JP3580581B2 - How to fix optical element to holder - Google Patents

How to fix optical element to holder Download PDF

Info

Publication number
JP3580581B2
JP3580581B2 JP26479094A JP26479094A JP3580581B2 JP 3580581 B2 JP3580581 B2 JP 3580581B2 JP 26479094 A JP26479094 A JP 26479094A JP 26479094 A JP26479094 A JP 26479094A JP 3580581 B2 JP3580581 B2 JP 3580581B2
Authority
JP
Japan
Prior art keywords
low
optical element
holder
melting
melting glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26479094A
Other languages
Japanese (ja)
Other versions
JPH08122601A (en
Inventor
恭史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP26479094A priority Critical patent/JP3580581B2/en
Publication of JPH08122601A publication Critical patent/JPH08122601A/en
Application granted granted Critical
Publication of JP3580581B2 publication Critical patent/JP3580581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、レンズ、光学結晶、プリズム、あるいは光アイソレータ等の光学素子をホルダに固定する方法に関するものである。
【0002】
【従来技術】
従来より、レンズ、偏光子、光学結晶、プリズム、光アイソレータ等の光学素子を使用する場合には、光学素子をホルダに固定して使用している。これは、取扱い、位置調整、さらには他の素子との固定を容易にし、かつ精度、強度、信頼性等を向上するためである。
【0003】
レンズをホルダに固定する方法は、従来より低融点ガラスにより行われているが、具体的には、図5(A)、(B)の平面図、A−A線断面図に示すように、ホルダ11にレンズ13を配設した後、粉末状または粉末をペースト状にした低融点ガラス12をレンズ13の外周部に充填して加熱溶融することにより、レンズ13を固定する方法により行われていた。
【0004】
さらに、図6の斜視図に示すように、低融点ガラス12の充填部分にちょうど収まるような形状の低融点ガラスのワッシャー状のプリフォーム14を、レンズ13とホルダ11との間に嵌合させた後、低融点ガラスのプリフォーム14を加熱溶融することにより、レンズ13を固定する方法もあった。
【0005】
また、光源からの光を光学系を介して伝達しようとすると、レンズや光ファイバの端面、曲がり部等で信号光の一部が反射しレーザー光源まで戻りノイズを発生させる。このような反射戻り光を除去するために、光アイソレータが使用されている。光アイソレータは図7の断面概略図に示すように、例えば、第1偏光子16a、ファラデー回転子17および第2偏光子16bを順に配置して構成されるものである。これらは、接着剤を用いて組み立てられる場合もあるが、温度変化による位置ズレ、接着剤に含まれるガス発生の問題もあり半田や低融点ガラスを用いて接合する場合が増えている。
【0006】
図7は、低融点ガラスで光アイソレータとホルダを接合した例を示したものであり、この組み立ては、予めサブアセンブルAとして磁石15内に第1偏光子16aとホルダ11a、ファラデー回転子17を低融点ガラス12で加熱固定し、他方、サブアセンブルBとして、ホルダ11bに第2偏光子16bを低融点ガラス12で加熱固定して、このサブアセンブルAとBを、図7に示すように組み合わせて、第1偏光子16aまたは第2偏光子16bのいずれかを回転させて相互の偏光面の角度調整を行ったあと接合されてなる。
【0007】
【発明が解決しようとする課題】
しかしながら、従来の図5や図7に示すように光学素子を粉末やペースト状の低融点ガラスを用いて固定する場合は、低融点ガラス12の分量の調節および所望の箇所に塗布する事が非常に難しく、塗布する際に光学素子の表面に付着してしまい、特性を劣化させてしまう場合があった。
【0008】
一方、図6に示すような低融点ガラスのプリフォーム14を用いた場合は、分量調節の手間や塗布装置が不要で作業が容易であるが、低融点ガラスのプリフォーム14の形状を小さく製作するのに限界があり、数mm以下だと正確な寸法に成形することが困難となるために、いびつになったり、ねじれたり、反ったり、場合によっては成形できないために、小型なホルダには対応できないという問題があった。また、低融点ガラスのプリフォーム14は形状的に強度が弱いために、溶融固定前は輸送中に崩れる可能性があるし、作業中に破片が生じ、光学素子表面に付着して特性を劣化させる可能性もあった。
【0009】
例えば、変形した低融点ガラスのプリフォーム14aを使用してレンズ13を固定した場合を、図8(B)の断面図に示すが、固定状態が不安定となり、レンズ13の位置がある距離Aだけずれてしまうために、特性が劣化してしまう。なお、図8(A)はプリフォーム14aの加熱溶融前の断面図である。
【0010】
【課題を解決するための手段】
本発明は、上記問題に鑑みてなされたものであり、段部を有するように中空部を形成したホルダにおいて、前記段部に光学素子を固定するときに、前記段部の前記光学素子の接合部位に低融点ガラスを予め充填し、前記光学素子を設置した後に前記低融点ガラスを加熱溶融させて前記光学素子を固定させた方法である。また、段部を有するように中空部を形成したホルダにおいて、前記ホルダの上面に中空部を覆うように板状の低融点ガラスを配し、上からプレスすると前記段部の前記光学素子の接合部位にのみ低融点ガラスが残るような形の金型を用いてプレスして低融点ガラスを充填し、前記光学素子を設置した後に前記低融点ガラスを加熱溶融させて前記光学素子を固定させた方法である。
【0011】
【実施例】
以下、本発明の実施例を図面を用いて説明する。
【0012】
図1乃至図4は本発明の3つの実施例を示し、同じ部材は同じ符号で示す。
【0013】
図1は本発明の第1実施例を示す構造であり、(A)は低融点ガラス2を一体成形した後のホルダ1の平面図、(B)は(A)のA−A線断面図、(C)は光学素子3を配設し、低融点ガラス2を加熱溶融して光学素子3を固定した後のA−A線断面図である。
【0014】
本発明では、光学素子3をホルダ1に配設する前に、予め接合部位に低融点ガラス2を充填することにより、低融点ガラス2の分量の調整、取り扱いが非常に容易となり、光学素子3の表面に低融点ガラス2が流出しないように容易に調整でき、小型のホルダ1にも精度よく低融点ガラス2を充填できるために、高精度に光学素子3を固定できる。なお、本実施例では、光学素子3が固定されるまでは、ホルダ1の段部となる部分に載置したが、中空部の下側から治具を挿入し、治具の上面に載置させておいてもよい。
【0015】
図2は、低融点ガラス2を充填する工程を示す構成図である。図2(A)に示すように、金型4bにホルダ1をセットし、図2(B)に示すように、ホルダ1の上にシート状に成形した低融点ガラス2を置き、図2(C)に示すように、加熱しながら上方から金型4aでプレスして成形する。なお、金型4aは、上方からプレスする際にホルダ1と光学素子3との接合部位にのみ低融点ガラス2が残るような形としている。また、板状の低融点ガラス2の厚みは、ホルダ1内に充填したい低融点ガラス2の肉厚により決定すればよい。
【0016】
このような工程によりホルダ1に低融点ガラス2が充填され、低融点ガラス2の肉厚が薄い場合でも、ホルダ1と一体化したために、作業中や輸送中に崩れることがなく、また、1ミクロン以下の加工精度が可能となり、部品の小型化、高精度化が実現する。
【0017】
図3は本発明の第2の実施例を示す図であり、(A)は低融点ガラス2を充填した後のホルダ1の平面図、(B)は(A)のA−A線断面図、(C)は光学素子3を配設し、低融点ガラス2を加熱溶融して光学素子3を固定した後のA−A線断面図である。
【0018】
本実施例では、ホルダ1の低融点ガラス2の充填部分に溝Bを設けた。この溝Bにより、さらに光学素子3の表面開口径内に低融点ガラス2が流出しにくくなり、より光学特性を劣化させない構成となる。
【0019】
図4は本発明の第3の実施例を示す断面図であり、光アイソレータをホルダに固定する場合を示した断面図である。光アイソレータの場合は、通信用として高信頼性が望まれており、特に半田よりもさらに信頼性の高い低融点ガラスによる接合が有効になる。この光アイソレータは、筒状の磁石5内に第1偏光子6a、ファラデー回転子7および第2偏光子6bが具備されている。第1偏光子6aは第2の実施例に示した溝構造を有したホルダ1aに加熱溶融された低融点ガラス2aを介して固定されている。ファラデー回転子7はホルダ1bに低融点ガラス2bを介して固定され、第1偏光子6aと磁石5とともにサブアセンブルAとして予め組み立てられる。また、第2偏光子6bも第2の実施例に示した溝構造を有したホルダ1cに低融点ガラス2cを介して固定されサブアセンブルBとして組み立てられる。このサブアセンブルA、Bを接合し、第1偏光子6aと第2偏光子6bの偏光面の角度調整を行い固定することにより製作される。なお、低融点ガラス2a、2b、2cを介しての固定方法は、上記第1の実施例または第2の実施例と同様に、光学素子を配設する前に予め低融点ガラス2a、2b、2cを充填する方法で行う。
【0020】
このように製作された光アイソレータは、上記第1の実施例および第2の実施例と同様の効果を得ることができる。
【0021】
【発明の効果】
以上のように、本発明の光学素子のホルダへの固定方法によれば、ホルダと光学素子の接着部位に低融点ガラスを予め充填し、光学素子を設置した後に低融点ガラスを加熱溶融させて光学素子を固定する方法であるため、あるいは、ホルダの上面に板状の低融点ガラスを配し、上からプレスしてホルダと光学素子の接合部位にのみ低融点ガラスが残るようにした後、光学素子を設置し、低融点ガラスを加熱溶融させて光学素子を固定する方法であるために、分量の調整や、所望の部位への充填が非常に容易であり、低融点ガラスが不要な部位への付着の心配がなく、しかも小型の場合でも高精度に成形できるようになる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示し、(A)は平面図、(B)は(A)のA−A線断面図、(C)は加熱溶融後のA−A線断面図である。
【図2】本発明の製造工程を示す構成図である。
【図3】本発明の第2の実施例を示し、(A)は平面図、(B)は(A)のA−A線断面図、(C)は加熱溶融後のA−A線断面図である。
【図4】本発明の第3の実施例を示す断面図である。
【図5】従来の光学素子がホルダに固定された状態を示す図である。
【図6】従来の低融点ガラスのプリフォームを示す斜視図である。
【図7】従来の光アイソレータ断面概略図である。
【図8】従来の光学素子がホルダに固定された状態を示す図である。
【符号の説明】
1、1a、1b、1c、11、11a、11b:ホルダ
2、2a、2b、2c、12、12a、12b:低融点ガラス
3:光学素子
4a、4b:金型
5、15:磁石
6a、16a:第1偏光子
6b、16b:第2偏光子
7、17:ファラデー回転子
13:レンズ
14、14a:低融点ガラスのプリフォーム
B:溝
[0001]
[Industrial applications]
The present invention relates to a method for fixing an optical element such as a lens, an optical crystal, a prism, or an optical isolator to a holder.
[0002]
[Prior art]
Conventionally, when an optical element such as a lens, a polarizer, an optical crystal, a prism, and an optical isolator is used, the optical element is used by being fixed to a holder. This is to facilitate handling, position adjustment, and fixing to other elements, and to improve accuracy, strength, reliability, and the like.
[0003]
The method of fixing the lens to the holder is conventionally performed by using a low-melting glass. Specifically, as shown in the plan views of FIGS. 5A and 5B and the cross-sectional view taken along the line AA, After the lens 13 is disposed on the holder 11, the outer periphery of the lens 13 is filled with powdered or powdered low-melting glass 12 and heated and melted to fix the lens 13. Was.
[0004]
Further, as shown in the perspective view of FIG. 6, a washer-shaped preform 14 of low-melting-point glass having a shape just fitting in the filling portion of the low-melting-point glass 12 is fitted between the lens 13 and the holder 11. After that, there is also a method of fixing the lens 13 by heating and melting the preform 14 of the low melting point glass.
[0005]
When light from a light source is transmitted through an optical system, a part of the signal light is reflected by a lens, an end face of an optical fiber, a bent portion, or the like, and returns to the laser light source to generate noise. An optical isolator is used to remove such reflected return light. As shown in the schematic cross-sectional view of FIG. 7, the optical isolator is configured by, for example, sequentially arranging a first polarizer 16a, a Faraday rotator 17, and a second polarizer 16b. These may be assembled using an adhesive, but are often joined using solder or low-melting glass due to the problem of misalignment due to temperature change and generation of gas contained in the adhesive.
[0006]
FIG. 7 shows an example in which an optical isolator and a holder are joined with low melting point glass. In this assembling, a first polarizer 16a, a holder 11a, and a Faraday rotator 17 are previously placed in a magnet 15 as a sub-assembly A. The second polarizer 16b is fixed to the holder 11b by heating with the low-melting glass 12, and the sub-assemblies A and B are combined as shown in FIG. Then, either the first polarizer 16a or the second polarizer 16b is rotated to adjust the angle of the plane of polarization of each other, and then joined.
[0007]
[Problems to be solved by the invention]
However, when the optical element is fixed by using powder or paste-like low-melting glass as shown in FIGS. 5 and 7, it is very difficult to adjust the amount of the low-melting glass 12 and apply it to a desired portion. In some cases, it adheres to the surface of the optical element during application, deteriorating the characteristics.
[0008]
On the other hand, when a low-melting-point glass preform 14 as shown in FIG. 6 is used, the work is easy without the trouble of adjusting the amount and a coating device, but the shape of the low-melting-point glass preform 14 is made small. It is difficult to mold to accurate dimensions if it is less than a few mm, so it becomes distorted, twisted, warped, and in some cases cannot be molded. There was a problem that it could not be handled. In addition, since the low-melting glass preform 14 has a low strength in shape, it may be broken during transportation before melting and fixing, and shards may be generated during the work, and may adhere to the optical element surface and deteriorate the characteristics. There was also a possibility to make it.
[0009]
For example, FIG. 8B is a cross-sectional view illustrating a case where the lens 13 is fixed using the deformed low-melting glass preform 14a. , The characteristics are degraded. FIG. 8A is a cross-sectional view of the preform 14a before being heated and melted.
[0010]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and in a holder having a hollow portion having a step, when an optical element is fixed to the step, bonding of the optical element to the step is performed. This is a method in which a low-melting glass is pre-filled in a part, the optical element is installed, and then the low-melting glass is heated and melted to fix the optical element. Further, in a holder having a hollow portion having a stepped portion, a plate-shaped low-melting glass is arranged on the upper surface of the holder so as to cover the hollow portion, and when pressed from above, the joining of the optical elements of the stepped portion is performed. The low-melting point glass was filled only by pressing using a mold having such a shape that the low-melting point glass remains, and the optical element was fixed by heating and melting the low-melting point glass after installing the optical element. Is the way.
[0011]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
FIGS. 1 to 4 show three embodiments of the present invention, wherein the same members are denoted by the same reference numerals.
[0013]
1A and 1B show a structure of a first embodiment of the present invention. FIG. 1A is a plan view of a holder 1 after a low-melting glass 2 is integrally formed, and FIG. 1B is a cross-sectional view taken along line AA of FIG. (C) is a cross-sectional view taken along line AA after the optical element 3 is provided, and the low-melting glass 2 is heated and melted to fix the optical element 3.
[0014]
According to the present invention, before the optical element 3 is disposed in the holder 1, the low melting point glass 2 is filled in advance in the joining portion, so that adjustment and handling of the amount of the low melting point glass 2 become very easy. Can be easily adjusted so that the low-melting glass 2 does not flow out to the surface of the device, and the small-sized holder 1 can be filled with the low-melting glass 2 with high accuracy, so that the optical element 3 can be fixed with high accuracy. In this embodiment, the optical element 3 is placed on the stepped portion of the holder 1 until the optical element 3 is fixed. However, a jig is inserted from the lower side of the hollow portion and placed on the upper surface of the jig. You may let it.
[0015]
FIG. 2 is a configuration diagram showing a step of filling the low melting point glass 2. As shown in FIG. 2A, the holder 1 is set in the mold 4b, and as shown in FIG. 2B, the low-melting glass 2 formed into a sheet is placed on the holder 1 and FIG. As shown in C), molding is performed by pressing with a mold 4a from above while heating. The mold 4a is shaped so that the low-melting glass 2 remains only at the joint between the holder 1 and the optical element 3 when pressed from above. The thickness of the plate-like low-melting glass 2 may be determined according to the thickness of the low-melting glass 2 to be filled in the holder 1.
[0016]
Even if the low melting glass 2 is filled in the holder 1 by such a process and the thickness of the low melting glass 2 is small, since the low melting glass 2 is integrated with the holder 1, it does not collapse during work or transportation. Processing accuracy of submicron or less is possible, and miniaturization and high precision of parts are realized.
[0017]
3A and 3B are views showing a second embodiment of the present invention, in which FIG. 3A is a plan view of the holder 1 after the low-melting glass 2 is filled, and FIG. 3B is a sectional view taken along line AA of FIG. (C) is a cross-sectional view taken along line AA after the optical element 3 is provided, and the low-melting glass 2 is heated and melted to fix the optical element 3.
[0018]
In this embodiment, a groove B is provided in a portion of the holder 1 filled with the low melting point glass 2. The groove B further makes it difficult for the low-melting glass 2 to flow into the surface opening diameter of the optical element 3, so that the optical characteristics are not further deteriorated.
[0019]
FIG. 4 is a sectional view showing a third embodiment of the present invention, and is a sectional view showing a case where an optical isolator is fixed to a holder. In the case of an optical isolator, high reliability is required for communication, and in particular, bonding with low melting point glass, which is more reliable than solder, is effective. In this optical isolator, a first polarizer 6a, a Faraday rotator 7, and a second polarizer 6b are provided in a cylindrical magnet 5. The first polarizer 6a is fixed to the holder 1a having the groove structure shown in the second embodiment via the low-melting glass 2a that is heated and melted. The Faraday rotator 7 is fixed to the holder 1b via the low-melting glass 2b, and is pre-assembled with the first polarizer 6a and the magnet 5 as a sub-assembly A. Also, the second polarizer 6b is fixed to the holder 1c having the groove structure shown in the second embodiment via the low-melting glass 2c, and is assembled as a sub-assembly B. The sub-assemblies A and B are joined together, the angle of the polarization plane of the first polarizer 6a and the second polarizer 6b is adjusted and fixed. In addition, the fixing method via the low melting point glass 2a, 2b, 2c is similar to the first embodiment or the second embodiment, and the low melting point glass 2a, 2b, 2c is filled.
[0020]
The optical isolator manufactured as described above can obtain the same effects as those of the first and second embodiments.
[0021]
【The invention's effect】
As described above, according to the method for fixing the optical element to the holder of the present invention, the low melting point glass is pre-filled in the bonding portion between the holder and the optical element, and the low melting point glass is heated and melted after the optical element is installed. Because it is a method of fixing the optical element, or after arranging a plate-like low-melting glass on the upper surface of the holder and pressing from above so that the low-melting glass remains only at the joint between the holder and the optical element, Since the optical element is installed and the low-melting glass is heated and melted to fix the optical element, it is very easy to adjust the amount and fill the desired site, and the low-melting glass is unnecessary. There is no need to worry about adhesion to the material, and molding can be performed with high accuracy even in a small size.
[Brief description of the drawings]
1A and 1B show a first embodiment of the present invention, wherein FIG. 1A is a plan view, FIG. 1B is a sectional view taken along line AA of FIG. 1A, and FIG. 1C is a sectional view taken along line AA of FIG. FIG.
FIG. 2 is a configuration diagram showing a manufacturing process of the present invention.
3A and 3B show a second embodiment of the present invention, wherein FIG. 3A is a plan view, FIG. 3B is a sectional view taken along line AA of FIG. 3A, and FIG. 3C is a sectional view taken along line AA of FIG. FIG.
FIG. 4 is a sectional view showing a third embodiment of the present invention.
FIG. 5 is a view showing a state where a conventional optical element is fixed to a holder.
FIG. 6 is a perspective view showing a conventional low-melting glass preform.
FIG. 7 is a schematic sectional view of a conventional optical isolator.
FIG. 8 is a diagram showing a state where a conventional optical element is fixed to a holder.
[Explanation of symbols]
1, 1a, 1b, 1c, 11, 11a, 11b: Holder 2, 2a, 2b, 2c, 12, 12a, 12b: Low melting point glass 3: Optical element 4a, 4b: Mold 5, 15: Magnet 6a, 16a : First polarizer 6b, 16b: second polarizer 7, 17: Faraday rotator 13: lens 14, 14a: preform B of low melting point glass: groove

Claims (1)

段部を有するように中空部を形成した光学素子設置用のホルダにおいて、前記段部に光学素子を固定するときに、以下の(1)乃至(3)の工程により行うことを特徴とする光学素子のホルダへの固定方法。
(1)ホルダの光学素子を固定する面を上に向け、前記ホルダの上面に少なくとも中空部全体を覆うように板状の低融点ガラスを配設する工程、(2)上からプレスすると前記段部の前記光学素子の接合部位にのみ低融点ガラスが残る形の金型を用いてプレスし、前記段部に低融点ガラスを充填する工程、(3)光学素子を前記段部に設置した後に前記低融点ガラスを加熱溶融させて前記光学素子を固定する工程。
In an optical element installation holder having a hollow portion having a stepped portion, the optical element is fixed to the stepped portion by performing the following steps (1) to (3). How to fix the element to the holder.
(1) a step of disposing a plate-like low-melting glass on the upper surface of the holder so as to cover at least the entire hollow portion, with the surface of the holder fixing the optical element facing upward; Pressing using a mold having a shape such that the low-melting glass remains only at the joint portion of the optical element in the portion, and filling the low-melting glass in the step, (3) after installing the optical element in the step Fixing the optical element by heating and melting the low-melting glass.
JP26479094A 1994-10-28 1994-10-28 How to fix optical element to holder Expired - Fee Related JP3580581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26479094A JP3580581B2 (en) 1994-10-28 1994-10-28 How to fix optical element to holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26479094A JP3580581B2 (en) 1994-10-28 1994-10-28 How to fix optical element to holder

Publications (2)

Publication Number Publication Date
JPH08122601A JPH08122601A (en) 1996-05-17
JP3580581B2 true JP3580581B2 (en) 2004-10-27

Family

ID=17408244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26479094A Expired - Fee Related JP3580581B2 (en) 1994-10-28 1994-10-28 How to fix optical element to holder

Country Status (1)

Country Link
JP (1) JP3580581B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502719B2 (en) * 2004-06-14 2010-07-14 リコー光学株式会社 Optical element and optical element manufacturing method
US7946706B2 (en) * 2006-02-10 2011-05-24 Volk Optical Inc. Lens assembly for vitreoretinal surgery

Also Published As

Publication number Publication date
JPH08122601A (en) 1996-05-17

Similar Documents

Publication Publication Date Title
US6074104A (en) Method for hermetically sealing optical fiber introducing section and hermetically sealed structure
US6142678A (en) Optical coupling
JP3150662B2 (en) Optical fiber array module with metal deposition
EP1180700A2 (en) Optical coupling
JP3580581B2 (en) How to fix optical element to holder
US6931170B2 (en) Fiber-attached optical devices with in-plane micromachined mirrors
JP2007073711A (en) Airtight sealing package and optical submodule
US6853779B2 (en) Floating optical carrier
JPH0267508A (en) Optical fiber fixing method
JP3311437B2 (en) Optical fiber array terminal
JP3103680B2 (en) Optical element fixing structure, manufacturing method thereof, and optical isolator using the same
JPH0969585A (en) Electronic part mounting device and its airtight sealing method
JP2800760B2 (en) Optical semiconductor module
JP2004354647A (en) Fixing structure and fixing method for optical element
US20030012518A1 (en) Optical fiber coupler receptacle member
US6880984B2 (en) Laser platform
JP3547057B2 (en) Quartz wave plate bonding method
JP2567358Y2 (en) Optical isolator
JPH0868917A (en) Joining method of optical waveguide and optical fiber and optical waveguide type device
JP2000352641A (en) Optical fiber fixing substrate and fixing method
JP4375958B2 (en) Optical module
JPH0734402Y2 (en) Light source module
US6678459B1 (en) Method for bonding two optical parts and apparatus thereof
JPS61231514A (en) Integral package structure of optical element and optical fiber
JP4429010B2 (en) Optical isolator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Effective date: 20040405

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040720

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees