JP3582020B2 - Carrier for negatively charged developer - Google Patents

Carrier for negatively charged developer Download PDF

Info

Publication number
JP3582020B2
JP3582020B2 JP03723394A JP3723394A JP3582020B2 JP 3582020 B2 JP3582020 B2 JP 3582020B2 JP 03723394 A JP03723394 A JP 03723394A JP 3723394 A JP3723394 A JP 3723394A JP 3582020 B2 JP3582020 B2 JP 3582020B2
Authority
JP
Japan
Prior art keywords
carrier
particles
resin
toner
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03723394A
Other languages
Japanese (ja)
Other versions
JPH06317937A (en
Inventor
景以子 小川
明三 白勢
美知昭 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP03723394A priority Critical patent/JP3582020B2/en
Publication of JPH06317937A publication Critical patent/JPH06317937A/en
Application granted granted Critical
Publication of JP3582020B2 publication Critical patent/JP3582020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は電子写真法等において、有機感光体もしくはアモルファスシリコン感光体の表面に形成された負電荷潜像を現像するための負帯電性現像剤用キャリアに関する。
【0002】
【従来の技術】
キャリアのコーティング方法には、大別して2種類有る。コーティング用樹脂を溶剤に溶解して調製された塗布液を、流動層を用いて磁性粒子の表面にスプレー塗布し、乾燥して得られる流動層式スプレーコーティドキャリアや、コーティング用樹脂を溶剤に溶解して調製された塗布液中に、磁性粒子を浸漬して塗布処理し、乾燥して得られる浸漬式コーティドキャリア、また、コーティング用樹脂を溶剤中に溶解して調製された塗布液を、磁性粒子の表面に塗布し、樹脂を焼結させて得られる焼結式コーティドキャリアなどの溶剤コーティングキャリアと、特開平2−8860、同3−144579の様に、機械的衝撃を与えて被着固定する乾式コーティングキャリアである。
【0003】
また、現像剤の帯電性の環境差を改善する試みは、特開昭59−228261(珪素樹脂でコートしたキャリア)の様に、キャリアを疎水化することで行われていた。
【0004】
【発明が解決しようとする課題】
乾式コーティングキャリアのメリットは、溶剤を用いないことから造粒率が低いため、キャリアの大粒径化を防ぎ、所望の粒度分布を得ることが可能なために収率がアップする。また、乾燥工程が不要なためキャリアの製造を短時間で行うことができ、生産性が高い。又、第1工程で撹拌により予め微粒子を均一に付着させた後に機械的衝撃により固着させることから、溶剤コーティングキャリアに比べコーティング表面が均一で凹凸のない状態にコーティングできる。
【0005】
しかし、2種類以上の微粒子をコーティングする場合、それぞれの微粒子が混合しにくくコーティング剤の流動性が著しく低下し、多量にコーティングされる箇所と少量のみコーティングされる箇所が混在し均一なコーティング表面が得られない。特に微粒子個々の帯電性や、粒径が異なるとその現象が発生しやすい。不均一なコーティング層を有するキャリアは、トナーとの混合性が悪いために、帯電立ち上がりが遅く、トナー飛散などを特に低温低湿下で引き起こしやすい。
【0006】
また、キャリアを疎水化するという手段を用いたとき、トナー側が比較的疎水性の場合には環境差は小さくなるが、近年のように特性改良のために無機微粒子等を添加したトナーについては、トナー自身が水分を吸着しやすくなり、環境によりその帯電序列が変化するために、キャリアの疎水化はむしろ逆に、現像剤の帯電量の環境差を大きくする結果となっている。帯電量の環境差が大きくなると、高温高湿下では帯電量が低くなる結果、転写抜け等が発生するために転写性が低下する。低温低湿下では、帯電量が高くなる結果、現像性の不足を生じるといった具合に、同現像剤を用いても使用する環境が異なると画像が著しく変化するといった不具合を生じる。
【0007】
本発明の目的は、負帯電性現像剤の帯電性の環境差の改善にある。更に、負帯電性現像剤のキャリアコート層の均一性及び負帯電性現像剤の帯電立ち上がりの改善にあり、特に低温低湿下に於ける帯電立ち上がりの改善を目的とする。
【0008】
【課題を解決するための手段】
本発明の上記目的は、磁性粒子上に、疎水化率20未満で、数平均一次粒子径とBET比表面積が、それぞれ5〜 50nm 40 500m 2 /g である親水性シリカと、数平均一次粒子径が 0.01 2.0 μ m である樹脂粒子を、機械的衝撃を与えて被着固定する乾式コーティングにより被覆させてなることを特徴とする負帯電性現像剤用キャリアにより達成された。
【0009】
前記樹脂粒子と親水性シリカからなる被覆層中の親水性シリカの添加量が10〜70wt%であることは、より好ましい。
【0010】
尚、親水性シリカの疎水化率はメタノールウェッタビリティーの値を示すが、15未満がより好ましい。ここで環境差を小さくする対策としてキャリア自体の環境変動を防止するためにキャリアの水分が吸着された場合は帯電性が弱負帯電化する材料を使用することで達成された。
【0011】
本発明で用いられる磁性粒子としては、鉄、フェライト、マグネタイトをはじめとする鉄、ニッケル、コバルト等の金属、あるいは、これらの金属を含む合金、または化合物などがあげられるが、中でも比重が3〜7の磁性粒子を用いた場合は、現像機内での混合撹拌時に現像剤が受けるストレスが小さくなり、キャリア被覆層の破壊やトナーのキャリア表面への融着によるトナースペント等を生じ難くなるため好ましい。
【0012】
次に、本発明で用いられる樹脂粒子について述べる。樹脂粒子に用いられる樹脂としてはスチレン系樹脂、アクリル系樹脂、スチレン−アクリル系樹脂、ビニル系樹脂、エチレン系樹脂、ロジン変性樹脂、ポリアミド樹脂、ポリエステル樹脂などを用いることができ、更に、これらの樹脂は組み合わせて用いても良い。
好ましくはスチレン系樹脂、アクリル系樹脂、スチレン−アクリル系樹脂などであり、特に好ましくはスチレン−アクリル系樹脂である。これら樹脂粒子の粒径は数平均一次粒子径で0.01〜2.0μmであり、好ましくは0.05〜1.0μmである。樹脂粒子の磁性粒子に対する添加量は磁性粒子に対して0.1〜10.0wt%であり、より好ましくは0.5〜5.0wt%である。
【0013】
本発明で用いられる親水性シリカは、塩化珪素化合物の気相中での高温加水分解により得られるシリカが、純度が高く被覆層中への分散性に優れ、また表面積が大きく水分子の吸着能に優れ好ましい。塩化珪素化合物としては、テトラクロルシランが好ましい。
【0014】
疎水化率は疎水性を表す指標であるが、疎水化率が20以上のものは水分子の吸着能が不十分であり、帯電量の環境差を小さくする効果が不十分となる。シリカの平均粒径は数平均一次粒子径で5〜50nmが好ましい。5nm未満のものは、粒子が2次凝集体を形成しやすく、被覆層への分散性が悪くなる。また、50nmを超えるものは、被覆層への分散が困難になり、さらに比表面積が小さくなるため、水分子の吸着性が不十分となる。シリカの数平均一次粒子径は透過型電子顕微鏡(TEM)により100,000倍率にて観察し、粒径を測定したものである。
【0015】
また、シリカの比表面積はBET法によるもので、40〜500m/gが好ましい。比表面積が40未満のものは水分子の吸着能が劣り、500を超えるものは水分子の吸着能が高すぎる他、被覆層への均一分散が困難になる。
【0016】
シリカの添加量は、好ましくは被覆層中の10〜70wt%、より好ましくは、30〜60wt%である。添加量が10wt%未満では水分子の吸着能が不十分であるために環境差を小さくする効果が不十分であり、70wt%を超える場合には、被覆層の成膜が困難となり膜はがれなどの耐久性低下をひきおこす。
【0017】
尚、シリカの疎水化率はメタノールウェッタビリティーの値を示す。メタノールウェッタビリティーとは、メタノールに対する濡れ性を評価するものである。その測定方法は、内容量250mlのビーカー中に入れた蒸留水50mlに、測定対象の無機微粒子を0.2g秤量し添加する。メタノールを先端が液体中に浸漬されているビュレットから、ゆっくり撹拌した状態で無機微粒子の全体が濡れるまでゆっくり滴下する。この無機微粒子を完全に濡らすために必要なメタノールの量をa(ml)とした場合に、下記式により疎水化度が算出される。
【0018】
疎水化度=100×a/(a+50)
本発明の負帯電性現像剤キャリアは以下の方法により製造される。
【0019】
第1工程は、磁性粒子と親水性シリカと、樹脂粒子を、通常の撹拌装置等により混合撹拌して、磁性粒子表面に物理的付着力、もしくは静電的付着力により均一に付着させる。この第1工程については非加熱下で行っても良いし、樹脂粒子がわずかに軟化する程度の加熱下で行っても良い。以上のようにして第1工程を終了したら、得られた混合物を非加熱下、もしくは加熱下で撹拌して当該混合物に衝撃力を繰り返して付与する事により磁性粒子の表面に親水性シリカ及び樹脂微粒子を固着させてコーティドキャリアを得る。
【0020】
前記第1工程を遂行する装置としては、種々の混合撹拌装置を用いることができるが、後の第2工程を連続して遂行できる装置が好ましく、その具体例として図1の装置を挙げることができる。
【0021】
図1の装置は、高速撹拌型混合装置であって、混合撹拌槽10の上蓋11には、原料投入口12と、バクフィルター13とが設けられている。
【0022】
原料投入口12から投入された一次キャリア粒子の粉末と流動性向上剤との混合物(以下「原料混合物」ともいう。)は、モーターにより駆動される回転体16により撹拌される。この回転体16には、3つの撹拌羽根16Aが回転軸に関して対象の位置に設けられている。この撹拌羽根16Aの周速を適宜設定することにより撹拌力の強弱を選択することができ、混合物に衝撃力を繰り返して付与することができるので、第1工程のみならず第2工程をも遂行することができる。すなわち、これらの撹拌羽根16Aは、混合撹拌槽10の底部から斜め上方に立ち上がる姿勢で回転体16に固定され、投入された原料混合物はこれらの撹拌羽根16Aにより上方へかき上げられ、そしてかき上げられた原料混合物は、混合撹拌槽10の傾斜した上部内壁または下部内壁に衝突し、撹拌羽根16Aの回転範囲に落下する。このようにして原料混合物は、撹拌羽根16A混合撹拌槽10の内壁との衝突、あるいは原料混合同士の衝突を繰り返すので、第1工程および第2工程における撹拌羽根16Aの周速を適宜設定することにより、原料混合物に付与する衝撃力を調整することができ、第1工程に引き続いて第2工程を遂行することができる。
【0023】
14はジャケットであり、このジャケット14は、加熱手段と冷却手段とを兼用する構成であり、原料混合物の撹拌時においては原料混合物を適宜の温度に加熱することができ、また原料混合物の撹拌終了後においては原料混合物を強制的に冷却することができる。原料混合物の温度は、品温計15によって測定することができる。17は処理物の排出口である。
【0024】
図1の高速撹拌型混合装置を用いて第1工程を遂行する際には、撹拌時間は3〜10分がよく、撹拌羽根16Aの周速は4〜8m/sがよい。また、引き続いて第2工程を遂行する際には、撹拌時間は10〜40分がよく、撹拌羽根16Aの周速は8〜15m/sがよい。
【0025】
以上のようにして第1工程を終了したら、引き続いて第2工程を遂行する。この第2工程においては、第1工程を経た混合物を、非加熱下もしくは加熱下で、強い撹拌力で撹拌して当該混合物に衝撃力を繰り返して付与することにより一次キャリア粒子の表面にコーティング剤(樹脂微粒子及び、親水性シリカ)を固着させる。
【0026】
尚、非加熱下で第2工程を遂行する場合にも混合物の摩擦による自然発熱によって混合物の温度は通常30〜60℃にまで上昇し、その熱によって第1工程で得られたキャリアの表面が軟化してコーティング剤の固着が容易に行える。加熱する場合には60〜120℃が更に好ましい。加熱温度が過大になると、一次キャリア粒子同士の凝集が発生しやすくなる。
【0027】
本発明で用いられるトナーは、一般に知られている樹脂が使用でき、スチレン−アクリル共重合体等があげられる。
【0028】
【作用】
負帯電性現像剤に於いては、無機微粒子等を添加したトナーは高湿下に於いて水分子を吸着することでその帯電序列がプラス側へ移動する。従って、前述したようにキャリアが疎水性の場合には、トナーとキャリアの帯電序列が小さくなり、帯電性が低くなる。
【0029】
それに対して本発明のキャリアに於いては、被覆層中に親水性且つ、弱負帯電性のシリカを含有しているため、高湿下ではトナーと同様に水分子を吸着し、その帯電序列がプラス側へ移動するため、トナーとキャリアの帯電序列差はほとんど変化せず、その結果環境湿度によらず、ほぼ一定の帯電量を維持することが可能となる。その結果、環境によらず、安定な現像性・転写性を示すことが可能となった。
【0030】
一方、被覆層中のシリカの疎水化率が20以上であると、疎水性となり得るためにキャリアの吸水が不十分となり、トナーと同様の帯電序列の移行が行われないために環境差の改善が図れない。
【0031】
更に、本発明のキャリアのコーティング方法によると、第1工程で磁性粒子、樹脂微粒子、親水性シリカを混合する際に親水性シリカが流動性付与剤の効果をも果たすために、コーティング剤の流動性が向上し、磁性粒子に均一に付着させることが可能である。その上、第2工程では機械的衝撃力によってコーティング剤を固着させるため、溶剤コーティングと異なり、樹脂自体が造粒することが少ないことからコーティング膜厚の過不足が生じず、均一な成膜性が得られる。
【0032】
【実施例】
以下に本発明の実施態様を示す。
【0033】
実施例1
<乾式コーティング方法による負帯電性現像剤キャリアの製造>
比重5.0、重量平均粒径80μm、1000エルステッドの外部磁場を印加したときの飽和磁化が62emu/gのCu−Znフェライト粒子500重量部に対して、MMA/St=6/4(重量比)の樹脂微粒子(数平均一次粒子径:0.10μm)と親水性シリカなどを表1に示す配合比で添加した。ついで図1に示す高速撹拌型混合装置にて撹拌羽根の周速を8m/secの条件で3分間処理してフェライト粒子表面に樹脂微粒子と親水性シリカなどの粒子を付着させた。その後、引き続いて撹拌羽根の周速を10m/secとして20分間機械的衝撃力を付与して本発明のキャリア及び比較キャリアを得た。
【0034】
<溶剤コーティング方法による負帯電性現像剤キャリアの製造>
トルエン/メタノール=90/10(体積比)の混合溶剤200重量部に、MMA/St=6/4(重量比)の樹脂を表1に示す量添加して混合溶解した分散液を用いて、上記フェライト粒子500重量部に対して、流動層コーターにより熱風中に浮遊流動させたフェライト粒子にスプレーコートして、比較キャリアを得た。
【0035】
【表1】

Figure 0003582020
【0036】
註 R−972:疎水化率=45、数平均一次粒子径=16mmのシリカ
親水性チタニア粒子:疎水化率=10、数平均一次粒子径=20mm
ボントロンE−81:負帯電性荷電制御剤
スチレン−アクリル樹脂100部、カーボンブラック10部、ポリプロピレン5部とを、混合・練肉・粉砕・分級し、体積平均粒径8μmの粉末を得た。更にこの粉末100部と、疎水化度60・一次数平均粒子径16nmの疎水性シリカ2.0部とをヘンシェルミキサーで混合し、トナーを得た。
【0037】
上記各キャリア760gと、トナー40gとをV型混合機を用いて各環境条件下にて20分間混合し、実写テスト用の現像剤を作成した。
【0038】
テストにかかるトナー1g・キャリア19gをそれぞれ秤量し、20ccサンプル瓶に、キャリア・トナーの順でいれ、テストを行う環境条件に3時間放置する。振とう機(ヤヨイ式 New−YS)を用いて振り角30°振とう数200ストローク/分で混合する。結果を表2に示す。
【0039】
帯電量:1分、10分のそれぞれでサンプリングを行い、ブローオフ式の帯電量測定装置を用いて帯電量を測定した
帯電立ち上がり:1分値/10分値×100(%)により算出した。
【0040】
【表2】
Figure 0003582020
【0041】
表2から、本発明の負帯電性現像剤キャリアを用いた現像剤は帯電量の環境依存性がなく、帯電立ち上がりが促進(現像剤の混合速度のアップ)されることが判る。
【0042】
実施例2
コニカ製複写機 U−3035改造機を用い、下記条件で本発明の負帯電性現像剤キャリアの実写評価を行った。
【0043】
感光体:正帯電性感光体
帯電部:放電極性をマイナスからプラスに変更。
【0044】
画像部の感光体電位=750V
非画像部の感光体電位=50V
転写部:放電極性をマイナスからプラスに変更。
【0045】
現像部:現像バイアス=−150V
〔評価条件〕
テストは各環境条件に於いて、実写評価を3000枚行い、その際の初期の現像性、転写性及び3000枚終了時のトナー飛散状況を評価し結果は表3に示す。
【0046】
(1)現像性 オリジナル濃度1.3の2.0cm×5.0cmのパッチを現像し、1cm当たりの感光体上に現像された現像トナー量を算出した。
【0047】
(2)転写性 現像性測定と同様にして、総現像量に対する転写体上トナーの比率で測定した。
【0048】
転写率=感光体に残留した転写残トナー量/感光体に付着したトナー量(%)
(3)トナー飛散 機内にパーティクルカウンターを設置し、0.5l/minの吸引条件で20sec間の個数を測定することとし、3000枚終了時のトナー飛散個数を求めた。
【0049】
【表3】
Figure 0003582020
【0050】
表3から明らかな通り、本発明の負帯電性現像剤キャリアを用いると、転写性が向上し、現像性が安定化することが判る。
【0051】
【発明の効果】
本発明の負帯電性現像剤キャリアにより帯電性の環境差が改善された。更に、負帯電性現像剤用キャリアのコート層の均一性が向上し、負帯電性現像剤の帯電立ち上がりが改善された。特に低温低湿下に於ける帯電立ち上がり改善の効果は大きい。
【図面の簡単な説明】
【図1】本発明に適用可能な高速撹拌型混合装置である。
【符号の説明】
10 混合撹拌槽
11 上蓋
12 原料投入口
13 バクフィルター
14 ジャケット
15 品温計
16 回転体
16A 撹拌羽根
17 排出口[0001]
[Industrial applications]
The present invention relates to a negatively chargeable developer carrier for developing a negatively charged latent image formed on the surface of an organic photoreceptor or an amorphous silicon photoreceptor in electrophotography or the like.
[0002]
[Prior art]
There are roughly two types of carrier coating methods. The coating liquid prepared by dissolving the coating resin in a solvent is spray-coated on the surface of the magnetic particles using a fluidized bed, and the fluidized-bed spray-coated carrier obtained by drying and the coating resin are dissolved in a solvent. In the coating solution prepared by dissolving, the coating process is performed by immersing the magnetic particles in the coating process and then dried, and the coating solution prepared by dissolving the coating resin in a solvent is also used. A solvent-coated carrier such as a sintering-type coated carrier obtained by sintering a resin by applying it to the surface of magnetic particles, and applying a mechanical impact as disclosed in JP-A-2-88860 and JP-A-3-144579. It is a dry coating carrier to be applied and fixed.
[0003]
Attempts to improve the environmental difference in the chargeability of the developer have been made by making the carrier hydrophobic, as in JP-A-59-228261 (carrier coated with a silicon resin).
[0004]
[Problems to be solved by the invention]
The advantage of the dry-coated carrier is that since the solvent is not used, the granulation rate is low, so that the carrier can be prevented from having a large particle size, and the desired particle size distribution can be obtained, thereby increasing the yield. Further, since a drying step is not required, the carrier can be manufactured in a short time, and the productivity is high. In addition, since the fine particles are uniformly attached in advance by stirring in the first step and then fixed by mechanical impact, the coating can be performed in a state where the coating surface is uniform and has no irregularities as compared with the solvent-coated carrier.
[0005]
However, when coating two or more types of fine particles, the fine particles are difficult to mix and the fluidity of the coating agent is remarkably reduced. I can't get it. In particular, if the chargeability or the particle size of each fine particle is different, that phenomenon is likely to occur. Carriers having a non-uniform coating layer have poor mixing properties with the toner, and therefore have a slow charge rise, and tend to cause toner scattering and the like, especially at low temperatures and low humidity.
[0006]
In addition, when the means of making the carrier hydrophobic is used, if the toner side is relatively hydrophobic, the environmental difference is small, but for the toner to which inorganic fine particles and the like are added for the purpose of improving characteristics as in recent years, The toner itself tends to adsorb moisture, and the charging sequence changes depending on the environment. Therefore, instead of making the carrier hydrophobic, the environmental difference in the amount of charge of the developer is increased. If the environmental difference of the charge amount becomes large, the charge amount becomes low under high temperature and high humidity, and as a result, the transfer property is deteriorated due to occurrence of transfer omission and the like. Under low temperature and low humidity, the charge amount becomes high, resulting in a shortage of developability. Even if the developer is used, there is a problem that an image is remarkably changed if the environment in which the developer is used is different.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to reduce the environmental difference in chargeability of a negatively chargeable developer. Another object of the present invention is to improve the uniformity of the carrier coat layer of the negatively chargeable developer and the rise of the charge of the negatively chargeable developer, and particularly to improve the rise of the charge under low temperature and low humidity.
[0008]
[Means for Solving the Problems]
The above object of the present invention, on the magnetic particles, less than hydrophobing ratio of 20, a number average primary particle diameter and BET specific surface area, and hydrophilic silica respectively. 5 to 50 nm and 40 ~ 500m 2 / g, number average the resin particles primary particle size of 0.01 ~ 2.0 μ m, was achieved by negatively charged developer carrier characterized by comprising by covered by dry coating deposited fixed mechanical shock.
[0009]
More preferably, the amount of the hydrophilic silica in the coating layer composed of the resin particles and the hydrophilic silica is 10 to 70 wt%.
[0010]
In addition, the hydrophobicity of the hydrophilic silica indicates the value of methanol wettability, but is preferably less than 15. Here, as a countermeasure for reducing the environmental difference, the use of a material whose chargeability is weakly negatively charged when moisture of the carrier is adsorbed in order to prevent environmental fluctuation of the carrier itself has been attained.
[0011]
Examples of the magnetic particles used in the present invention include iron, ferrite, iron and other metals such as magnetite, nickel, cobalt, and the like, or alloys and compounds containing these metals. When the magnetic particles of No. 7 are used, the stress applied to the developer during the mixing and stirring in the developing machine is reduced, and it is difficult to cause the destruction of the carrier coating layer and toner spent due to fusion of the toner to the carrier surface. .
[0012]
Next, the resin particles used in the present invention will be described. As the resin used for the resin particles, a styrene resin, an acrylic resin, a styrene-acryl resin, a vinyl resin, an ethylene resin, a rosin modified resin, a polyamide resin, a polyester resin, and the like can be used. Resins may be used in combination.
Preferred are styrene-based resins, acrylic-based resins, styrene-acryl-based resins and the like, and particularly preferred are styrene-acryl-based resins. The particle diameter of these resin particles is 0.01 to 2.0 μm, preferably 0.05 to 1.0 μm, as a number average primary particle diameter. The amount of the resin particles added to the magnetic particles is 0.1 to 10.0 wt%, more preferably 0.5 to 5.0 wt%, based on the magnetic particles.
[0013]
As the hydrophilic silica used in the present invention, silica obtained by high-temperature hydrolysis of a silicon chloride compound in a gas phase has a high purity and excellent dispersibility in a coating layer, and has a large surface area and an ability to adsorb water molecules. And preferred. As the silicon chloride compound, tetrachlorosilane is preferable.
[0014]
The hydrophobization rate is an index indicating hydrophobicity, but those having a hydrophobization rate of 20 or more have insufficient water molecule adsorbing ability, and the effect of reducing environmental differences in charge amount is insufficient. The average particle size of the silica is preferably a number average primary particle size of 5 to 50 nm. When the particle size is less than 5 nm, the particles easily form secondary aggregates, and the dispersibility in the coating layer becomes poor. On the other hand, when the thickness exceeds 50 nm, dispersion in the coating layer becomes difficult, and the specific surface area becomes small, so that the water molecule adsorption becomes insufficient. The number average primary particle size of silica is measured by observing the particles with a transmission electron microscope (TEM) at a magnification of 100,000 and measuring the particle size.
[0015]
The specific surface area of the silica is determined by the BET method, and is preferably 40 to 500 m 2 / g. Those having a specific surface area of less than 40 have poor water molecule adsorbing ability, and those having a specific surface area of more than 500 have too high water molecule adsorbing ability and are difficult to uniformly disperse in a coating layer.
[0016]
The addition amount of silica is preferably 10 to 70 wt% in the coating layer, and more preferably 30 to 60 wt%. If the addition amount is less than 10 wt%, the effect of reducing the environmental difference is insufficient due to insufficient water molecule adsorption ability, and if it exceeds 70 wt%, it becomes difficult to form a coating layer and the film peels. Causes a decrease in durability.
[0017]
The hydrophobicity of silica indicates the value of methanol wettability. Methanol wettability is to evaluate the wettability to methanol. The measuring method is such that 0.2 g of the inorganic fine particles to be measured is weighed and added to 50 ml of distilled water placed in a 250 ml beaker. Methanol is slowly dropped from a burette whose tip is immersed in the liquid until the whole of the inorganic fine particles is wet while being slowly stirred. When the amount of methanol required to completely wet the inorganic fine particles is a (ml), the degree of hydrophobicity is calculated by the following equation.
[0018]
Hydrophobicity = 100 × a / (a + 50)
The negatively chargeable developer carrier of the present invention is produced by the following method.
[0019]
In the first step, the magnetic particles, the hydrophilic silica, and the resin particles are mixed and stirred by a usual stirring device or the like, and are uniformly adhered to the surfaces of the magnetic particles by physical adhesion or electrostatic adhesion. This first step may be performed without heating or under heating such that the resin particles slightly soften. When the first step is completed as described above, the obtained mixture is stirred under non-heating or under heating, and the impact force is repeatedly applied to the mixture to thereby impart hydrophilic silica and resin to the surface of the magnetic particles. Fine particles are fixed to obtain a coated carrier.
[0020]
As the apparatus for performing the first step, various kinds of mixing and stirring apparatuses can be used, but an apparatus capable of continuously performing the subsequent second step is preferable, and a specific example thereof is the apparatus shown in FIG. it can.
[0021]
The apparatus shown in FIG. 1 is a high-speed stirring type mixing apparatus, in which a material input port 12 and a back filter 13 are provided in an upper lid 11 of a mixing and stirring tank 10.
[0022]
The mixture of the powder of the primary carrier particles and the fluidity improver (hereinafter, also referred to as “raw material mixture”) supplied from the raw material charging port 12 is stirred by a rotating body 16 driven by a motor. The rotating body 16 is provided with three stirring blades 16A at target positions with respect to the rotation axis. By appropriately setting the peripheral speed of the stirring blade 16A, the strength of the stirring force can be selected, and the impact force can be repeatedly applied to the mixture, so that not only the first step but also the second step is performed. can do. That is, these stirring blades 16A are fixed to the rotating body 16 in a posture of rising obliquely upward from the bottom of the mixing and stirring tank 10, and the input raw material mixture is lifted upward by the stirring blades 16A, and is then lifted up. The obtained raw material mixture collides with the inclined upper or lower inner wall of the mixing and stirring tank 10 and falls into the rotation range of the stirring blade 16A. In this manner, the raw material mixture repeatedly collides with the inner wall of the mixing blade 16A or the mixing of the raw materials, so that the peripheral speed of the mixing blade 16A in the first step and the second step is appropriately set. Thereby, the impact force applied to the raw material mixture can be adjusted, and the second step can be performed following the first step.
[0023]
Reference numeral 14 denotes a jacket, which is configured to serve both as a heating unit and a cooling unit. When the raw material mixture is stirred, the raw material mixture can be heated to an appropriate temperature. Later, the raw material mixture can be forcibly cooled. The temperature of the raw material mixture can be measured by the thermometer 15. Reference numeral 17 denotes a processed material discharge port.
[0024]
When performing the first step using the high-speed stirring type mixing apparatus of FIG. 1, the stirring time is preferably 3 to 10 minutes, and the peripheral speed of the stirring blade 16A is preferably 4 to 8 m / s. When the second step is subsequently performed, the stirring time is preferably 10 to 40 minutes, and the peripheral speed of the stirring blade 16A is preferably 8 to 15 m / s.
[0025]
When the first step is completed as described above, the second step is subsequently performed. In the second step, the mixture passed through the first step is stirred with a strong stirring force under non-heating or heating, and the impact is repeatedly applied to the mixture to apply a coating agent to the surface of the primary carrier particles. (Fine resin particles and hydrophilic silica).
[0026]
When the second step is performed without heating, the temperature of the mixture usually rises to 30 to 60 ° C. due to spontaneous heat generation due to friction of the mixture, and the heat causes the surface of the carrier obtained in the first step to rise. It softens and the coating agent can be easily fixed. When heating, 60-120 degreeC is more preferable. If the heating temperature is too high, aggregation of the primary carrier particles tends to occur.
[0027]
As the toner used in the present invention, generally known resins can be used, and examples thereof include a styrene-acryl copolymer.
[0028]
[Action]
In a negatively chargeable developer, the toner added with inorganic fine particles and the like adsorbs water molecules under high humidity, so that the charge sequence moves to the plus side. Therefore, when the carrier is hydrophobic as described above, the charging sequence between the toner and the carrier is reduced, and the charging property is reduced.
[0029]
On the other hand, the carrier of the present invention contains hydrophilic and weakly negatively charged silica in the coating layer, so that it adsorbs water molecules under high humidity like a toner, and its charging sequence. Moves to the plus side, the charging sequence difference between the toner and the carrier hardly changes, and as a result, a substantially constant charge amount can be maintained regardless of the environmental humidity. As a result, it became possible to exhibit stable developability and transferability regardless of the environment.
[0030]
On the other hand, if the hydrophobicity of the silica in the coating layer is 20 or more, water absorption of the carrier becomes insufficient because the silica may be hydrophobic, and the transfer of the charging sequence similar to that of the toner is not performed. I can not plan.
[0031]
Further, according to the carrier coating method of the present invention, when the magnetic particles, the resin fine particles, and the hydrophilic silica are mixed in the first step, the hydrophilic silica also functions as a fluidity-imparting agent, so The properties can be improved, and the particles can be uniformly attached to the magnetic particles. In addition, in the second step, the coating agent is fixed by mechanical impact, so unlike the solvent coating, the resin itself is less likely to granulate, so that the coating film thickness does not become excessive or insufficient, and the uniform film forming property is obtained. Is obtained.
[0032]
【Example】
Hereinafter, embodiments of the present invention will be described.
[0033]
Example 1
<Production of negatively chargeable developer carrier by dry coating method>
MMA / St = 6/4 (weight ratio) with respect to 500 parts by weight of Cu—Zn ferrite particles having a specific gravity of 5.0, a weight average particle diameter of 80 μm, and a saturation magnetization of 62 emu / g when an external magnetic field of 1000 Oe is applied. )) (Number average primary particle diameter: 0.10 μm) and hydrophilic silica were added at the compounding ratio shown in Table 1. Subsequently, the mixture was treated for 3 minutes at a peripheral speed of the stirring blade of 8 m / sec by a high-speed stirring type mixing apparatus shown in FIG. 1 to adhere resin fine particles and particles such as hydrophilic silica to the surface of the ferrite particles. Thereafter, a mechanical impact force was applied for 20 minutes with the peripheral speed of the stirring blade set to 10 m / sec to obtain a carrier of the present invention and a comparative carrier.
[0034]
<Production of negatively chargeable developer carrier by solvent coating method>
To a 200 parts by weight of a mixed solvent of toluene / methanol = 90/10 (volume ratio) was added a resin of MMA / St = 6/4 (weight ratio) shown in Table 1, and a mixed liquid was used. 500 parts by weight of the above ferrite particles were spray-coated on a ferrite particle suspended and flown in hot air by a fluidized bed coater to obtain a comparative carrier.
[0035]
[Table 1]
Figure 0003582020
[0036]
Note R-972: Hydrophobic ratio = 45, silica hydrophilic titania particles with number average primary particle size = 16 mm: Hydrophobization ratio = 10, number average primary particle size = 20 mm
Bontron E-81: 100 parts of a negatively chargeable charge control agent styrene-acrylic resin, 10 parts of carbon black, and 5 parts of polypropylene were mixed, kneaded, pulverized, and classified to obtain a powder having a volume average particle size of 8 μm. Further, 100 parts of this powder and 2.0 parts of hydrophobic silica having a degree of hydrophobicity of 60 and a primary average particle diameter of 16 nm were mixed with a Henschel mixer to obtain a toner.
[0037]
760 g of each of the carriers and 40 g of the toner were mixed for 20 minutes under various environmental conditions using a V-type mixer to prepare a developer for a real test.
[0038]
1 g of the toner to be tested and 19 g of the carrier are weighed, respectively, placed in a 20 cc sample bottle in the order of the carrier and the toner, and left under the environmental conditions for the test for 3 hours. Using a shaker (Yayoi type New-YS), the mixture is mixed at a shaking angle of 30 ° and a shaking speed of several 200 strokes / min. Table 2 shows the results.
[0039]
The charge amount was sampled at 1 minute and 10 minutes, respectively, and the charge amount was measured using a blow-off type charge amount measuring device. The charge rise was calculated as: 1 minute value / 10 minute value × 100 (%).
[0040]
[Table 2]
Figure 0003582020
[0041]
From Table 2, it can be seen that the developer using the negatively chargeable developer carrier of the present invention does not depend on the environment of the charge amount and accelerates the rise of charge (increases the mixing speed of the developer).
[0042]
Example 2
Using a modified Konica U-3035 copier manufactured by Konica, actual shooting evaluation of the negatively chargeable developer carrier of the present invention was performed under the following conditions.
[0043]
Photoconductor: Positive charging photoconductor charging section: Changed discharge polarity from negative to positive.
[0044]
Photoconductor potential at image area = 750V
Non-image area photoconductor potential = 50V
Transfer part: Change the discharge polarity from minus to plus.
[0045]
Developing part: developing bias = -150V
[Evaluation conditions]
In the test, the actual image was evaluated for 3,000 sheets under each environmental condition, and the initial developing property and transferability at that time and the toner scattering state at the end of 3,000 sheets were evaluated. The results are shown in Table 3.
[0046]
(1) Developability A patch of 2.0 cm × 5.0 cm having an original density of 1.3 was developed, and the amount of developed toner developed on the photoreceptor per 1 cm 2 was calculated.
[0047]
(2) Transferability In the same manner as in the measurement of the developability, the transferability was measured by the ratio of the toner on the transfer body to the total development amount.
[0048]
Transfer rate = Amount of transfer residual toner remaining on photoconductor / Amount of toner adhering to photoconductor (%)
(3) Toner Scattering A particle counter was set in the machine, and the number of pieces of toner during 20 seconds was measured under a suction condition of 0.5 l / min.
[0049]
[Table 3]
Figure 0003582020
[0050]
As is clear from Table 3, it is found that the transferability is improved and the developability is stabilized when the negatively chargeable developer carrier of the present invention is used.
[0051]
【The invention's effect】
With the negatively chargeable developer carrier of the present invention, the environmental difference in chargeability was improved. Further, the uniformity of the coat layer of the carrier for the negatively chargeable developer was improved, and the rise of charge of the negatively chargeable developer was improved. In particular, the effect of improving charging rise under low temperature and low humidity is great.
[Brief description of the drawings]
FIG. 1 is a high-speed stirring type mixing apparatus applicable to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Mixing stirring tank 11 Top lid 12 Raw material input port 13 Back filter 14 Jacket 15 Thermometer 16 Rotating body 16A Stirring blade 17 Outlet

Claims (2)

磁性粒子上に、疎水化率20未満で、数平均一次粒子径とBET比表面積が、それぞれ5〜 50nm 40 500m 2 /g である親水性シリカと、数平均一次粒子径が 0.01 2.0 μ m である樹脂粒子を、機械的衝撃を与えて被着固定する乾式コーティングにより被覆させてなることを特徴とする負帯電性現像剤用キャリア。On the magnetic particles, less than hydrophobing ratio of 20, a number average primary particle diameter and BET specific surface area, respectively. 5 to 50 nm and 40 ~ 500m 2 / g and hydrophilic silica is a number average primary particle diameter of 0.01-2.0 the resin particles are mu m, negatively chargeable developer carrier characterized by comprising by covered by dry coating deposited fixed mechanical shock. 前記樹脂粒子と親水性シリカからなる被覆層中の親水性シリカの添加量が 10 70wt であることを特徴とする請求項1記載の負帯電性現像剤用キャリア。2. The carrier for a negatively chargeable developer according to claim 1, wherein the amount of the hydrophilic silica in the coating layer comprising the resin particles and the hydrophilic silica is 10 to 70 wt % .
JP03723394A 1993-03-08 1994-03-08 Carrier for negatively charged developer Expired - Fee Related JP3582020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03723394A JP3582020B2 (en) 1993-03-08 1994-03-08 Carrier for negatively charged developer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4675593 1993-03-08
JP5-46755 1993-03-08
JP03723394A JP3582020B2 (en) 1993-03-08 1994-03-08 Carrier for negatively charged developer

Publications (2)

Publication Number Publication Date
JPH06317937A JPH06317937A (en) 1994-11-15
JP3582020B2 true JP3582020B2 (en) 2004-10-27

Family

ID=26376355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03723394A Expired - Fee Related JP3582020B2 (en) 1993-03-08 1994-03-08 Carrier for negatively charged developer

Country Status (1)

Country Link
JP (1) JP3582020B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2607956A1 (en) 2011-12-19 2013-06-26 Samsung Electronics Co., Ltd Magnetic carrier, two-component developer, replenishing developer, and method of forming image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2607956A1 (en) 2011-12-19 2013-06-26 Samsung Electronics Co., Ltd Magnetic carrier, two-component developer, replenishing developer, and method of forming image

Also Published As

Publication number Publication date
JPH06317937A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
KR950014869B1 (en) Magnetic toner
JP4207224B2 (en) Image forming method
JP2992907B2 (en) Magnetic toner
JP4752604B2 (en) Toner for electrostatic latent image development
EP0223594B1 (en) Magnetic dry developer
US5100754A (en) Coated carrier particles and electrographic developers containing them
JPH0119584B2 (en)
JP3332727B2 (en) Image forming method and toner
JP3582020B2 (en) Carrier for negatively charged developer
EP1343053A1 (en) Black toner, production process, image forming method and image forming apparatus using the toner
US5200287A (en) Carrier for developing electrostatic image
US5478687A (en) Carrier for negatively chargeable developer
JPH01277265A (en) Developing device
US4868083A (en) Developer carrier and process for producing the same
JPH09281742A (en) Developer
JP3363644B2 (en) Image forming method
JPS62227160A (en) Preparation of electrophotographic developer
JP2007127815A (en) Electrostatic charge image development toner
JP2851911B2 (en) Carrier for developing electrostatic images
JPH0756395A (en) Electrostatic charge image developer
JP3862199B2 (en) Two-component developer for electrostatic charge development
JP3350738B2 (en) Carrier for developing electrostatic images
KR950014872B1 (en) Image forming method
JPH0264557A (en) Developing agent for electrostatic charge image development
JP2769871B2 (en) Magnetic developer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees