JP3581138B2 - Aliphatic polyester resin composition having high biodegradability - Google Patents

Aliphatic polyester resin composition having high biodegradability Download PDF

Info

Publication number
JP3581138B2
JP3581138B2 JP2002082924A JP2002082924A JP3581138B2 JP 3581138 B2 JP3581138 B2 JP 3581138B2 JP 2002082924 A JP2002082924 A JP 2002082924A JP 2002082924 A JP2002082924 A JP 2002082924A JP 3581138 B2 JP3581138 B2 JP 3581138B2
Authority
JP
Japan
Prior art keywords
crosslinking
resin composition
aliphatic polyester
biodegradability
inorganic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002082924A
Other languages
Japanese (ja)
Other versions
JP2003277593A (en
Inventor
文男 吉井
尚胤 長澤
民和 久米
宏志 三友
Original Assignee
日本原子力研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本原子力研究所 filed Critical 日本原子力研究所
Priority to JP2002082924A priority Critical patent/JP3581138B2/en
Publication of JP2003277593A publication Critical patent/JP2003277593A/en
Application granted granted Critical
Publication of JP3581138B2 publication Critical patent/JP3581138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高い生分解性を有する脂肪族ポリエステル樹脂組成物に関する。詳しくは、本発明は、無機物を添加し良く混練した後、電離性放射線を照射することにより橋かけさせた生分解性脂肪族ポリエステル樹脂組成物であって、照射の前及び後の生分解性が促進されたことを特徴とする樹脂組成物に関する。
【0002】
生分解性ポリマーは、通常の使用では実用的物性を保持し使用後は土壌中の微生物により消化・分解されるため、環境に負荷を与えない材料として注目されており、今後様々な分野で用途の拡大が期待されている。本発明においては、生分解性脂肪族ポリエステルの耐熱性を改善するため、放射線橋かけ及び化学開始剤橋かけについて鋭意研究を重ねた。その結果、混練した無機物が低線量で、また化学開始剤により効率的に脂肪族ポリエステルに橋かけを引き起こし、このような橋かけによりその耐熱性が改善されることを発見した。更には、無機物は未橋かけ材料及び橋かけ材料両方の生分解性を促進するという事実を見出し本発明を達成した。本発明に用いる無機物としては、特に活性炭や二酸化ケイ素が効果的である。
【0003】
【従来の技術】
放射線の工業利用には、ラジアルタイヤの前加硫、耐熱電線の製造、熱収縮チューブの製造などがある。これらの製造はいずれも放射線による橋かけ技術を駆使したものである。このような放射線加工技術による製品の98%は橋かけ技術による強度や耐熱性の改善が施されている。ポリエチレンは代表的な放射線橋かけポリマーであり、橋かけ促進剤などを使わなくても100kGy程度の照射で耐熱電線や熱収縮チューブの製造に必要な機能が得られる。しかし、ポリマー単独では分解しやすいものや橋かけ効率が低い材料では、反応性の高い多官能性モノマーを使用し、放射線橋かけの促進が図られている。
【0004】
生分解性ポリマーの放射線橋かけでは、脂肪族ポリエステルのポリ(ε−カプロラクトン)について過冷却相で効率的に橋かけが起き、耐熱性が改善できることが開示されている。一方、非生分解性ポリマーでは、反応性モノマーの添加により照射橋かけが効率的に起きることが開示されている。このような方法によれば、生分解性材料についても高い橋かけが起こることが期待される。しかしながら、このようなモノマーを使った場合は100%反応させることは難しく必ず未反応モノマーが橋かけポリマー中に残留してしまう。また、反応性モノマーの殆どは毒性があるため、このような橋かけでは応用分野が限られてしまう。従って、生分解性ポリマーに関し、反応性モノマー等の添加物を使わない照射のみによる放射線橋かけ又は化学開始剤による橋かけが最も望まれるところであるが、耐熱性の問題無くこのような方法を適用できる材料は限られている。このため、放射線橋かけ及び化学開始剤による橋かけを効率的に行うことにより生分解性材料の耐熱性を改善できる、安定で安全性の高い橋かけ促進剤の開発が求められている。
【0005】
【発明が解決しようとする課題】
放射線橋かけは、ポリマーの耐熱性や加工性の改善に有効である。例えば、汎用樹脂であるポリエチレンは100℃付近で溶融するため、熱湯には耐えられない材料であるが、これを放射線橋かけすることにより耐熱性が改善されている。またポリプロピレンでは、照射による溶融張力の改善により成形性が容易になる技術が開示されている。
【0006】
生分解性材料は、ポリエチレンやポリプロピレンのような汎用樹脂に比べ、耐熱性や加工性が低いことから、普及が遅れている。このため需要の拡大にはこれらの物性の改善が不可欠である。ポリ乳酸はガラス転位温度が50〜60℃であるため、室温よりもやや高い温度で成形物に変形が起こる。ポリブチレンサクシネートとその共重合体は結晶融点が100℃付近であるため、熱湯により変形や融解が起こる。従って、このような材料の耐熱性の改善には、放射線による橋かけが最も有効であると考えられる。しかし、生分解性脂肪族ポリエステルは単独では放射線橋かけが起こりにくいことから、環境に負荷を与えない橋かけ促進助剤の探索が望まれる。また、化学開始剤による橋かけにおいても、生分解性材料の耐熱性改善のため橋かけの促進が望まれる。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意研究を行った結果、無機物が生分解性材料の放射線橋かけ及び化学開始剤橋かけを促進するのに有効であることを見出した。ポリマーの放射線橋かけでは、三次元網目構造の生成により、分子鎖が強固になるため耐熱性が向上するが、生分解性は抑制されることがある。しかしながら、本発明者らは、無機物は生分解性材料の橋かけ促進に加え生分解性の促進にも有効であるという事実を発見した。
【0008】
本発明はこれらの発見に基づくものであり、生分解性脂肪族ポリエステルに無機物を混合してから橋かけすることを課題解決手段とする。
【0009】
【発明の実施の態様】
本発明においては、生分解性脂肪族ポリエステルに無機物を混合してから橋かけすることにより、得られる生分解性脂肪族ポリエステル樹脂組成物の橋かけと生分解性とを促進する。
【0010】
橋かけと生分解性の促進に有効な無機物は、活性炭、二酸化ケイ素である。これらの橋かけ促進剤は生分解性材料が分解し、土壌中に残存しても安定で安全性の高いものである。本発明においてはこれらを単独で、又は混合物として使用することができる。
【0011】
本発明に使用することができる生分解性脂肪族ポリエステルは、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート共重合体、ポリブチレンサクシネート・カーボネート共重合体、ポリブチレンサクシネート・テレフタレート共重合体、ポリブチレンサクシネート・アジペート・テレフタレート共重合体、及びこれらの混合物である。
【0012】
生分解性のポリブチレンサクシネートにはポリブチレンサクシネート単独とランダム共重合体のポリブチレンサクシネート・アジペート(PBS−AD)とがある。ポリブチレンサクシネート単独の融点は116℃、ポリブチレンサクシネート・アジペートは96℃である。これらの材料の応用範囲を拡大するには耐熱性の改善が不可欠である。ポリブチレンサクシネートとその共重合体は室温で単に放射線照射を行っただけでは橋かけが進まないため、耐熱性の向上は困難である。本発明では、ポリブチレンサクシネートとその共重合体に無機物を添加し、ポリマーのモルホロジーを変えると照射橋かけ及び化学開始剤橋かけの向上と生分解性が促進できることを見出し本発明が達成された。橋かけは電離性放射線の照射による橋かけであっても、化学開始剤による橋かけであってもよい。
【0013】
本発明の一の態様においては、ポリブチレンサクシネートとその共重合体にそれら重合体の融点以上の温度で無機物を加え良く混練し、均一に混ぜた後シート状に成形して電離性放射線を照射する。照射により橋かけが進行し、クロロホルムに不溶なゲル成分が生成する。この成分が多いほど耐熱性の向上が期待できる。照射によって生成した活性種は空気中の酸素と結合して失活すると、橋かけ効率を低下する。このため照射の雰囲気は空気を除いた不活性雰囲気下や真空下で行うのが好ましい。大きい試料の場合には、ガスバリヤー性の優れたポリ塩化ビニリデン製の袋を使い真空シールしたものを使用すると容易に酸素除去下で照射できる。また、照射時の温度はいずれであってもよく、典型的には室温で行う。
【0014】
無機物の添加濃度は、ポリマーのモルホロジーを変える濃度であれば十分であり、0.1%〜10%が好ましい。最も好ましい濃度は0.5%〜5%である。
【0015】
無機物添加温度はポリマーの融点以上の温度であればいずれの温度でもよいが、添加物を均一に混合するには融点よりも20℃〜30℃高い温度で混練するのが最も好ましい。
【0016】
橋かけに要する照射の線量は1〜1,000kGy、好ましくは50kGy〜300kGy、最も好ましくは100kGy〜200kGyである。
電離性放射線は、γ線、エックス線、又は電子線などを用いることができるが、工業的生産のため、コバルト−60からのγ線と加速器による電子線が好ましい。電子加速器は厚物の照射ができる加速電圧1MeV以上の中エネルギーから高エネルギー電子加速器が最も好ましい。試料がフィルムであれば1MeV以下の低エネルギー電子加速器でも電子線が透過するため放射線橋かけを行うことができる。
【0017】
本発明の別の態様においては、ポリブチレンサクシネートとその共重合体にそれら重合体の融点以上の温度で無機物、並びに化学開始剤を加え良く混練し、均一に混ぜた後シート状に成形し、温度を化学開始剤が熱分解する温度まで上げる。
【0018】
化学開始剤は熱分解により過酸化ラジカルを生成するジクミルパーオキサイド、過酸化ベンゾイル、過安息香酸ターシャリブチル、2,2’−アゾビスイソブチロニトリルのような過酸化物触媒であればいずれでもよい。
【0019】
橋かけは、放射線照射の場合と同様、空気を除いた不活性雰囲気下や真空下で行うのが好ましい。
【0020】
【実施例】
生分解性脂肪族ポリエステル樹脂として、ポリブチレンサクシネート・アジペートを用いて、以下の実施例1〜4及び比較例1〜3を行った。
【0021】
ゲル分率は次のようにして求めた。照射を行ったフィルムの所定量を200メッシュの金網に包み、クロロホルム溶剤の中で48時間煮沸し溶解するゾル分を除き、金網中に残ったゲル分を50℃で24時間乾燥し重量を求めた。ゲル分率は次式により算出した。
【0022】
ゲル分率(%)=(溶解成分を除いたゲル重量/初期乾燥重量)×100
放射線による橋かけ前及び後の試料の生分解性は、酵素分解と土壌埋設試験とにより次のような方法で評価した。
【0023】
酵素分解は、10mm×10mm×0.1mm(厚み)に調製した試料を下記のような3液を混合した酵素液の中に所定時間漬けて行った。時間とともに表面から分解が進み重量が減少した。その減少量を%で表し損失率として求めた。
【0024】
酵素液 0.2M phosphate buffer(pH7.0) 4.0ml
リパーゼAK酵素(10mg/ml) 1.0ml
0.1% surfactan(MgCl2) 1.0ml
土壌埋設試験は厚み0.5mmに調製した試料を園芸用の腐葉土を30%含む土壌に所定時間埋め、微生物による重量損失率を求めた。試料としては照射前と照射後のものを用いた。
比較例1
分子量2.96×105のポリブチレンサクシネート・アジペートをラボプラストミル混練器に入れ150℃で融解し、回転数20rpmで10分間良く練った。その後ポリマーを取り出し熱プレスにより厚み0.5mmのシートを調製した。この試料を空気を除き電子加速器(最大の加速電圧2MeV,最大の電流値30mA)により室温で200kGyまで照射した。橋かけの程度を示すゲル分率は表1の通りである。
【0025】
【表1】

Figure 0003581138
【0026】
160kGy照射によるゲル分率32%の試料を用いて酵素による生分解性試験を行った。結果を表2に示す。
【0027】
【表2】
Figure 0003581138
【0028】
酵素分解試験に用いた試料と同じ試料について、微生物分解による重量損失により生分解性を評価した土壌埋設試験を行った。結果を表3に示す。
【0029】
【表3】
Figure 0003581138
【0030】
実施例1
比較例1と同じ試料40gを同じ温度で融解し、ラボプラストミル混練器を用い二酸化ケイ素2%と良く混練した。この後のシートの調製と照射も比較例1と同様に行った。ゲル分率を表4に示す。
【0031】
【表4】
Figure 0003581138
【0032】
160kGy照射によるゲル分率52%の試料を用いて酵素分解試験を行った。結果を表5に示す。
【0033】
【表5】
Figure 0003581138
【0034】
実施例2
本試験では2%の活性炭を添加した。用いたポリマー試料、活性炭濃度、ポリマーの混練条件、シートの調製、照射はいずれも実施例1と同じ方法により行った。照射によるゲル分率を表6に示す。
【0035】
【表6】
Figure 0003581138
【0036】
160kGy照射によるゲル分率48%の試料を用いて酵素分解試験を行った。結果を表7に示す。
【0037】
【表7】
Figure 0003581138
【0038】
酵素分解試験に用いた試料と同じ試料について土壌埋設試験を行った。結果を表8に示す。
【0039】
【表8】
Figure 0003581138
【0040】
実施例1及び2の結果によれば、比較例1に比べ明らかに二酸化ケイ素や活性炭のような添加物により放射線橋かけの効率が増大し、照射後の生分解性が著しく向上した。
【0041】
次に、土壌埋設試験により評価した、ポリブチレンサクシネート・アジペートの未照射(照射前)試料への無機物添加による生分解性促進効果について述べる。
比較例2
分子量2.96×105のポリブチレンサクシネート・アジペートをラボプラストミル混練器に入れ150℃で融解し、回転数20rpmで良く練った。その後ポリマーを取り出し熱プレスにより厚み0.5mmのシートを調製した。未照射試料の生分解性について、土壌埋設試験による重量損失から評価した。その結果を表9に示す。
【0042】
【表9】
Figure 0003581138
【0043】
実施例3
本試験では活性炭を2%添加した。用いたポリマー試料、活性炭濃度、ポリマーの混練条件、シートの調製は、いずれも実施例1と同じ方法により行った。土壌埋設試験の結果を表10に示す。
【0044】
【表10】
Figure 0003581138
【0045】
比較例2と実施例3とから、明らかに未照射試料でも無機物は生分解性を促進することが認められた。
比較例3
ラボプラストミル混練器を用いポリブチレンサクシネート・アジペートを130℃で融解し、化学開始剤であるジクミルパーオキサイド(40%)を5%加え回転速度20rpmで良く混合した。この後同じ温度で熱プレスを使い厚み0.5mmのシートを調製した。橋かけは得られたシートを160℃で20分加熱して行った。その試料の土壌埋設試験の結果を表11に示す。
【0046】
【表11】
Figure 0003581138
【0047】
実施例4
ラボプラストミル混練器を用いポリブチレンサクシネート・アジペートを130℃で融解し、化学開始剤であるジクミルパーオキサイド(40%)を5%と活性炭2%とを加え回転速度20rpmで良く混合した。シート調製と化学橋かけは比較例3と同様に行った。土壌埋設試験の結果を表12に示す。
【0048】
【表12】
Figure 0003581138
【0049】
比較例3と実施例4とから、化学開始剤による橋かけ試料についても活性炭が生分解性を促進することが明らかである。
自然環境で安定で安全な無機物が脂肪族ポリエステルの放射線橋かけ効率の向上に有効であった。また、これらの添加物により橋かけ及び未橋かけ試料の生分解性の制御が可能になった。
【0050】
【発明の効果】
ポリブチレンサクシネート及びその共重合体の耐熱性が放射線橋かけにより向上することにより、ポリエチレンと同じような用途が期待できる。農業用マルチフィルムでは、使用中の太陽光の温度上昇による変形、包装用に用いた場合のお湯による変形や溶融が防止できる。更に、生分解性が促進できるため、使用後のコンポスト化などによる処理が容易になる。このように本発明は生分解性材料の需要の拡大が期待できる有用なものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aliphatic polyester resin composition having high biodegradability. Specifically, the present invention relates to a biodegradable aliphatic polyester resin composition crosslinked by irradiating ionizing radiation after adding an inorganic substance and kneading well, and the biodegradability before and after irradiation. The present invention relates to a resin composition characterized in that is promoted.
[0002]
Biodegradable polymers retain practical properties in normal use and are digested and decomposed by microorganisms in the soil after use, so they are attracting attention as materials that do not impact the environment. Is expected to expand. In the present invention, in order to improve the heat resistance of the biodegradable aliphatic polyester, intensive studies have been made on radiation crosslinking and chemical initiator crosslinking. As a result, it has been discovered that the kneaded inorganic substance causes crosslinking of the aliphatic polyester at a low dose and more efficiently by the chemical initiator, and such crosslinking improves its heat resistance. Furthermore, the inventors have found the fact that the inorganic substance promotes the biodegradability of both the uncrosslinked material and the crosslinked material, and achieved the present invention. As the inorganic substance used in the present invention, activated carbon and silicon dioxide are particularly effective.
[0003]
[Prior art]
Industrial applications of radiation include pre-vulcanization of radial tires, production of heat-resistant wires, and production of heat-shrinkable tubes. All of these productions make use of radiation crosslinking technology. 98% of products produced by such radiation processing technology have been improved in strength and heat resistance by crosslinking technology. Polyethylene is a typical radiation-crosslinking polymer, and can provide the functions necessary for the production of heat-resistant electric wires and heat-shrinkable tubes by irradiation of about 100 kGy without using a crosslinking accelerator or the like. However, in the case of a polymer which is easily decomposed by itself or a material having a low crosslinking efficiency, a highly reactive polyfunctional monomer is used to promote radiation crosslinking.
[0004]
In radiation crosslinking of a biodegradable polymer, it is disclosed that crosslinking of an aliphatic polyester, poly (ε-caprolactone), occurs efficiently in a supercooled phase, and heat resistance can be improved. On the other hand, for non-biodegradable polymers, it is disclosed that irradiation crosslinking occurs efficiently by addition of a reactive monomer. According to such a method, it is expected that a high cross-linking of the biodegradable material will occur. However, when such a monomer is used, it is difficult to cause a 100% reaction, and unreacted monomers always remain in the crosslinked polymer. In addition, since most of the reactive monomers are toxic, such crosslinking limits the application field. Therefore, with regard to biodegradable polymers, it is most desirable to perform radiation crosslinking by irradiation without using additives such as reactive monomers or crosslinking by chemical initiators, but apply such a method without a problem of heat resistance. The materials available are limited. Therefore, there is a need for the development of a stable and highly safe crosslinking accelerator that can improve the heat resistance of a biodegradable material by efficiently performing radiation crosslinking and crosslinking with a chemical initiator.
[0005]
[Problems to be solved by the invention]
Radiation crosslinking is effective in improving the heat resistance and processability of the polymer. For example, polyethylene, which is a general-purpose resin, melts at around 100 ° C., and is a material that cannot withstand hot water. However, heat resistance is improved by radiation crosslinking of polyethylene. Further, in the case of polypropylene, a technique has been disclosed in which the moldability is facilitated by improving the melt tension by irradiation.
[0006]
The use of biodegradable materials has been slow because of their lower heat resistance and workability than general-purpose resins such as polyethylene and polypropylene. Therefore, improvement of these physical properties is indispensable for expanding demand. Since polylactic acid has a glass transition temperature of 50 to 60 ° C., the molded product is deformed at a temperature slightly higher than room temperature. Since polybutylene succinate and its copolymer have a crystal melting point of about 100 ° C., they are deformed or melted by boiling water. Therefore, to improve the heat resistance of such a material, crosslinking by radiation is considered to be the most effective. However, since biodegradable aliphatic polyester alone does not easily cause radiation crosslinking, it is desired to search for a crosslinking promoting aid that does not impose an environmental burden. Further, in the crosslinking by a chemical initiator, it is desired to promote the crosslinking in order to improve the heat resistance of the biodegradable material.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that an inorganic substance is effective in promoting radiation crosslinking and chemical initiator crosslinking of a biodegradable material. In radiation crosslinking of a polymer, the heat resistance is improved due to the formation of a three-dimensional network to strengthen the molecular chains, but the biodegradability may be suppressed. However, the present inventors have discovered the fact that inorganic substances are effective in promoting biodegradability in addition to promoting crosslinking of the biodegradable material.
[0008]
The present invention is based on these findings and aims to solve the problem by mixing an inorganic substance with a biodegradable aliphatic polyester and then crosslinking the mixture.
[0009]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the present invention, crosslinking and biodegradability of the obtained biodegradable aliphatic polyester resin composition are promoted by mixing the biodegradable aliphatic polyester with an inorganic substance and then crosslinking .
[0010]
Activated carbon and silicon dioxide are effective inorganic substances for promoting crosslinking and biodegradability. These crosslinking accelerators are stable and highly safe even if the biodegradable material is decomposed and remains in the soil. In the present invention, these can be used alone or as a mixture.
[0011]
The biodegradable aliphatic polyester that can be used in the present invention is polybutylene succinate, polybutylene succinate adipate copolymer, polybutylene succinate carbonate carbonate copolymer, polybutylene succinate terephthalate copolymer , Polybutylene succinate adipate terephthalate copolymer, and mixtures thereof.
[0012]
The biodegradable polybutylene succinate includes polybutylene succinate alone and random copolymer polybutylene succinate adipate (PBS-AD). The melting point of polybutylene succinate alone is 116 ° C, and that of polybutylene succinate adipate is 96 ° C. Improvement of heat resistance is indispensable for expanding the application range of these materials. Polybutylene succinate and its copolymer cannot be crosslinked by simply irradiating at room temperature, so that it is difficult to improve heat resistance. In the present invention, it has been found that, by adding an inorganic substance to polybutylene succinate and its copolymer and changing the morphology of the polymer, irradiation crosslinking and chemical initiator crosslinking can be improved and biodegradability can be promoted. Was. The crosslinking may be by irradiation with ionizing radiation or by a chemical initiator.
[0013]
In one embodiment of the present invention, polybutylene succinate and its copolymer are mixed well with an inorganic substance at a temperature equal to or higher than the melting point of the polymer, and after uniform mixing, formed into a sheet and ionized radiation. Irradiate. Irradiation causes crosslinking to proceed, producing a gel component insoluble in chloroform. The more this component is, the more heat resistance can be expected. When the active species generated by irradiation combine with oxygen in the air to deactivate, the crosslinking efficiency decreases. Therefore, the irradiation is preferably performed in an inert atmosphere except for air or in a vacuum. In the case of a large sample, irradiation can be easily performed with oxygen removed by using a bag made of polyvinylidene chloride having excellent gas barrier properties and vacuum-sealed. The temperature at the time of irradiation may be any, and typically, the irradiation is performed at room temperature.
[0014]
The concentration of the inorganic substance added is sufficient if it changes the morphology of the polymer, and is preferably 0.1% to 10%. The most preferred concentration is between 0.5% and 5%.
[0015]
The temperature at which the inorganic substance is added may be any temperature as long as it is equal to or higher than the melting point of the polymer. However, in order to uniformly mix the additives, kneading is preferably performed at a temperature 20 ° C. to 30 ° C. higher than the melting point.
[0016]
The irradiation dose required for crosslinking is from 1 to 1,000 kGy, preferably from 50 kGy to 300 kGy, most preferably from 100 kGy to 200 kGy.
As the ionizing radiation, γ-rays, X-rays, or electron beams can be used, but for industrial production, γ-rays from cobalt-60 and electron beams from an accelerator are preferable. The electron accelerator is most preferably a medium energy to high energy electron accelerator capable of irradiating a thick object with an acceleration voltage of 1 MeV or more. If the sample is a film, even a low-energy electron accelerator of 1 MeV or less allows electron beams to penetrate, so that radiation crosslinking can be performed.
[0017]
In another embodiment of the present invention, polybutylene succinate and its copolymer are mixed with an inorganic substance and a chemical initiator at a temperature equal to or higher than the melting point of the polymer, well kneaded, uniformly mixed, and then formed into a sheet. , The temperature is raised to a temperature at which the chemical initiator thermally decomposes.
[0018]
The chemical initiator may be a peroxide catalyst such as dicumyl peroxide, benzoyl peroxide, tertiary butyl perbenzoate, or 2,2'-azobisisobutyronitrile, which generates a peroxide radical by thermal decomposition. Either may be used.
[0019]
Crosslinking is preferably performed under an inert atmosphere except for air or under vacuum, as in the case of radiation irradiation.
[0020]
【Example】
The following Examples 1 to 4 and Comparative Examples 1 to 3 were performed using polybutylene succinate adipate as a biodegradable aliphatic polyester resin.
[0021]
The gel fraction was determined as follows. A predetermined amount of the irradiated film was wrapped in a 200-mesh wire mesh, boiled in a chloroform solvent for 48 hours to remove the sol content, and the gel content remaining in the wire mesh was dried at 50 ° C. for 24 hours to obtain a weight. Was. The gel fraction was calculated by the following equation.
[0022]
Gel fraction (%) = (Gel weight excluding dissolved components / Initial dry weight) × 100
The biodegradability of the sample before and after crosslinking by radiation was evaluated by the following method by enzyme degradation and soil burial test.
[0023]
The enzymatic degradation was performed by immersing a sample prepared in a size of 10 mm × 10 mm × 0.1 mm (thickness) in an enzyme solution obtained by mixing the following three solutions for a predetermined time. The decomposition progressed from the surface with time, and the weight decreased. The amount of the decrease was expressed in% and determined as a loss rate.
[0024]
Enzyme solution 0.2M phosphate buffer (pH 7.0) 4.0ml
Lipase AK enzyme (10mg / ml) 1.0ml
0.1% surfactan (MgCl 2 ) 1.0ml
In the soil burying test, a sample prepared to a thickness of 0.5 mm was buried in soil containing 30% of horticultural mulch for a predetermined time, and the weight loss rate due to microorganisms was determined. Samples before and after irradiation were used.
Comparative Example 1
Polybutylene succinate adipate having a molecular weight of 2.96 × 10 5 was placed in a Labo Plastomill kneader, melted at 150 ° C., and kneaded well at a rotation speed of 20 rpm for 10 minutes. Thereafter, the polymer was taken out and a sheet having a thickness of 0.5 mm was prepared by hot pressing. The sample was irradiated to 200 kGy at room temperature with an electron accelerator (maximum acceleration voltage 2 MeV, maximum current value 30 mA) except for air. Table 1 shows the gel fraction indicating the degree of crosslinking.
[0025]
[Table 1]
Figure 0003581138
[0026]
A biodegradability test with an enzyme was performed using a sample having a gel fraction of 32% by irradiation with 160 kGy. Table 2 shows the results.
[0027]
[Table 2]
Figure 0003581138
[0028]
The same samples as those used in the enzyme degradation test were subjected to a soil burial test in which biodegradability was evaluated by weight loss due to microbial degradation. Table 3 shows the results.
[0029]
[Table 3]
Figure 0003581138
[0030]
Example 1
40 g of the same sample as in Comparative Example 1 was melted at the same temperature and kneaded well with 2% silicon dioxide using a Labo Plastomill kneader. The subsequent preparation and irradiation of the sheet were performed in the same manner as in Comparative Example 1. Table 4 shows the gel fraction.
[0031]
[Table 4]
Figure 0003581138
[0032]
An enzymatic degradation test was performed using a sample having a gel fraction of 52% by irradiation with 160 kGy. Table 5 shows the results.
[0033]
[Table 5]
Figure 0003581138
[0034]
Example 2
In this test, 2% of activated carbon was added. The used polymer sample, activated carbon concentration, polymer kneading conditions, sheet preparation, and irradiation were all performed in the same manner as in Example 1. Table 6 shows the gel fraction by irradiation.
[0035]
[Table 6]
Figure 0003581138
[0036]
An enzymatic degradation test was performed using a sample having a gel fraction of 48% by irradiation with 160 kGy. Table 7 shows the results.
[0037]
[Table 7]
Figure 0003581138
[0038]
A soil burial test was performed on the same sample as the sample used for the enzyme degradation test. Table 8 shows the results.
[0039]
[Table 8]
Figure 0003581138
[0040]
According to the results of Examples 1 and 2, the efficiency of radiation crosslinking was significantly increased by additives such as silicon dioxide and activated carbon as compared with Comparative Example 1, and the biodegradability after irradiation was significantly improved.
[0041]
Next, the effect of promoting biodegradability by adding an inorganic substance to an unirradiated (but not irradiated) sample of polybutylene succinate adipate, evaluated by a soil burial test, will be described.
Comparative Example 2
Polybutylene succinate adipate having a molecular weight of 2.96 × 10 5 was placed in a Labo Plastomill kneader, melted at 150 ° C., and kneaded well at a rotation speed of 20 rpm. Thereafter, the polymer was taken out and a sheet having a thickness of 0.5 mm was prepared by hot pressing. The biodegradability of the unirradiated sample was evaluated from the weight loss in the soil burial test. Table 9 shows the results.
[0042]
[Table 9]
Figure 0003581138
[0043]
Example 3
In this test, 2% of activated carbon was added. The polymer sample, activated carbon concentration, polymer kneading conditions, and sheet preparation used were all the same as in Example 1. Table 10 shows the results of the soil burial test.
[0044]
[Table 10]
Figure 0003581138
[0045]
From Comparative Example 2 and Example 3, it was clearly confirmed that the inorganic substance promoted the biodegradability even in the unirradiated sample.
Comparative Example 3
Polybutylene succinate adipate was melted at 130 ° C. using a Labo Plastomill kneader, and 5% of dicumyl peroxide (40%) as a chemical initiator was added and mixed well at a rotation speed of 20 rpm. Thereafter, a sheet having a thickness of 0.5 mm was prepared using a hot press at the same temperature. The crosslinking was performed by heating the obtained sheet at 160 ° C. for 20 minutes. Table 11 shows the results of the soil burial test of the sample.
[0046]
[Table 11]
Figure 0003581138
[0047]
Example 4
Polybutylene succinate adipate was melted at 130 ° C. using a Labo Plastomill kneader, and 5% of dicumyl peroxide (40%) as a chemical initiator and 2% of activated carbon were added and mixed well at a rotation speed of 20 rpm. . Sheet preparation and chemical crosslinking were performed in the same manner as in Comparative Example 3. Table 12 shows the results of the soil burial test.
[0048]
[Table 12]
Figure 0003581138
[0049]
From Comparative Example 3 and Example 4, it is clear that activated carbon also promotes biodegradability for samples crosslinked with a chemical initiator.
Inorganic substances that are stable and safe in the natural environment were effective in improving the radiation crosslinking efficiency of aliphatic polyester. In addition, these additives made it possible to control the biodegradability of crosslinked and uncrosslinked samples.
[0050]
【The invention's effect】
By improving the heat resistance of polybutylene succinate and its copolymer by radiation crosslinking, the same applications as polyethylene can be expected. In the agricultural multi-film, deformation due to a rise in the temperature of sunlight during use and deformation and melting due to hot water when used for packaging can be prevented. Furthermore, since biodegradability can be promoted, processing by composting after use becomes easy. Thus, the present invention is useful in that demand for biodegradable materials can be expected to increase.

Claims (7)

融点以上の溶融状態の生分解性脂肪族ポリエステルに無機物を混合してから橋かけすることにより、橋かけと生分解性とが促進されることを特徴とする生分解性脂肪族ポリエステル樹脂組成物であって、
生分解性脂肪族ポリエステルが、ポリブチレンサクシネート、その共重合体、又はそれらの混合物であり、
無機物が活性炭、二酸化ケイ素、又はそれらの混合物であり、その濃度が0.1%〜10%である、樹脂組成物
A biodegradable aliphatic polyester resin composition characterized in that crosslinking and biodegradability are promoted by mixing an inorganic substance with a biodegradable aliphatic polyester in a molten state having a melting point or higher and then crosslinking . And
The biodegradable aliphatic polyester is polybutylene succinate, a copolymer thereof, or a mixture thereof,
A resin composition wherein the inorganic substance is activated carbon, silicon dioxide, or a mixture thereof, and the concentration thereof is 0.1% to 10% .
橋かけが電離性放射線の照射による橋かけである、請求項1記載の樹脂組成物。The resin composition according to claim 1, wherein the cross-linking is performed by irradiation with ionizing radiation. 電離性放射線がγ線、エックス線、又は電子線であり、その線量が1〜1,000kGyである、請求項2記載の樹脂組成物。The resin composition according to claim 2, wherein the ionizing radiation is a gamma ray, an X ray, or an electron beam, and the dose is 1 to 1,000 kGy. 橋かけが化学開始剤による橋かけである、請求項1記載の樹脂組成物。The resin composition according to claim 1, wherein the crosslinking is a crosslinking with a chemical initiator. 更に、化学開始剤を添加し、機械的に良く混練し、温度を化学開始剤が分解する温度まで上げることにより橋かけされた、請求項4に記載の樹脂組成物。5. The resin composition according to claim 4, further comprising a chemical initiator, mechanically kneading the mixture, and raising the temperature to a temperature at which the chemical initiator decomposes. 化学開始剤が過酸化物である、請求項4又は5記載の樹脂組成物。The resin composition according to claim 4, wherein the chemical initiator is a peroxide. 融点以上の溶融状態の生分解性脂肪族ポリエステルに無機物を添加することにより、生分解性が向上されることを特徴とする生分解性脂肪族ポリエステル樹脂組成物であって、
生分解性脂肪族ポリエステルが、ポリブチレンサクシネート、その共重合体、又はそれらの混合物であり、
無機物が活性炭、二酸化ケイ素、又はそれらの混合物であり、その濃度が0.1%〜10%である、樹脂組成物
A biodegradable aliphatic polyester resin composition characterized in that biodegradability is improved by adding an inorganic substance to the biodegradable aliphatic polyester in a molten state having a melting point or higher,
The biodegradable aliphatic polyester is polybutylene succinate, a copolymer thereof, or a mixture thereof,
A resin composition wherein the inorganic substance is activated carbon, silicon dioxide, or a mixture thereof, and the concentration thereof is 0.1% to 10% .
JP2002082924A 2002-03-25 2002-03-25 Aliphatic polyester resin composition having high biodegradability Expired - Fee Related JP3581138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002082924A JP3581138B2 (en) 2002-03-25 2002-03-25 Aliphatic polyester resin composition having high biodegradability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002082924A JP3581138B2 (en) 2002-03-25 2002-03-25 Aliphatic polyester resin composition having high biodegradability

Publications (2)

Publication Number Publication Date
JP2003277593A JP2003277593A (en) 2003-10-02
JP3581138B2 true JP3581138B2 (en) 2004-10-27

Family

ID=29230925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082924A Expired - Fee Related JP3581138B2 (en) 2002-03-25 2002-03-25 Aliphatic polyester resin composition having high biodegradability

Country Status (1)

Country Link
JP (1) JP3581138B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4616029B2 (en) * 2005-02-16 2011-01-19 テルモ株式会社 Medical tools and materials
JP2008195900A (en) * 2007-02-15 2008-08-28 Japan Atomic Energy Agency Method for producing highly heat-resistant and biodegradable aromatic polyester, and the highly heat-resistant and biodegradable aromatic polyester

Also Published As

Publication number Publication date
JP2003277593A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
US20090085260A1 (en) Biodegradable material and process for producing the same
JP2005306943A (en) Method for producing polylactic acid transparent material and polylactic acid transparent material
CN101104706A (en) Polylactic acid and electron beam radiation modified method for derivative of the same
JP3759067B2 (en) Method for producing crosslinked biodegradable material
JP3581138B2 (en) Aliphatic polyester resin composition having high biodegradability
JPH07118423A (en) Production of modified polytetrafluoroethylene
JP4373763B2 (en) Biodegradable material and method for producing biodegradable material
CN104140522A (en) Degradable polyhydroxyalkanoate
JP3570850B2 (en) Method for producing cross-linked polycaprolactone
JP2007182484A (en) Method for producing crosslinked molded article of polylactic acid, and crosslinked molded article of polylactic acid
Jia et al. Crystallization behavior and mechanical properties of crosslinked plasticized poly (l‐lactic acid)
JP2007063359A (en) Heat-resistant polylactic acid and method for producing the same
JP5126670B2 (en) Method for producing heat-resistant biodegradable polyester
JP4761105B2 (en) Highly efficient crosslinking method for biodegradable polyester
JP4238113B2 (en) Heat-resistant crosslinked product having biodegradability and method for producing the heat-resistant crosslinked product
Jahanabadi et al. Effect of electron‐beam irradiation followed by annealing on the physical properties of poly (vinyl alcohol)–chitosan blend films at different weight ratios
JP4231381B2 (en) Biodegradable heat shrinkable material and method for producing the biodegradable heat shrinkable material
Castro et al. Incorporation of organic acids in the crosslinking of polyvinyl alcohol hydrogels
WO2020043065A1 (en) High stereocomplex polylactic acid material and preparation method therefor
JP4872149B2 (en) Method for producing biodegradable polylactic acid film having adhesiveness
JP4926594B2 (en) Method for producing heat-shrinkable material made of polylactic acid and heat-shrinkable material made of polylactic acid produced by the method
JP2005126603A (en) Heat resistant crosslinked product having biodegradability and method for producing the same
CN115490896B (en) Waterproof heat-resistant, ultraviolet-resistant and antibacterial multifunctional polyvinyl alcohol biodegradable film and preparation method thereof
KR101395674B1 (en) Method for the fabrication of polylactide by using radiation and polylactide manufactured by the same
JP3731529B2 (en) Biodegradable resin cross-linked foam and production method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees