JP3580386B2 - Semiconductor light emitting module - Google Patents

Semiconductor light emitting module Download PDF

Info

Publication number
JP3580386B2
JP3580386B2 JP22418995A JP22418995A JP3580386B2 JP 3580386 B2 JP3580386 B2 JP 3580386B2 JP 22418995 A JP22418995 A JP 22418995A JP 22418995 A JP22418995 A JP 22418995A JP 3580386 B2 JP3580386 B2 JP 3580386B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
lens
semiconductor light
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22418995A
Other languages
Japanese (ja)
Other versions
JPH0969651A (en
Inventor
哲二 富岡
武志 佐野
伸幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP22418995A priority Critical patent/JP3580386B2/en
Publication of JPH0969651A publication Critical patent/JPH0969651A/en
Application granted granted Critical
Publication of JP3580386B2 publication Critical patent/JP3580386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体発光モジュール、特に特性のばらつきがなく、信頼性が高く且つ小型・薄型、高出力の半導体発光モジュールに関するものである。
【0002】
【従来の技術】
複数の半導体発光装置又は半導体発光素子が単一の外囲体に組み込まれて成る半導体発光装置を構成する所謂半導体発光モジュールは公知である。
図9に示す従来の半導体発光モジュールは、プリント基板(1)と、プリント基板(1)に実装された複数個の発光ダイオード(2)と、発光ダイオード(2)を包囲してプリント基板(1)に取り付けられた外囲体(3)から成り、複数個の発光ダイオード(2)をそれぞれの配光方向を揃えて一体に形成される。発光ダイオード(2)は、外部リード(4)と、外部リード(4)の端部に固定されたレンズ(5)とを有する。図示しないが、外部リード(4)はヘッダ(皿状支持電極体)を備え、レンズ(5)は外部リード(4)のヘッダに固着された発光ダイオード素子を封止する。
【0003】
また、図10に示す他の半導体発光モジュールは、液晶ポリマ等から成り一方の主面に複数の凹部(6)を形成した基板(7)と、複数の凹部(6)内に固着された複数の発光ダイオード素子(8)と、発光ダイオード(8)を覆う光透過性レンズ(9)とから構成される。基板(7)には図示しない配線導体がメッキ等によってパターン状に形成され、発光ダイオード素子(8)はリード細線(10)を介して配線導体に電気的に接続される。
【0004】
【発明が解決しようとする課題】
ところで、光通信を目的として自動車に搭載される半導体発光モジュールにおいては、モジュールが小面積(小型)であり且つ薄型であることが要求される。ここで、図9の半導体発光モジュールでは、個別に完成した樹脂封止型発光ダイオード(2)を回路基板(1)に配置した構成となっており、レンズ(5)の横幅L及び高さHが比較的大きいため、このような要求を満足することができない。
【0005】
一方、図10の半導体発光モジュールでは、ベアチップの発光ダイオード素子(8)を使用し、更に基板(7)の側壁面に設けられた図示しない配線導体を利用して外部電極端子との接続を行うため装置の小型化・薄型化が可能である。また、凹部(6)の壁面に傾斜を設けて、この傾斜した壁面に反射性に優れた電極を形成して反射壁とすることで高出力且つ鋭い指向性を得ることもできる。
【0006】
しかしながら、図10の半導体発光モジュールでは、発光ダイオード素子(8)の選別は可能であるが、リード細線(10)のボンディングに起因する特性劣化・特性不良は除去できないため、特性のばらつきを回避できず、高い歩留まりも得られない。また、基板(7)とレンズ(9)との接合界面の面積が比較的大きいため、両者の線膨張係数差に起因して界面剥離等が生じるおそれがあり、信頼性の点で問題があった。更に、特殊な形状の凹部(6)を要し、これに反射性に優れた電極のメッキを行う必要があり、加えて前記の通り歩留まりが低いため、材料及び製造にかかるコストが高くなることも問題であった。
そこで、本発明は、これらの問題が解消され、特性のばらつきが無く、信頼性が高く且つ低コストの小型・薄型、高出力の半導体発光モジュールを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明による半導体発光モジュールは、一方の主面(11a)に複数の接続用配線導体(16)を形成した回路基板(11)と、回路基板(11)の一方の主面(11a)側に配置され且つ接続用配線導体(16)により互いに電気的に接続された複数の半導体発光装置(12)と、複数の半導体発光装置(12)の上方に取り付けられ且つ複数の半導体発光装置(12)から発生した光を集光するレンズ(15)と、複数の半導体発光装置(12)に近接して回路基板(11)の一方の主面(11a)に垂設され且つ複数の半導体発光装置(12)から発生した光をレンズ(15)側に反射する反射壁(13)とを備えている。複数の半導体発光装置(12)の各々は、それぞれ接続用配線導体(16)に電気的に接続され且つ互いに離間した2つの発光素子配線導体(25)(26)を形成する発光素子基板(22)と、発光素子基板(22)の一方の主面(22a)に固着された半導体発光素子(23)と、半導体発光素子(23)を封止する光透過性樹脂から成る発光素子レンズ(24)とを備えている。
【0008】
発光素子レンズ(24)は、発光素子基板(22)との接合部(24c)を底面とし発光素子基板(22)から遠ざかるにつれて断面積が減少する角錐台形状を有する。発光素子レンズ(24)の角錐台形状は、反射壁(13)に対向せずに回路基板(11)の一方の主面(11a)に対して第1の角度で傾斜する第1の側面(24a)と、第1の角度よりも大きい第2の角度で回路基板(11)の一方の主面(11a)に対して傾斜し且つ反射壁(13)に対向する第2の側面(24b)とを有する。複数の半導体発光装置(12)の各々に対応する複数の楕円球面部(33)をレンズ(15)の一方の主面(15a)に形成し、発光素子レンズ(24)の第1の側面(24a)を介して光が通過する楕円球面部(33)の部分を大きい曲率で形成する。発光素子レンズ(24)の第2の側面(24b)を介して光が通過する楕円球面部(33)の部分を小さい曲率で形成する。
【0009】
本発明では、外部リードを必要としない半導体発光装置(12)を用いるためモジュール全体の小型化が可能となる。また、半導体発光素子(23)から放出された光は、まず発光素子レンズ(24)によってレンズ(15)側に屈折し、更に発光素子レンズ(24)の第2の側面(24b)から導出された光は反射壁(13)によってレンズ(15)側に向きを変え、最終的に半導体発光素子(23)から放出された光の全体がレンズ(15)によって装置外部に導出される。従って、半導体発光装置(12)の発光素子レンズ(24)、反射壁(13)及びレンズ(15)により半導体発光素子(23)から放出された光を効率よくモジュール外部に導出できるため、高い発光出力が得られる。
【0010】
【発明の実施の形態】
以下、発光ダイオードモジュールに適用した本発明による半導体発光モジュールの実施の形態を図1〜図8について説明する。
図1に示す発光ダイオードモジュールは、回路基板(11)、半導体発光装置としてのチップ型発光ダイオード(表面実装型発光ダイオード)(12)、反射壁(13)、外枠体(14)及びレンズ(15)から構成される。
【0011】
回路基板(11)は例えばエポキシ樹脂等から成る。図2に示すように、回路基板(11)の一方の主面(11a)には複数本の帯状の接続用配線導体(16)と電極端子(17)とが形成され、両者は連絡配線導体(17a)で電気的に接続される。また、図3に示すように、回路基板(11)の他方の主面(11b)には屈曲した帯状の接続用配線導体(18)が形成される。一方の主面(11a)側に形成された接続用配線導体(16)は、回路基板(11)の一方の側面(11c)から他方の側面(11d)の方向に向う第1の方向に延伸し、延伸方向の途中に複数の間欠部(19)が設けられる。複数本の接続用配線導体(16)の間には反射板(13)が垂設される。回路基板(11)の一方の側面(11c)の近傍には貫通孔(20)が穿設され、接続用配線導体(16)は貫通孔(20)を通じて一方の主面(11a)から他方の主面(11b)に達する。電極端子(17)の一方端は一方の主面(11a)上を第1の方向と直交する第2の方向に回路基板(11)の側面まで延伸し、更に基板の側壁に形成された切り欠き部(21)を通じて回路基板(11)の他方の主面(11b)側まで達する。接続用配線導体(16)の一方端と電極端子(17)の一方端とは、回路基板(11)の他方の主面(11b)に形成された接続用配線導体(18)によって電気的に接続されている。
【0012】
チップ型発光ダイオード(12)は、図5に示すように、発光素子基板(22)と、この一方の主面に固着された半導体発光素子としての発光ダイオード素子(23)と、光透過性樹脂から成る角錐台形状の発光素子レンズ(24)とを備える。発光素子基板(22)の一方の主面(22a)には互いに離間した2つの発光素子配線導体(25)(26)が形成され、一方の配線導体(25)の主面には発光ダイオード素子(23)の裏面に形成された電極が固着される。他方の配線導体(26)にはリード細線(27)を介して発光ダイオード素子(23)の上面に形成された電極が電気的に接続される。図6に示すように、発光素子基板(22)の長手方向の両端には切り欠き部(28)(29)が形成される。発光素子配線導体(25)(26)の一方端はそれぞれ切り欠き部(28)及び(29)を通じて発光素子基板(22)の他方の主面まで延伸する。発光素子基板(22)の他方の主面には互いに離間した2つの接続電極(30)(31)が形成され、それぞれ一方又は他方の発光素子配線導体(25)(26)の一方端に繋っている。発光素子レンズ(24)は周知のトランスファモールドで形成され、発光ダイオード素子(23)及びリード細線(27)を封止する。図1及び図3に示すように、反射壁(13)に対向しない発光素子レンズ(24)の第1の側面(24a)は回路基板(11)の一方の主面(11a)に対して第1の角度で傾斜し、反射壁(13)に対向する発光素子レンズ(24)の第2の側面(24b)は、回路基板(11)の一方の主面(11a)に対して第1の角度よりも大きい第2の角度で傾斜する。
【0013】
図1及び図3に示すように、チップ型発光ダイオード(12)は、回路基板(11)上の接続用配線導体(16)に対してその間欠領域(19)を架橋するように固着される。即ち、チップ型発光ダイオード(12)の一方の接続電極(30)と他方の接続電極(31)は、それぞれ間欠領域(19)の一方の側の接続用配線導体(16)と他方の側の接続用配線導体(16)に固着される。図1の発光ダイオードモジュールでは、1本の接続用配線導体(16)に間欠領域(19)に対応してそれぞれ4個のチップ型発光ダイオードが固着されて互いに直列に電気的に接続され、5本の接続用配線導体(16)に合計20個のチップ型発光ダイオードが配設されている。
【0014】
反射壁(13)は、反射性に優れた白色の樹脂等から成る板材であり、回路基板(11)の接続用配線導体(16)の間に垂直に固着される。図4に示すように、反射壁(13)は、その上端が発光ダイオード(12)の発光素子レンズ(24)の上面とほぼ同等かそれよりも上方に且つ接続用配線導体(16)の延伸する方向に沿って配置される。
外枠体(14)は黒色の樹脂等から成り、図2に示すように、複数の発光ダイオード(12)を包囲するように回路基板(11)の一方の主面(11a)に固着される。
【0015】
レンズ(15)は光透過性に優れた樹脂等から成り、図7に示すように、一方の主面(15a)に発光ダイオード(12)に対応する20個の楕円球面部(33)が形成される。図4に示すように、レンズ(15)の他方の主面(15b)は平面となっており、反射壁(13)の上面に固着されている。楕円球面部(33)は、図1に示すように、発光素子レンズ(24)の第1の側面(24a)を介して光が通過する部分は曲率が大きく、図4に示すように、発光素子レンズ(24)の第2の側面(24b)を介して光が通過する部分は曲率が小さく形成される。楕円球面部(33)は、平面的に見て、接続用配線導体(16)の延伸方向(第1の方向)に長く、これに直交する第2の方向に短く形成されている。
【0016】
本発明の実施の形態では、外部リードを必要としないチップ型発光ダイオード(12)を用いるためモジュール全体の小型化・薄型化が可能となる。また、発光ダイオード素子(23)から放出された光は、まず発光素子レンズ(24)によってレンズ(15)側に屈折し、更に発光素子レンズ(24)の第2の側面(24b)から導出された光は反射壁(13)によってレンズ(15)側に向きを変え、最終的に発光ダイオード素子(23)から放出された光の全体がレンズ(15)によって装置外部に導出される。従って、発光ダイオード(12)の発光素子レンズ(24)、反射壁(13)及びレンズ(15)により発光ダイオード素子(23)から放出された光を効率よくモジュール外部に導出できるため、高い発光出力が得られる。更に、発光素子レンズ(24)とレンズ(15)との組み合わせにより、鋭い指向性も得られる。
【0017】
また、本発明の実施の形態によれば、チップ型発光ダイオード(12)の発光素子基板(22)と発光素子レンズ(24)との接合面積が比較的小さいため、多数の温度サイクルが加わるような厳しい環境下で使用しても、発光素子基板(22)と発光素子レンズ(24)との線膨張係数差に起因して界面剥離等が生じることがない。また、チップ型発光ダイオード(12)は、回路基板(11)に組み込む前に特性を検査して不良品を選別・除去できるため、チップ自体は勿論ワイヤボンディングに起因する特性のばらつき及び歩留まりの低下も回避できる。更に、図10の半導体発光モジュールで必要とされる特殊・複雑な製造工程を経ずに製作できるのでコストの低減が可能である。
このように、本発明の実施の形態によれば、小型・薄型化、高出力化が可能なばかりでなく、特性のばらつきを防止でき、信頼性も高く且つ低コストの半導体発光モジュールが得られる。
【0018】
本発明の実施の形態は前記の例に限定されず、種々の変更が可能である。例えば、反射壁(13)に対向する発光素子レンズ(24)の第2の側面(24b)の回路基板(11)の一方の主面(11a)に対する傾斜角度(第2の角度)を、図4に示す形状よりも小さくすることができる。しかし、発光素子レンズ(24)の第2の側面(24b)から横方向に放射される光は反射壁(13)によって上方向に導き出されるから、第2の角度を小さくしなくても発光出力は十分に高いレベルで達成される。むしろ、モジュールの小型化の点では、第2の角度を大きく(垂直に近く)することによって発光ダイオード(12)の横幅を狭くする方が有利である。
【0019】
また、レンズ(15)の一方の主面(15a)を球面に形成してもよい。但し、モジュールの小型化のためには、楕円球面即ち接続用配線導体(16)の延伸方向(第1の方向)に長手に形成する図7に示す形態が望ましい。第2の方向に長手に形成すると、反射壁(13)で上方に偏位されにくい発光素子レンズ(24)の第1の側面(24a)を介して導出される光を上方に導く効果が損なわれるからである。また、発光素子レンズ(24)の上面を半球状のレンズ面とすることもできる。
【0020】
【実施例】
回路基板(11)の一方の主面(11a)に図8の点線A部分に相当する発光回路部を形成し、他方の主面(11b)に図8の点線B部分に相当するスイッチング回路等の部分を形成する形態とすることにより、更に小型化・高集積化が達成できる。図8において、41はFET、42はトランジスタ、43はツェナダイオード、44はコンデンサ、45は電解コンデンサ、46はダイオード、47〜49は抵抗を示す。
【0021】
【発明の効果】
本発明によれば、光通信等に有効な小型且つ高輝度の半導体発光モジュールが得られる。
【図面の簡単な説明】
【図1】本発明による半導体発光モジュールの断面図
【図2】図1のA−A線断面図
【図3】図1の底面図
【図4】図2のB−B線断面図
【図5】図1の半導体発光モジュールに適用される半導体発光装置の断面図
【図6】図5の平面図
【図7】レンズの平面図
【図8】本発明の実施例を示す回路図
【図9】従来の半導体発光モジュールの断面図
【図10】従来の他の半導体発光モジュールの断面図
【符号の説明】
11..回路基板、 11a..一方の主面、 11b..他方の主面、 12..発光ダイオード(半導体発光装置)、 13..反射壁、 15..レンズ、 15a..一方の主面、 15b..他方の主面、 16..接続用配線導体、 17..電極端子、 22..発光素子基板、 22a..一方の主面、 23..発光ダイオード素子(半導体発光素子)、 24..発光素子レンズ、 24a..第1の側面、 24b..第2の側面、 24c..接合部、25,26..発光素子配線導体、 27..リード細線、 33..楕円球面部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor light-emitting module, and more particularly to a small, thin, and high-output semiconductor light-emitting module having high reliability, without variation in characteristics.
[0002]
[Prior art]
A so-called semiconductor light-emitting module that constitutes a semiconductor light-emitting device in which a plurality of semiconductor light-emitting devices or semiconductor light-emitting elements are incorporated in a single envelope is known.
The conventional semiconductor light emitting module shown in FIG. 9 includes a printed circuit board (1), a plurality of light emitting diodes (2) mounted on the printed circuit board (1), and a printed circuit board (1) surrounding the light emitting diode (2). ), And a plurality of light emitting diodes (2) are integrally formed with their light distribution directions aligned. The light emitting diode (2) has an external lead (4) and a lens (5) fixed to an end of the external lead (4). Although not shown, the external lead (4) includes a header (dish-shaped support electrode body), and the lens (5) seals the light emitting diode element fixed to the header of the external lead (4).
[0003]
Further, another semiconductor light emitting module shown in FIG. 10 includes a substrate (7) made of a liquid crystal polymer or the like and having a plurality of recesses (6) formed on one main surface, and a plurality of semiconductor light emitting modules fixed in the plurality of recesses (6). And a light-transmitting lens (9) covering the light-emitting diode (8). A wiring conductor (not shown) is formed on the substrate (7) in a pattern by plating or the like, and the light emitting diode element (8) is electrically connected to the wiring conductor via a thin lead wire (10).
[0004]
[Problems to be solved by the invention]
By the way, in a semiconductor light emitting module mounted on an automobile for the purpose of optical communication, it is required that the module has a small area (small size) and a low profile. Here, the semiconductor light emitting module of FIG. 9 has a configuration in which the resin-sealed light emitting diodes (2) individually completed are arranged on the circuit board (1), and the lateral width L and the height H of the lens (5). Is relatively large, such a requirement cannot be satisfied.
[0005]
On the other hand, in the semiconductor light emitting module of FIG. 10, a bare chip light emitting diode element (8) is used, and furthermore, connection with an external electrode terminal is performed using a wiring conductor (not shown) provided on a side wall surface of the substrate (7). Therefore, the size and thickness of the device can be reduced. In addition, a high output and sharp directivity can be obtained by providing a slope on the wall surface of the concave portion (6) and forming an electrode having excellent reflectivity on the inclined wall surface to form a reflective wall.
[0006]
However, in the semiconductor light emitting module of FIG. 10, although it is possible to select the light emitting diode element (8), it is not possible to eliminate characteristic deterioration and characteristic failure caused by the bonding of the thin lead wire (10), so that it is possible to avoid characteristic variations. And a high yield cannot be obtained. In addition, since the area of the bonding interface between the substrate (7) and the lens (9) is relatively large, interface separation or the like may occur due to a difference in linear expansion coefficient between the two, and there is a problem in reliability. Was. In addition, a specially shaped concave portion (6) is required, and it is necessary to perform plating of an electrode having excellent reflectivity on the concave portion (6). In addition, as described above, the yield is low, and the material and manufacturing costs are high. Was also a problem.
Accordingly, an object of the present invention is to provide a small, thin, and high-output semiconductor light emitting module which solves these problems, has no variation in characteristics, has high reliability, and is low in cost.
[0007]
[Means for Solving the Problems]
A semiconductor light emitting module according to the present invention includes a circuit board (11) having a plurality of connection wiring conductors (16) formed on one main surface (11a), and a circuit board (11) on one main surface (11a) side. A plurality of semiconductor light emitting devices (12) arranged and electrically connected to each other by a connection wiring conductor (16); and a plurality of semiconductor light emitting devices (12) mounted above the plurality of semiconductor light emitting devices (12). A lens (15) for condensing light generated from the plurality of semiconductor light-emitting devices (12), and a plurality of semiconductor light-emitting devices (12) suspended from one main surface (11a) of the circuit board (11). And a reflecting wall (13) for reflecting the light generated from (12) toward the lens (15). Each of the plurality of semiconductor light emitting devices (12) is electrically connected to the connection wiring conductor (16) and forms two light emitting element wiring conductors (25) and (26) that are separated from each other. ), A semiconductor light emitting element (23) fixed to one main surface (22a) of the light emitting element substrate (22), and a light emitting element lens (24) made of a light transmitting resin for sealing the semiconductor light emitting element (23). ).
[0008]
The light emitting element lens (24) has a truncated pyramid shape having a joint (24c) with the light emitting element substrate (22) as a bottom surface and a cross-sectional area decreasing as the distance from the light emitting element substrate (22) increases. The truncated pyramid shape of the light emitting element lens (24) has a first side surface (1) that is inclined at a first angle with respect to one main surface (11a) of the circuit board (11) without facing the reflection wall (13). 24a) and a second side surface (24b) inclined at a second angle larger than the first angle with respect to one main surface (11a) of the circuit board (11) and facing the reflective wall (13). And A plurality of elliptical spherical portions (33) corresponding to each of the plurality of semiconductor light emitting devices (12) are formed on one main surface (15a) of the lens (15), and a first side surface (1) of the light emitting element lens (24) is formed. The portion of the elliptical spherical portion (33) through which light passes through 24a) is formed with a large curvature. An elliptical spherical portion (33) through which light passes through the second side surface (24b) of the light emitting element lens (24) is formed with a small curvature.
[0009]
In the present invention, since the semiconductor light emitting device (12) that does not require external leads is used, the size of the entire module can be reduced. The light emitted from the semiconductor light emitting element (23) is first refracted by the light emitting element lens (24) toward the lens (15), and is further led out from the second side surface (24b) of the light emitting element lens (24). The reflected light is turned by the reflection wall (13) toward the lens (15), and the entire light finally emitted from the semiconductor light emitting element (23) is led out of the device by the lens (15). Therefore, the light emitted from the semiconductor light emitting element (23) by the light emitting element lens (24), the reflecting wall (13) and the lens (15) of the semiconductor light emitting device (12) can be efficiently guided to the outside of the module. The output is obtained.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a semiconductor light emitting module according to the present invention applied to a light emitting diode module will be described with reference to FIGS.
The light emitting diode module shown in FIG. 1 includes a circuit board (11), a chip light emitting diode (surface mounted light emitting diode) (12) as a semiconductor light emitting device, a reflecting wall (13), an outer frame (14), and a lens ( 15).
[0011]
The circuit board (11) is made of, for example, an epoxy resin. As shown in FIG. 2, a plurality of strip-shaped connection wiring conductors (16) and electrode terminals (17) are formed on one main surface (11a) of the circuit board (11), and both of them are communication wiring conductors. It is electrically connected at (17a). As shown in FIG. 3, a bent strip-shaped connection wiring conductor (18) is formed on the other main surface (11b) of the circuit board (11). The connection wiring conductor (16) formed on one main surface (11a) side extends in a first direction from one side surface (11c) of the circuit board (11) toward the other side surface (11d). A plurality of intermittent portions (19) are provided in the stretching direction. A reflector (13) is vertically provided between the plurality of connection wiring conductors (16). A through hole (20) is formed in the vicinity of one side surface (11c) of the circuit board (11), and the connecting wiring conductor (16) passes through the through hole (20) from one main surface (11a) to the other. It reaches the main surface (11b). One end of the electrode terminal (17) extends on one main surface (11a) in a second direction orthogonal to the first direction to a side surface of the circuit board (11), and further has a cut formed on a side wall of the substrate. It reaches the other main surface (11b) side of the circuit board (11) through the notch (21). One end of the connection wiring conductor (16) and one end of the electrode terminal (17) are electrically connected by the connection wiring conductor (18) formed on the other main surface (11b) of the circuit board (11). It is connected.
[0012]
As shown in FIG. 5, the chip type light emitting diode (12) includes a light emitting element substrate (22), a light emitting diode element (23) as a semiconductor light emitting element fixed to one main surface thereof, and a light transmitting resin. And a truncated pyramid-shaped light-emitting element lens (24). On one main surface (22a) of the light emitting element substrate (22), two light emitting element wiring conductors (25) and (26) which are separated from each other are formed, and on the main surface of one wiring conductor (25), a light emitting diode element is provided. The electrode formed on the back surface of (23) is fixed. An electrode formed on the upper surface of the light emitting diode element (23) is electrically connected to the other wiring conductor (26) via a thin lead wire (27). As shown in FIG. 6, notches (28) and (29) are formed at both ends in the longitudinal direction of the light emitting element substrate (22). One ends of the light emitting element wiring conductors (25) and (26) extend to the other main surface of the light emitting element substrate (22) through the notches (28) and (29), respectively. Two connection electrodes (30) and (31) separated from each other are formed on the other main surface of the light emitting element substrate (22), and are respectively connected to one end of one or the other light emitting element wiring conductors (25) and (26). ing. The light emitting element lens (24) is formed by a well-known transfer mold, and seals the light emitting diode element (23) and the fine lead wire (27). As shown in FIGS. 1 and 3, the first side surface (24 a) of the light emitting element lens (24) that does not face the reflecting wall (13) is located on the first main surface (11 a) of the circuit board (11). The second side surface (24b) of the light emitting element lens (24), which is inclined at an angle of 1 and faces the reflecting wall (13), has a first surface (11a) with respect to one main surface (11a) of the circuit board (11). Tilt at a second angle greater than the angle.
[0013]
As shown in FIGS. 1 and 3, the chip-type light emitting diode (12) is fixed to the connection wiring conductor (16) on the circuit board (11) so as to bridge the intermittent region (19). . That is, one connection electrode (30) and the other connection electrode (31) of the chip type light emitting diode (12) are connected to the connection wiring conductor (16) on one side of the intermittent region (19) and the connection electrode on the other side, respectively. It is fixed to the connection wiring conductor (16). In the light-emitting diode module of FIG. 1, four chip-type light-emitting diodes are fixed to one connection wiring conductor (16) corresponding to the intermittent area (19), and are electrically connected to each other in series. A total of 20 chip-type light emitting diodes are arranged on the connection wiring conductor (16).
[0014]
The reflecting wall (13) is a plate material made of white resin or the like having excellent reflectivity, and is vertically fixed between the connection wiring conductors (16) of the circuit board (11). As shown in FIG. 4, the reflection wall (13) has an upper end substantially equal to or higher than the upper surface of the light emitting element lens (24) of the light emitting diode (12) and an extension of the connection wiring conductor (16). Are arranged along the direction in which
The outer frame body (14) is made of black resin or the like, and is fixed to one main surface (11a) of the circuit board (11) so as to surround the plurality of light emitting diodes (12) as shown in FIG. .
[0015]
The lens (15) is made of a resin or the like having excellent light transmittance. As shown in FIG. 7, on one main surface (15a), 20 elliptical spherical portions (33) corresponding to the light emitting diodes (12) are formed. Is done. As shown in FIG. 4, the other main surface (15b) of the lens (15) is a flat surface and is fixed to the upper surface of the reflecting wall (13). As shown in FIG. 1, the elliptical spherical portion (33) has a large curvature at a portion where light passes through the first side surface (24a) of the light emitting element lens (24), and emits light as shown in FIG. The portion where light passes through the second side surface (24b) of the element lens (24) has a small curvature. The elliptical spherical portion (33) is formed to be long in the extending direction (first direction) of the connection wiring conductor (16) and to be short in the second direction orthogonal thereto, as viewed in plan.
[0016]
In the embodiment of the present invention, since the chip-type light emitting diode (12) that does not require external leads is used, the whole module can be reduced in size and thickness. The light emitted from the light emitting diode element (23) is first refracted by the light emitting element lens (24) toward the lens (15), and is further led out from the second side surface (24b) of the light emitting element lens (24). The reflected light is turned to the lens (15) side by the reflection wall (13), and the entire light finally emitted from the light emitting diode element (23) is led out of the device by the lens (15). Therefore, the light emitted from the light emitting diode element (23) by the light emitting element lens (24), the reflecting wall (13) and the lens (15) of the light emitting diode (12) can be efficiently guided to the outside of the module. Is obtained. Furthermore, sharp directivity can be obtained by the combination of the light emitting element lens (24) and the lens (15).
[0017]
Further, according to the embodiment of the present invention, since the bonding area between the light emitting element substrate (22) and the light emitting element lens (24) of the chip type light emitting diode (12) is relatively small, a large number of temperature cycles may be applied. Even in a severe environment, there is no occurrence of interface separation or the like due to a difference in linear expansion coefficient between the light emitting element substrate (22) and the light emitting element lens (24). In addition, since the chip type light emitting diode (12) can be inspected for its characteristics before being incorporated into the circuit board (11) to select and remove defective products, the chip itself and, of course, the characteristics variation and reduction in yield due to wire bonding. Can also be avoided. Further, since the semiconductor light emitting module shown in FIG. 10 can be manufactured without a special and complicated manufacturing process required for the semiconductor light emitting module, the cost can be reduced.
As described above, according to the embodiment of the present invention, it is possible to obtain a semiconductor light emitting module which not only can be reduced in size and thickness and has higher output, can also prevent variation in characteristics, and has high reliability and low cost. .
[0018]
The embodiment of the present invention is not limited to the above example, and various modifications are possible. For example, the inclination angle (second angle) of the second side surface (24b) of the light emitting element lens (24) facing the reflection wall (13) with respect to one main surface (11a) of the circuit board (11) is shown in FIG. 4 can be smaller than the shape shown in FIG. However, since the light radiated in the lateral direction from the second side surface (24b) of the light emitting element lens (24) is guided upward by the reflecting wall (13), the luminous output can be obtained without reducing the second angle. Is achieved at a sufficiently high level. Rather, in terms of miniaturization of the module, it is advantageous to increase the second angle (closer to vertical) to reduce the width of the light emitting diode (12).
[0019]
Further, one main surface (15a) of the lens (15) may be formed as a spherical surface. However, in order to reduce the size of the module, the form shown in FIG. 7 in which the ellipsoidal surface, that is, the connecting wiring conductor (16) is formed in the longitudinal direction (first direction) is desirable. When the light-emitting element lens is formed to be long in the second direction, the effect of guiding light guided through the first side surface (24a) of the light-emitting element lens (24), which is not easily deflected upward by the reflection wall (13), is impaired. Because it is Further, the upper surface of the light emitting element lens (24) may be a hemispherical lens surface.
[0020]
【Example】
On one main surface (11a) of the circuit board (11), a light emitting circuit portion corresponding to a portion indicated by a dotted line A in FIG. 8 is formed, and on the other main surface (11b), a switching circuit corresponding to a portion indicated by a dotted line B in FIG. In this case, further miniaturization and high integration can be achieved. 8, reference numeral 41 denotes an FET, 42 denotes a transistor, 43 denotes a Zener diode, 44 denotes a capacitor, 45 denotes an electrolytic capacitor, 46 denotes a diode, and 47 to 49 denote resistors.
[0021]
【The invention's effect】
According to the present invention, a small-sized and high-brightness semiconductor light emitting module effective for optical communication and the like can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semiconductor light emitting module according to the present invention. FIG. 2 is a cross-sectional view taken along line AA of FIG. 1. FIG. 3 is a bottom view of FIG. 5 is a sectional view of a semiconductor light emitting device applied to the semiconductor light emitting module of FIG. 1; FIG. 6 is a plan view of FIG. 5; FIG. 7 is a plan view of a lens; 9 is a sectional view of a conventional semiconductor light emitting module. FIG. 10 is a sectional view of another conventional semiconductor light emitting module.
11. . Circuit board, 11a. . One main surface, 11b. . 11. the other major surface; . 12. light emitting diode (semiconductor light emitting device); . Reflective wall, 15. . Lens, 15a. . One major surface, 15b. . 15. the other major surface; . Connection wiring conductor, 17. . Electrode terminal, 22. . Light emitting element substrate, 22a. . One main surface, 23. . 23. light-emitting diode element (semiconductor light-emitting element); . Light emitting element lens, 24a. . First side, 24b. . Second aspect, 24c. . Joint, 25, 26. . Light emitting element wiring conductor, 27. . Lead wire, 33. . Elliptical sphere

Claims (1)

一方の主面に複数の接続用配線導体を形成した回路基板と、該回路基板の前記一方の主面側に配置され且つ前記接続用配線導体により互いに電気的に接続された複数の半導体発光装置と、前記複数の半導体発光装置の上方に取り付けられ且つ前記複数の半導体発光装置から発生した光を集光するレンズと、該複数の半導体発光装置に近接して前記回路基板の一方の主面に垂設され且つ前記複数の半導体発光装置から発生した光を前記レンズ側に反射する反射壁とを備え、
前記複数の半導体発光装置の各々は、それぞれ前記接続用配線導体に電気的に接続され且つ互いに離間した2つの発光素子配線導体を形成する発光素子基板と、該発光素子基板の一方の主面に固着された半導体発光素子と、前記半導体発光素子を封止する光透過性樹脂から成る発光素子レンズとを備え、
前記発光素子レンズは前記発光素子基板との接合部を底面とし前記発光素子基板から遠ざかるにつれて断面積が減少する角錐台形状を有し、
前記発光素子レンズの角錐台形状は、前記反射壁に対向せずに前記回路基板の一方の主面に対して第1の角度で傾斜する第1の側面と、前記第1の角度よりも大きい第2の角度で前記回路基板の一方の主面に対して傾斜し且つ前記反射壁に対向する第2の側面とを有し、
前記複数の半導体発光装置の各々に対応する複数の楕円球面部を前記レンズの一方の主面に形成し、前記発光素子レンズの第1の側面を介して光が通過する前記楕円球面部の部分を大きい曲率で形成し、前記発光素子レンズの第2の側面を介して光が通過する前記楕円球面部の部分を小さい曲率で形成したことを特徴とする半導体発光モジュール。
A circuit board having a plurality of connection wiring conductors formed on one main surface thereof, and a plurality of semiconductor light emitting devices disposed on the one main surface side of the circuit board and electrically connected to each other by the connection wiring conductors A lens attached above the plurality of semiconductor light emitting devices and for condensing light generated from the plurality of semiconductor light emitting devices; and a lens close to the plurality of semiconductor light emitting devices and on one main surface of the circuit board. A reflecting wall that is vertically provided and reflects light generated from the plurality of semiconductor light emitting devices toward the lens,
Each of the plurality of semiconductor light emitting devices includes a light emitting element substrate electrically connected to the connection wiring conductor and forming two light emitting element wiring conductors separated from each other, and one main surface of the light emitting element substrate. A semiconductor light-emitting element fixed thereto, comprising a light-emitting element lens made of a light-transmitting resin for sealing the semiconductor light-emitting element,
The light-emitting element lens has a truncated pyramid shape in which the cross-sectional area decreases as the distance from the light-emitting element substrate decreases with the junction with the light-emitting element substrate as the bottom surface,
The truncated pyramid shape of the light-emitting element lens is larger than the first angle and a first side surface that is inclined at a first angle with respect to one main surface of the circuit board without facing the reflection wall. A second side inclined at a second angle with respect to one main surface of the circuit board and facing the reflective wall;
A plurality of elliptical spherical portions corresponding to each of the plurality of semiconductor light emitting devices are formed on one main surface of the lens, and a portion of the elliptical spherical portion through which light passes through a first side surface of the light emitting element lens. Is formed with a large curvature, and a portion of the elliptical spherical portion through which light passes through the second side surface of the light emitting element lens is formed with a small curvature.
JP22418995A 1995-08-31 1995-08-31 Semiconductor light emitting module Expired - Fee Related JP3580386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22418995A JP3580386B2 (en) 1995-08-31 1995-08-31 Semiconductor light emitting module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22418995A JP3580386B2 (en) 1995-08-31 1995-08-31 Semiconductor light emitting module

Publications (2)

Publication Number Publication Date
JPH0969651A JPH0969651A (en) 1997-03-11
JP3580386B2 true JP3580386B2 (en) 2004-10-20

Family

ID=16809924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22418995A Expired - Fee Related JP3580386B2 (en) 1995-08-31 1995-08-31 Semiconductor light emitting module

Country Status (1)

Country Link
JP (1) JP3580386B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736019B2 (en) 2006-10-10 2010-06-15 Yanchers Corporation Lighting system

Also Published As

Publication number Publication date
JPH0969651A (en) 1997-03-11

Similar Documents

Publication Publication Date Title
KR101389719B1 (en) Semiconductor light-emitting device
EP1087447B1 (en) Light-emitting diode
USRE46851E1 (en) High power light emitting diode package
US8283693B2 (en) Light emitting device with a lens of silicone
JP4174823B2 (en) Semiconductor light emitting device
US8283691B2 (en) Light emitting device package and a lighting device
US8395170B2 (en) Light emitting device package and light unit having the same
US20110186895A1 (en) Power surface mount light emitting die package
US20110031526A1 (en) Light emitting diode package and fabrication method thereof
US20050199884A1 (en) High power LED package
US10788701B2 (en) Light emitting device and display device including the same
KR20090045863A (en) Semiconductor light emitting device and planar light source
JP2001036147A (en) Light emitting diode
JP2921451B2 (en) Semiconductor light emitting module
JP3580386B2 (en) Semiconductor light emitting module
JP3118799B2 (en) Outer lens for semiconductor light emitting module
US8587016B2 (en) Light emitting device package having light emitting device on inclined side surface and lighting system including the same
KR100839122B1 (en) Side view type led lamp and its fabricating method and light emittid apparatus comprising the same
KR101121728B1 (en) Led package with heat radiating structure
JP2535786Y2 (en) Light emitting display
JP3118798B2 (en) Semiconductor light emitting module
JP2000277807A (en) Outer lens for semiconductor light emitting module
JP3246494B2 (en) Semiconductor light emitting module
KR20080024031A (en) Package of light emitting diode and fabrication method thereof
JP2005072432A (en) Light emitting diode device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees