examples.
The average particle diameter of the laser diffraction method, the average particle diameter of the sedimentation method, the moldability, and the measured value of the gloss in Examples and Reference Examples are measured by the following methods.
(Laser diffraction method average particle size)
The laser diffraction method average particle diameter is a volume-based median diameter and a particle diameter corresponding to 50% of the cumulative distribution, and was measured by a laser diffraction particle size distribution analyzer (Model LA-500, manufactured by HORIBA, Ltd.).
[0019]
(Average particle size by sedimentation method)
The average particle diameter by sedimentation method is a volume-based median diameter and a particle diameter corresponding to 50% of the cumulative distribution, and was measured by an ultracentrifugal automatic particle size distribution analyzer (Model CAPA-700, manufactured by Horiba, Ltd.).
(Moldability)
30 parts of talc, 9 parts of liquid paraffin, and 1 part of a surfactant were mixed with 60 parts of mica powder. This is 80 kg / cm2And the surface hardness was measured by an Olsen hardness tester (needle penetration hardness).
The evaluation was performed according to the following criteria.
◎ Less than 40
○ 40 or more and less than 50
× 50 or more
(Glossy)
The powder was applied to the adhesive surface of the cellophane tape adhered to the art paper, and the gloss at 60 ° -60 ° was measured with a digital portable gloss meter VG-2P manufactured by Nippon Denshoku.
The evaluation was performed according to the following criteria.
-× less than 3.0
-○ 3.0 or more and less than 3.5
◎ 3.5 or more and less than 4.5
+ ○ 4.5 or more and less than 5.0
+5.0 or more
[0020]
Example 1
After mixing about 40 parts of silicic anhydride, about 30 parts of magnesium oxide, about 13 parts of aluminum oxide and about 17 parts of potassium silicofluoride, the mixture is melted at 1400 ° C to 1500 ° C, and then crystallized at 1300 ° C to 1400 ° C. Thus, synthetic fluorophlogopite was obtained. After 10 kg of this synthetic fluorophlogopite was pulverized by a wet medium mill, it was acid-treated with 0.2 M citric acid for 1 hour and heat-treated at 900 ° C. for 1 hour in a muffle furnace. Thereafter, the particles were classified by a natural sedimentation method, and the mica powder of the present invention having an average particle diameter (A) of 10.9 μm by a laser diffraction method, an average particle diameter (B) of 4.0 μm by a sedimentation method, and a thickness index (A / B) of 2.7. 900 g of a body was obtained. The evaluation results are shown in Table 1 below.
[0021]
Example 2
After mixing about 40 parts of silicic anhydride, about 30 parts of magnesium oxide, about 13 parts of aluminum oxide and about 17 parts of potassium silicofluoride, the mixture is melted at 1400 ° C to 1500 ° C, and then crystallized at 1300 ° C to 1400 ° C. Thus, synthetic fluorophlogopite was obtained. After 10 kg of this synthetic fluorophlogopite was pulverized by a wet high-speed rotary mill, it was acid-treated with 0.3 M citric acid for 30 minutes and heat-treated at 900 ° C. for 1 hour in a muffle furnace. Thereafter, the particles were classified by a natural sedimentation method, and the mica powder of the present invention having an average particle diameter (A) of 11.5 μm by laser diffraction method, an average particle diameter (B) of 4.3 μm by sedimentation method, and a thickness index (A / B) of 2.7. 950 g of a body were obtained. The evaluation results are shown in Table 1 below.
[0022]
Example 3
After mixing about 40 parts of silicic anhydride, about 30 parts of magnesium oxide, about 13 parts of aluminum oxide and about 17 parts of potassium silicofluoride, the mixture is melted at 1400 ° C to 1500 ° C, and then crystallized at 1300 ° C to 1400 ° C. Thus, synthetic fluorophlogopite was obtained. 10 kg of this synthetic fluorophlogopite was pulverized with a wet medium mill, then acid-treated with 1N hydrochloric acid for 1 hour, and heat-treated at 900 ° C. for 1 hour in a muffle furnace. Thereafter, the particles are classified by a natural sedimentation method, and the mica powder of the present invention having an average particle diameter (A) of 20.0 μm by laser diffraction method, an average particle diameter (B) of 5.7 μm by sedimentation method, and a thickness index (A / B) of 3.5. 1 kg of body was obtained. The evaluation results are shown in Table 1 below.
[0023]
Example 4
After blending about 40 parts of silicic anhydride, about 30 parts of magnesium oxide, about 13 parts of aluminum oxide and about 17 parts of potassium silicofluoride, the mixture is melted at 1400 ° C to 1500 ° C, and then crystallized at 1300 ° C to 1400 ° C. Thus, synthetic fluorophlogopite was obtained. After 10 kg of the synthetic fluorophlogopite was pulverized by a ball medium mill, it was acid-treated with 1N hydrochloric acid for 1 hour and heat-treated at 900 ° C. for 1 hour in a muffle furnace. Thereafter, the particles were classified by a natural sedimentation method, and the mica powder of the present invention having an average particle diameter (A) of 5.0 μm by laser diffraction method, an average particle diameter (B) of 3.3 μm by sedimentation method, and a thickness index (A / B) of 1.5. 1 kg of body was obtained. The evaluation results are shown in Table 1 below.
[0024]
Example 5
After 2 kg of muscovite is pulverized by a ball medium mill, it is classified by a natural sedimentation method, and the average particle diameter (A) of the laser diffraction method is 10.3 μm, the average particle diameter of the sedimentation method (B) is 4.3 μm, and the thickness index (A / B) 300 g of the mica powder of the present invention of 4.3 were obtained. The evaluation results are shown in Table 1 below.
Example 6
After 2 kg of phlogopite is pulverized by a wet high-speed rotary mill, it is classified by a natural sedimentation method, and a laser diffraction average particle diameter (A) of 12.5 μm, a sedimentation average particle diameter (B) of 5.0 μm, and a thickness index (A) (B) 300 g of the mica powder of the present invention of 2.5 were obtained. The evaluation results are shown in Table 1 below.
[0025]
Comparative Example 1
After blending about 40 parts of silicic anhydride, about 30 parts of magnesium oxide, about 13 parts of aluminum oxide and about 17 parts of potassium silicofluoride, the mixture is melted at 1400 ° C to 1500 ° C, and then crystallized at 1300 ° C to 1400 ° C. Thus, synthetic fluorophlogopite was obtained. After 10 kg of this synthetic fluorophlogopite was pulverized by a wet medium mill, it was acid-treated with 0.3 M citric acid for 1 hour and heat-treated at 900 ° C. for 1 hour in a muffle furnace. Thereafter, the particles were classified by a natural sedimentation method, and 1 kg of mica powder having an average particle diameter (A) of 11.0 μm by laser diffraction method, an average particle diameter (B) of 2.5 μm by sedimentation method, and a thickness index (A / B) of 4.4 was obtained. Obtained. The evaluation results are shown in Table 1 below.
[0026]
Comparative Example 2
After mixing about 40 parts of silicic anhydride, about 30 parts of magnesium oxide, about 13 parts of aluminum oxide and about 17 parts of potassium silicofluoride, the mixture is melted at 1400 ° C to 1500 ° C, and then crystallized at 1300 ° C to 1400 ° C. Thus, synthetic fluorophlogopite was obtained. 10 kg of this synthetic fluorophlogopite was pulverized by a wet high-speed rotary mill, then acid-treated with 1N hydrochloric acid for 1 hour, and heat-treated at 900 ° C. for 1 hour in a muffle furnace. Thereafter, the particles were classified by a natural sedimentation method, and 1 kg of mica powder having an average particle diameter (A) of 10.0 μm by laser diffraction method, 7.0 μm of an average particle diameter (B) by sedimentation method, and a thickness index (A / B) of 1.4 was obtained. Obtained. The evaluation results are shown in Table 1 below.
[0027]
Comparative Example 3
After blending about 40 parts of silicic anhydride, about 30 parts of magnesium oxide, about 13 parts of aluminum oxide and about 17 parts of potassium silicofluoride, the mixture is melted at 1400 ° C to 1500 ° C, and then crystallized at 1300 ° C to 1400 ° C. Thus, synthetic fluorophlogopite was obtained. 5 kg of this synthetic fluorophlogopite was pulverized with a wet medium mill, then acid-treated with 1N hydrochloric acid for 1 hour, and heat-treated at 900 ° C. for 1 hour in a muffle furnace. Thereafter, the particles were classified by a natural sedimentation method to obtain 500 g of mica powder having an average particle diameter (A) of 25 μm by a laser diffraction method, an average particle diameter (B) of 10 μm by a sedimentation method, and a thickness index (A / B) of 2.5. The evaluation results are shown in Table 1 below.
[0028]
Comparative Example 4
After blending about 40 parts of silicic anhydride, about 30 parts of magnesium oxide, about 13 parts of aluminum oxide and about 17 parts of potassium silicofluoride, the mixture is melted at 1400 ° C to 1500 ° C, and then crystallized at 1300 ° C to 1400 ° C. Thus, synthetic fluorophlogopite was obtained. 5 kg of this synthetic fluorophlogopite was pulverized with a wet medium mill, then acid-treated with 1N hydrochloric acid for 1 hour, and heat-treated at 900 ° C. for 1 hour in a muffle furnace. Thereafter, the particles were classified by a natural sedimentation method, and 500 g of mica powder having a laser diffraction average particle diameter (A) of 4.4 μm, a sedimentation average particle diameter (B) of 1.2 μm, and a thickness index (A / B) of 3.3 were obtained. Obtained. The evaluation results are shown in Table 1 below.
[0029]
[Table-1]
[0030]
Next, examples of cosmetics containing the synthetic mica powder of the present invention will be described.
In addition, the performance of the cosmetics was shown by the following symbols based on an average value of the 20 persons by performing a 5-level sensory evaluation on the items listed in the following Table-2 by 20 specialized panels.
[0031]
[Table-2]
Figure 0003582662
[0032]
(1) Gloss evaluation criteria
+ × 4.5 to 5.0
+ △ 3.5 or more and less than 4.5
◎ 2.5 or more and less than 3.5
− △ 1.5 or more and less than 2.5
− × 1.0 or more and less than 1.5
(2) Evaluation of stretching, sticking, smooth use, makeup skin cleanliness, familiarity, and adhesion
Price standard
◎ 4.5 to 5.0
○ 3.5 or more and less than 4.5
□ 2.5 or more and less than 3.5
△ 1.5 or more and less than 2.5
× 1.0 or more and less than 1.5
[0033]
Examples 7 to 12: amphibious foundation
From the following components, amphibious foundations 7 to 12 of the present invention were prepared.
(weight%)
1 titanium oxide 7
2 Silicone-treated fine particle titanium oxide * 10
3 muscovite 8
4 Silicone-treated mica powders of Examples 1 to 6 * 65
5 Nylon powder 2
6 Red iron oxide 0.5
7 Yellow iron oxide 1
8 Black iron oxide 0.1
9 Silicone oil 1
10 2-ethylhexyl palmitate 9
11 Sorbitan sesquioleate 1
12 Preservatives 0.3
13 Fragrance 0.1
* 97 parts of powder were mixed with 3 parts of methylhydrogenpolysiloxane dissolved in 5 parts of dichloromethane, dried, and heat-treated at 180 ° C. for 3 hours.
[0034]
The above components 1 to 8 were mixed with a Hensiel mixer, and components 9 to 13 mixed by heating and mixing were added to the mixture, followed by pulverization with a 5HP pulverizer (manufactured by Hosokawa Micron). 160 kg / cm in a dish2To obtain a dual-use foundation.
Instead of the mica powder of the component 4, the mica powder of Comparative Examples 1 to 4 and the silicone-treated powder of sericite were used in the same amounts as described above, and the comparative dual-purpose foundation 5 was used. ~ 9 were prepared.
[0035]
The sensory evaluation of the amphibious foundation prepared as described above and the penetration hardness (Olsen hardness tester, 1 lb load) when molded were measured.
The penetration hardness corresponds to the moldability, and the evaluation was performed according to the following criteria.
◎ Less than 20
○ 20 or more and less than 30
□ 30 or more and less than 40
△ 40 or more and less than 50
× 50 or more
The results are shown in Table 3 below.
[0036]
[Table-3]
Figure 0003582662
[0037]
From the results in the above table, it can be seen that the dual-use foundation of the present invention receives higher evaluation than the dual-use foundation of the comparative example.
Example 13: Blusher
The brusher 13 of the present invention was prepared from the following components.
(weight%)
1 talc 15.1
2 Sericite 8.1
3 Mica 5.0
4 Synthetic mica powder of Example 1 60.0
5 Red No. 226 0.4
6 Titanium mica 3.0
7 Squalane 3.0
8 2-ethylhexyl palmitate 5.0
9 Preservatives 0.3
10 fragrance 0.2
[0038]
The above components 1 to 5 were mixed with a Hensiel mixer, and the components 7 to 10 mixed by heating and dissolving were sprayed on this mixture. After further mixing, the mixture was pulverized with a 5HP pulverizer (manufactured by Hosokawa Micron). After mixing, 120kg / cm in 4x6cm middle plate2To obtain a brusher 13 of the present invention.
A comparative brusher 10 was prepared in the same manner as described above, except that 60.0% by weight of the synthetic mica powder of the component 4 was replaced with 60.0% by weight of sericite.
The sensory evaluation of the brusher prepared as described above was performed in the same manner as in the above example, and the results are shown in Table 4 below.
[0039]
[Table-4]
Figure 0003582662
[0040]
As is clear from the above table, the brusher 13 of the present invention is excellent in any of the sensory evaluation items.
The hardness of the brusher 13 of the present invention is 25, and that of the comparative brusher 10 is 35. It can be seen that the brusher of the present invention has better moldability.
Furthermore, as a result of measuring the appearance color of the molded product with the Hitachi Color Analyzer 607, the brusher of the present invention has a chroma of 11.8, the comparative brusher has a chroma of 10.6, and the brusher of the present invention has higher chroma, It turned out to be a bright appearance color.
[0041]
Example 14: Fancy powder
Fancy powder 14 of the present invention was prepared from the following components.
(weight%)
1. Synthetic mica powder of Example 2 95
2 talc 4
3 fragrance 1
4 iron oxide pigment appropriate amount
[0042]
After mixing the above components 1, 2, and 4, component 3 was added thereto and further mixed, and the mixture was filled in a container to obtain a fancy powder 14 of the present invention.
Comparative fancy powder 11 was prepared in the same manner as described above except that the same amount of talc was used instead of the synthetic mica powder (95% by weight) of the above component 1 (the total amount of talc was 99% by weight).
The odor stability of the sample prepared by storing the fancy powder prepared as described above in a thermostat at 37 ° C. for one month and each control (just after the production of the fancy powder manufactured with the same formulation) was evaluated by sensory evaluation. Sex was compared.
As a result, the fancy powder of the present invention was almost the same as the sample after storage for one month and the control, but the sample after storage for one month in the case of the fancy powder for comparison was considerably larger than the control. It had a strange smell.
[0043]
Example 15: Nail enamel
A nail enamel of the present invention was prepared from the following components.
(weight%)
1 nitrocellulose 12
2 Modified alkyd resin 12
3 Acetyltributyl citrate 5
4 n-butyl acetate 36.4
5 Ethyl acetate 6
6 n-butyl alcohol 2
7 Toluene 21
8 Iron oxide pigment 0.5
9 Titanium dioxide 0.1
10 Pearl pigment 2
11 Synthetic mica powder of Example 4 2
12 Organically modified montmorillonite 1
[0044]
The above components 1 to 7 (however, a part of component 4) are dissolved, and a mixture obtained by mixing component 12 and the remainder of component 4 to form a gel is added and mixed, and components 8 to 11 are further mixed. The mixture was added, mixed and filled in a container to obtain a nail enamel 15 of the present invention.
A comparative nail enamel 12 was prepared in the same manner as above, except that the same amount of sericite was used instead of the synthetic mica powder of the component 11.
The sensory evaluation of the nail enamel prepared as described above is shown in Table 5 below.
[0045]
[Table-5]
Figure 0003582662
[0046]
As is clear from the above table, the nail enamel of the present invention is also excellent in sensory evaluation.
Example 16: emulsified foundation
The emulsified foundation of the present invention was prepared from the following components.
(weight%)
1 Stearic acid 0.4
2 Isostearic acid 0.3
3 Cetyl 2-ethylhexanoate 4
4 Liquid paraffin 11
5 Polyoxyethylene (10) stearyl ether 2
6 talc 15
7 Pigment 4
8 Cetyl alcohol 0.3
9 Preservatives 0.07
10 Mica powder of Example 5 3
11 triethanolamine 0.42
12 Propylene glycol 5
13 Preservative 0.02
14 Ion exchange water 54.19
15 Fragrance 0.3
[0047]
After the above components 1 to 9 were heat-dissolved and mixed at 85 ° C., component 10 was added and uniformly dispersed. To this, a mixture of components 11 to 14, which was heated and dissolved and mixed at 85 ° C, was gradually added and emulsified. After the temperature during the emulsification was maintained for 10 minutes with stirring, the mixture was cooled to 45 ° C. while stirring. After the component 15 was added thereto and stirring and cooling were continued to 35 ° C., the product was taken out and filled in a container to obtain an emulsified foundation 15 of the present invention.
A comparative emulsified foundation 13 was prepared in the same manner as described above, except that the same amount of talc was used instead of the mica powder of the component 10.
The sensory evaluation of the emulsion foundation prepared as described above is shown in Table 6 below.
[0048]
[Table-6]
Figure 0003582662
[0049]
As is clear from the above table, the emulsified foundation 15 of the present invention is superior to the emulsified foundation 13 for comparison.
Example 17: Bath agent
A tablet-type bath preparation of the present invention was prepared from the following components.
(weight%)
1 Sodium sulfate 45
2 Sodium bicarbonate 15
3 Sodium carbonate 8
4 Succinic acid 22
5 Synthetic mica powder of Example 1 15
6 appropriate amount of dye
7 appropriate amount of pigment
The above components were uniformly mixed with a Hensiel mixer and molded into a circle with a tableting machine to prepare the bath preparation of the present invention.
[0050]
【effect】
As described above, the mica powder of the present invention is excellent in use feeling, moldability, and low in gloss. Since it does, high quality products are depleted, and there is a strong demand for alternatives. It can be sufficiently substituted for sericite, and it is extremely large to contribute to this industry.
[Table 1]
Figure 0003582662

Claims (4)

熱処理した合成雲母粉体で、レーザー回折法平均粒子径(A)が、5μm≦A≦20μmで、且つ上記(A)と沈降法平均粒子径(B)の比で示される厚み指数(A/B)が、1.5≦A/B≦3.5であることを特徴とした雲母粉体。 In the heat-treated synthetic mica powder, the average particle diameter (A) of the laser diffraction method is 5 μm ≦ A ≦ 20 μm, and the thickness index (A / A) is represented by the ratio of the above (A) to the average particle diameter of the sedimentation method (B). B) is such that 1.5 ≦ A / B ≦ 3.5. 熱処理した合成雲母粉体を粉砕後、自然沈降法により分級することを特徴とするレーザー回折法平均粒子径(A)が、5μm≦A≦20μmで、且つ上記(A)と沈降法平均粒子径(B)の比で示される厚み指数(A/B)が、1.5≦A/B≦3.5である雲母粉体の製造方法。 The heat-treated synthetic mica powder is pulverized and then classified by a natural sedimentation method, wherein the average particle diameter (A) of the laser diffraction method is 5 μm ≦ A ≦ 20 μm, and the average particle diameter of the sedimentation method is (A) A method for producing mica powder in which a thickness index (A / B) represented by a ratio of diameters (B) is 1.5 ≦ A / B ≦ 3.5. 熱処理した合成雲母粉体で、レーザー回折法平均粒子径(A)が、5μm≦A≦20μmで、且つ上記(A)と沈降法平均粒子径(B)の比で示される厚み指数(A/B)が、1.5≦A/B≦3.5である雲母粉体を配合したことを特徴とする化粧料。 In the heat-treated synthetic mica powder, the average particle diameter (A) of the laser diffraction method is 5 μm ≦ A ≦ 20 μm, and the thickness index (A / A) is represented by the ratio of the above (A) to the average particle diameter of the sedimentation method (B). B), wherein a mica powder satisfying 1.5 ≦ A / B ≦ 3.5 is blended. 熱処理した合成雲母粉体を粉砕後、分級して得られた、レーザー回折法平均粒子径(A)が、5μm≦A≦20μmで、且つ上記(A)と沈降法平均粒子径(B)の比で示される厚み指数(A/B)が、1.5≦A/B≦3.5である雲母粉体を配合したことを特徴とする化粧料。After the heat-treated synthetic mica powder is pulverized and classified, the average particle size (A) of the laser diffraction method obtained by pulverization is 5 μm ≦ A ≦ 20 μm, and the average particle size of the above (A) and the sedimentation method average particle size (B) is obtained. A cosmetic comprising a mica powder having a thickness index (A / B) represented by a ratio of 1.5 ≦ A / B ≦ 3.5.
JP16978693A 1993-06-17 1993-06-17 Mica powder and cosmetics containing the mica powder Expired - Lifetime JP3582662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16978693A JP3582662B2 (en) 1993-06-17 1993-06-17 Mica powder and cosmetics containing the mica powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16978693A JP3582662B2 (en) 1993-06-17 1993-06-17 Mica powder and cosmetics containing the mica powder

Publications (2)

Publication Number Publication Date
JPH072619A JPH072619A (en) 1995-01-06
JP3582662B2 true JP3582662B2 (en) 2004-10-27

Family

ID=15892854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16978693A Expired - Lifetime JP3582662B2 (en) 1993-06-17 1993-06-17 Mica powder and cosmetics containing the mica powder

Country Status (1)

Country Link
JP (1) JP3582662B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467034B1 (en) * 1996-12-27 2006-04-07 주식회사 엘지생활건강 Compression Molding Oil Cake Cosmetic and Its Manufacturing Method
JP2001302942A (en) 2000-02-14 2001-10-31 Miyoshi Kasei Kk New composite powder and cosmetics containing the same
JP5943796B2 (en) * 2012-09-27 2016-07-05 株式会社マンダム Gel skin cosmetic

Also Published As

Publication number Publication date
JPH072619A (en) 1995-01-06

Similar Documents

Publication Publication Date Title
EP2274054B1 (en) Natural ester, wax or oil treated pigment, process for production thereof, and cosmetic made therewith
US5098712A (en) Synthetic mica powder, manufacturing method thereof and cosmetics having the synthetic mica powder blended therein
JPH1072320A (en) Cosmetic or pharmaceutical preparation containing pigment having polychroism varying with viewing angle
EP2954885B1 (en) Black iron oxide for use with cosmetics, production method thereof, and cosmetic materials comprising the same
JPS61100508A (en) Cosmetic
WO2014185539A1 (en) Cosmetic composition
JP2000169122A (en) Amorphous calcium phosphate composite particle, its production and cosmetic
JPH08268839A (en) Zinc oxide-coated extender pigment and cosmetics containing it
JPH111411A (en) Silica/zinc oxide complex, its production and cosmetic formulated with the same
JPS6267014A (en) Cosmetic composition
JP3582662B2 (en) Mica powder and cosmetics containing the mica powder
WO2000049995A2 (en) Use of multi-coated gloss pigments for providing colour in cosmetic care products
JPS6327418A (en) Cosmetic
JP2567596B2 (en) Synthetic mica powder, method for producing the same, and cosmetics containing the synthetic mica powder
JPH0699281B2 (en) Makeup cosmetics
JPS6333312A (en) Cosmetic
JPH09221411A (en) Titanium dioxide and composition containing the same
JPH01143822A (en) Sun screening cosmetic
JP2003034618A (en) Composite powder and cosmetic containing the same
JP3677610B2 (en) Iron oxide-containing titanium dioxide and composition containing the same
JPH08113514A (en) Composite particles and cosmetic containing the same
JPH07115858B2 (en) Synthetic mica powder, method for producing the same, and cosmetics containing the synthetic mica powder
JP2003155215A (en) Cosmetic
JPH1129429A (en) Cosmetic
JP2002332211A (en) Colored spherical polyamide powder and cosmetic comprising the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

EXPY Cancellation because of completion of term