JP3577931B2 - Optical transmitter - Google Patents

Optical transmitter Download PDF

Info

Publication number
JP3577931B2
JP3577931B2 JP03141398A JP3141398A JP3577931B2 JP 3577931 B2 JP3577931 B2 JP 3577931B2 JP 03141398 A JP03141398 A JP 03141398A JP 3141398 A JP3141398 A JP 3141398A JP 3577931 B2 JP3577931 B2 JP 3577931B2
Authority
JP
Japan
Prior art keywords
light
optical
signal
light intensity
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03141398A
Other languages
Japanese (ja)
Other versions
JPH11234213A (en
Inventor
薫 今井
秀徳 多賀
幸夫 堀内
登 枝川
正敏 鈴木
周 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP03141398A priority Critical patent/JP3577931B2/en
Publication of JPH11234213A publication Critical patent/JPH11234213A/en
Application granted granted Critical
Publication of JP3577931B2 publication Critical patent/JP3577931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光送信装置に関し、より具体的には、光スペクトル線幅の広がりの少ない信号光を出力する光送信装置に関する。
【0002】
【従来の技術】
光デュオバイナリ方式は、信号光の光スペクトルを通常の強度変調方式の場合の1/2程度に狭くすることができ、波長分割多重光伝送方式で高密度多重化を実現する技術として注目されている。
【0003】
光デュオバイナリ波形を生成する装置としては、例えば、電気段でローパスフィルタを使用する方法(例えば、小野等「光デュオバイナリ方式を用いたWDM高密度多重化の検討」,電子情報通信学会、信学技報OCS96−59,OPE96−109,LQE96−110(1996−11),pp.49−54)や、ビットをずらして変調をかける方法(T.Franck等「Novel Duobinary Transmitter」,ECOC97,22−25 September 1997, Conference Publication
No. 448,pp.67−70)が知られている。
【0004】
【発明が解決しようとする課題】
しかし、従来例では光スペクトル線幅の拡がりの抑制程度がまだ不十分であり、長距離・高密度波長分割多重伝送では、より一層の、光スペクトル線幅の拡がりの抑制が求められる。
【0005】
本発明は、より一層、光スペクトル線幅の拡がりを抑制できる光送信装置を提示することを目的とする。
【0006】
【課題を解決するための手段】
本発明では、光強度・位相変調手段により、デュオバイナリ光信号を光強度変調及び光位相変調し、更に、偏波スクランブルする。光強度変調と光位相変調はどちらが先でも良い。
【0007】
これにより、 NRZ波形の伝送特性と同等の伝送特性を達成できると共に、信号スペクトル線幅の拡がりを抑制できるので、従来よりも波長多重数を増すことができる。
【0008】
光強度変調の変調度を100%とすることで、RZ波形化して、雑音に強くできる。
【0009】
使用する変調素子を同じ組成のものとすることで、特性の調整及び一体化などが容易になる。
【0010】
【発明の実施の形態】
以下、図面を参照して、本発明の実施例を詳細に説明する。
【0011】
図1は、本発明の一実施例の概略構成ブロック図を示し、図2は、そのタイミング・チャートを示し、図3は、本実施例の特徴部分の実測パルス波形を示す。
【0012】
10は送信すべきデータのNRZ信号を発生するデータ発生回路であり、Q端子から2値データ列をローパス・フィルタ(LPF)12aに出力し、反転Q出力から当該2値データ列の反転をローパス・フィルタ(LPF)12bに出力するLPF12a,12bは、全く同じ低域通過特性を具備し、LPF12a,12bにより、2値データ列をデュオバイナリ・データ列に変換する。
【0013】
例えば、データ発生回路10のQ出力から出力されるデータ列が、図2(a)に示すような波形になっている場合、LPF12aの出力波形は、図2(c)に示すような3値波形になる。データ発生回路10の反転Q出力から出力されるデータ列は、図2(a)に示す波形を反転したものになっており、これに対するLPF12bの出力波形は、図2(d)に示すような3値波形になる。
【0014】
LPF12a,12bの出力はそれぞれ、振幅調整回路14a,14b、アンプ16a,16b、電圧調整回路20a,20b及び遅延回路22a,22bを介して二電極型光変調器24の両側の各電極に印加される。振幅調整回路14a,14bは、LPF12a,12bの出力の振幅を調整し、アンプ16a,16bは、振幅調整回路14a,14bの出力を所定レベルに増幅する。電圧調整回路20a,20bは、光変調器24における光変調に適した電圧レベル及び範囲にアンプ16a,16bの出力電圧を調整する。遅延回路22a,22bは、電圧調整回路20a,20bの出力のタイミングを互いに合致させるために設けられる。
【0015】
二電極型光変調器24は、10GHz以上の超高速変調の可能なニオブ酸リチウムの結晶からなり、遅延回路22a,22bの出力、即ち、相補的な電気デュオバイナリ信号に従って、レーザ光源26のCW出力光を光強度及び位相変調する。光変調器24の出力光の光強度パターンを図2(e)に、その光位相を図2(f)に示す。図2(f)に示す光位相は、図示例とは逆の場合もありうる。光変調器24の出力光強度パターン(図2(e))は、LPF12a又は同12bの出力パターンのレベル’1’を中心として上下を折り返したものになっている。
【0016】
ここでまでの構成は、電気デュオバイナリ信号から光デュオバナリ信号を生成する従来、周知の回路構成となっている。光変調器24より後段の部分が、本実施例の特徴部分である。本実施例では、光デュオバイナリ信号に更に、光強度変調及び位相変調を施し、偏波をスクランブルして光伝送路に出力する。
【0017】
光強度変調器30は、駆動回路32の出力に従い光変調器24の出力光を変調度100%で光強度変調する。即ち、NRZ信号をRZ信号に変形する。駆動回路32は、データ発生回路10からのクロックを振幅調整する振幅調整回路32a、振幅調整回路32aの出力を増幅するアンプ32b、アンプ32bの出力電圧を調整する電圧調整回路32c、及び、電圧調整回路32cの出力を時間調整する遅延回路32dからなり、遅延回路32dの出力が光強度変調信号として光強度変調器30に印加される。
【0018】
光位相変調器34は、駆動回路36の出力に従い光強度変調器30の出力光を光位相変調する。即ち、光位相変調器34は、光信号に一定のプリチャープを与える。駆動回路36は、駆動回路32と同様の回路構成からなり、データ発生回路10からのクロックを振幅調整する振幅調整回路36a、振幅調整回路36aの出力を増幅するアンプ36b、アンプ36bの出力電圧を調整する電圧調整回路36c、及び、電圧調整回路36cの出力を時間調整する遅延回路36dからなり、遅延回路36dの出力が光位相変調信号として光位相変調器34に印加される。
【0019】
偏波変調器38は、駆動回路40の出力に従い光強度変調器34の出力光の偏波を変調し、偏波スクランブラとして機能する。駆動回路40は、駆動回路32,36と同様の回路構成からなり、データ発生回路10からのクロックを振幅調整する振幅調整回路40a、振幅調整回路40aの出力を増幅するアンプ40b、アンプ40bの出力電圧を調整する電圧調整回路40c、及び、電圧調整回路40cの出力を時間調整する遅延回路40dからなり、遅延回路40dの出力が偏波変調信号として偏波変調器38に印加される。
【0020】
光強度変調器30、光位相変調器34及び偏波変調器38は、光変調器24と同様に、ニオブ酸リチウムの結晶からなる。
【0021】
図3()は、光変調器24の出力光波形を示す。図3()は、図3()に示す光パルスを光強度変調器30で光強度変調した結果の光パルス波形を示す。参考のため、光変調器24の出力光に対し、光位相変調器34のみを駆動した場合の光パルス波形を図3()に示す。図3()は、図3()に示す光パルスを光強度変調器30で光強度変調し、更に、位相変調器34で位相変調した結果の光パルス波形を示す。図3()は、図3()に示す光パルスを光強度変調器30で光強度変調し、位相変調器34で位相変調し、更に、偏波変調器38で偏波スクランブルした結果の光パルス波形を示す。
【0022】
なお、図3()〜()に示す光パルス波形は、実際には、光強度変調器30、光位相変調器34及び偏波変調器38のうちの指定の変調器を非駆動状態においたときに偏波変調器38から出力される光パルス波形を測定した。
【0023】
光デュオバイナリ信号は図2(f)に示すように既に位相変調されているが、光位相変調器34により信号光の全体に更に位相変調をかけることで、長距離伝送の場合にも信号スペクトル線幅の拡がりを抑制できる。これを周回実験で確認した。同じ信号帯域であれば、NRZ信号に比べて波長多重数を増すことができることになる。また、光強度変調器30による光強度変調により、ノイズに強くなり、伝送距離を延ばすことができる。
【0024】
伝送特性を周回伝送実験により評価したところ、通常のNRZ波形の伝送特性と同様の良好な値を得られた。例えば、10Gbit/s程度の伝送レートに対し、光デュオバイナリ信号のみでは3,000km程度の伝送距離であったものが、光強度変調(光強度変調器30)により6,000〜6,800kmの伝送距離になり、更に光位相変調(光位相変調器34)及び偏波スクランブラ(偏波変調器38)を加えることで、9,000km伝送後で15.9dBのQ値が得られた。ちなみに、偏波変調器38を省略した場合のQ値は、15.5dBであり、偏波変調器38による偏波スクランブルで0.4dB改善されていることになる。
【0025】
上記実施例では、光強度変調器30の後段に光位相変調器34を配置したが、これとは逆に、光位相変調器の後段に光強度変調器を配置しても良い。各変調器24,30,34,38に同じ組成の変調素子を使用することにより、特性の調節が容易になり、一体化もしやすくなる。
【0026】
受信装置は、従来のRZ信号に対応する受信装置と同じ構成でよい。
【0027】
以上をまとめると、本実施例では、時間波形が伝送に従っても劣化しにくくなるので、伝送距離を長くすることができる。追加的位相変調によりスペクトル線幅の拡がりを抑制できるので、波長分割多重伝送方式での波長多重間隔を狭くすることができ、同じ波長帯でも波長多重数を増やすことができる。
【0028】
【発明の効果】
以上の説明から容易に理解できるように、本発明によれば、信号スペクトル線幅の拡がりを抑制できるので、波長分割多重伝送方式での波長多重数を増すことができ、伝送容量の拡大に寄与できる。また、伝送距離を長くすることができる。
【図面の簡単な説明】
【図1】本発明の一実施例の概略構成ブロック図である。
【図2】本実施例で光デュオバイナリ信号を発生するまでのタイミング・チャートである。
【図3】本実施例の光強度変調、位相変調及び偏波変調の効果を示す実測光パルス波形例である。
【符号の説明】
10:データ発生回路
12a,12b:ローパス・フィルタ(LPF)
14a,14b:振幅調整回路
16a,16b:アンプ
20a,20b:電圧調整回路
22a,22b:遅延回路
24:二電極型光変調器
30:光強度変調器
32:駆動回路
32a:振幅調整回路
32b:アンプ
32c:電圧調整回路
32d:遅延回路
34:光位相変調器
36:駆動回路
36a:振幅調整回路
36b:アンプ
36c:電圧調整回路
36d:遅延回路
38:偏波変調器
40:駆動回路
40a:振幅調整回路
40b:アンプ
40c:電圧調整回路
40d:遅延回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical transmission device, and more specifically, to an optical transmission device that outputs signal light with a small spread of an optical spectrum line width.
[0002]
[Prior art]
The optical duobinary method is capable of narrowing the optical spectrum of signal light to about half that of a normal intensity modulation method, and is attracting attention as a technique for realizing high-density multiplexing in a wavelength division multiplexing optical transmission method. I have.
[0003]
As an apparatus for generating an optical duobinary waveform, for example, a method using a low-pass filter in an electric stage (for example, Ono et al., “Study of WDM high-density multiplexing using optical duobinary method”), IEICE, IEICE Gakugaku Giho OCS96-59, OPE96-109, LQE96-110 (1996-11), pp.49-54), and a method of shifting bits to perform modulation (T. Frank, et al., "Novel Duobinary Transmitter", ECOC97, 22). -25 September 1997, Conference Publication
No. 448, pp. 67-70) are known.
[0004]
[Problems to be solved by the invention]
However, in the conventional example, the degree of suppression of the spread of the optical spectrum line width is still insufficient. In long-distance and high-density wavelength division multiplexing transmission, further suppression of the spread of the optical spectrum line width is required.
[0005]
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical transmission device that can further suppress the spread of the optical spectrum line width.
[0006]
[Means for Solving the Problems]
According to the present invention, the duobinary optical signal is subjected to optical intensity modulation and optical phase modulation by the optical intensity / phase modulation means , and further polarization scrambled. Either the light intensity modulation or the optical phase modulation may be performed first.
[0007]
As a result, transmission characteristics equivalent to the transmission characteristics of the NRZ waveform can be achieved, and the spread of the signal spectrum line width can be suppressed.
[0008]
By setting the degree of modulation of the light intensity modulation to 100%, an RZ waveform can be formed, and noise can be improved.
[0009]
By using the same composition for the modulating elements to be used, adjustment of characteristics and integration can be facilitated.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
FIG. 1 shows a schematic block diagram of an embodiment of the present invention, FIG. 2 shows a timing chart thereof, and FIG. 3 shows an actually measured pulse waveform of a characteristic portion of the embodiment.
[0012]
A data generating circuit 10 generates an NRZ signal of data to be transmitted, outputs a binary data string from a Q terminal to a low-pass filter (LPF) 12a, and outputs an inverted value of the binary data string from an inverted Q output. Output to the low-pass filter (LPF) 12b . The LPFs 12a and 12b have exactly the same low-pass characteristics, and convert a binary data sequence into a duobinary data sequence by the LPFs 12a and 12b.
[0013]
For example, when the data string output from the Q output of the data generation circuit 10 has a waveform as shown in FIG. 2A, the output waveform of the LPF 12a has a three-valued waveform as shown in FIG. It becomes a waveform. The data sequence output from the inverted Q output of the data generation circuit 10 is obtained by inverting the waveform shown in FIG. 2A, and the output waveform of the LPF 12b corresponding thereto is as shown in FIG. It becomes a ternary waveform.
[0014]
The outputs of the LPFs 12a and 12b are applied to electrodes on both sides of the two-electrode optical modulator 24 via amplitude adjustment circuits 14a and 14b, amplifiers 16a and 16b, voltage adjustment circuits 20a and 20b, and delay circuits 22a and 22b. You. The amplitude adjustment circuits 14a and 14b adjust the amplitudes of the outputs of the LPFs 12a and 12b, and the amplifiers 16a and 16b amplify the outputs of the amplitude adjustment circuits 14a and 14b to a predetermined level. The voltage adjusting circuits 20a and 20b adjust the output voltages of the amplifiers 16a and 16b to a voltage level and a range suitable for optical modulation in the optical modulator 24. The delay circuits 22a and 22b are provided to match the output timings of the voltage adjustment circuits 20a and 20b with each other.
[0015]
The two-electrode type optical modulator 24 is made of a crystal of lithium niobate capable of ultra-high-speed modulation of 10 GHz or more, and outputs the CW of the laser light source 26 according to the outputs of the delay circuits 22a and 22b, that is, the complementary electric duobinary signal. The output light is subjected to light intensity and phase modulation. FIG. 2E shows the light intensity pattern of the output light from the optical modulator 24, and FIG. The optical phase shown in FIG. 2F may be opposite to that in the illustrated example. The output light intensity pattern of the optical modulator 24 (FIG. 2 (e)) is obtained by folding up and down around the level "1" of the output pattern of the LPF 12a or 12b.
[0016]
The configuration up to here is a conventionally known circuit configuration for generating an optical duo-binary signal from an electric duo-binary signal. The portion subsequent to the optical modulator 24 is a characteristic portion of the present embodiment. In this embodiment, the optical duobinary signal is further subjected to optical intensity modulation and phase modulation, and the polarization is scrambled and output to the optical transmission line.
[0017]
The light intensity modulator 30 modulates the output light of the light modulator 24 with the modulation factor of 100% according to the output of the drive circuit 32. That is, the NRZ signal is transformed into the RZ signal. The drive circuit 32 includes an amplitude adjustment circuit 32a for adjusting the amplitude of the clock from the data generation circuit 10, an amplifier 32b for amplifying the output of the amplitude adjustment circuit 32a, a voltage adjustment circuit 32c for adjusting the output voltage of the amplifier 32b, and a voltage adjustment. A delay circuit 32d for adjusting the time of the output of the circuit 32c is provided. The output of the delay circuit 32d is applied to the light intensity modulator 30 as a light intensity modulation signal.
[0018]
The optical phase modulator 34 optically modulates the output light of the light intensity modulator 30 according to the output of the drive circuit 36. That is, the optical phase modulator 34 applies a constant pre-chirp to the optical signal. The drive circuit 36 has the same circuit configuration as the drive circuit 32, and includes an amplitude adjustment circuit 36a for adjusting the amplitude of the clock from the data generation circuit 10, an amplifier 36b for amplifying the output of the amplitude adjustment circuit 36a, and an output voltage of the amplifier 36b. voltage adjustment circuit 36c for adjusting and consists delay circuit 36d for adjusting the output of the voltage regulating circuit 36c time, the output of the delay circuit 36d is applied to the optical phase modulator 34 as the optical phase modulation signal.
[0019]
The polarization modulator 38 modulates the polarization of the output light of the light intensity modulator 34 according to the output of the drive circuit 40, and functions as a polarization scrambler. The drive circuit 40 has the same circuit configuration as the drive circuits 32 and 36, and includes an amplitude adjustment circuit 40a for adjusting the amplitude of the clock from the data generation circuit 10, an amplifier 40b for amplifying the output of the amplitude adjustment circuit 40a, and an output of the amplifier 40b. It comprises a voltage adjustment circuit 40c for adjusting the voltage and a delay circuit 40d for adjusting the output of the voltage adjustment circuit 40c with time. The output of the delay circuit 40d is applied to the polarization modulator 38 as a polarization modulation signal.
[0020]
The light intensity modulator 30, the light phase modulator 34, and the polarization modulator 38 are made of lithium niobate crystal, like the light modulator 24.
[0021]
3 (a) shows the output optical waveform of the optical modulator 24. Figure 3 (b) shows the optical pulse waveform of the optical intensity modulator 30 a light pulse shown in FIG. 3 (a) As a result of the light intensity modulation. For reference, FIG. 3C shows an optical pulse waveform when only the optical phase modulator 34 is driven with respect to the output light of the optical modulator 24. FIG. 3 (d), an optical pulse shown in FIG. 3 (a) to modulate the light intensity by the light intensity modulator 30, further illustrating the light pulse waveform resulting from the phase modulation by the phase modulator 34. FIG. 3 ( e ) shows the result of light intensity modulation of the light pulse shown in FIG. 3 ( a ) by the light intensity modulator 30, phase modulation by the phase modulator 34, and further polarization scrambling by the polarization modulator 38. 3 shows an optical pulse waveform of FIG.
[0022]
Note that the optical pulse waveforms shown in FIGS. 3A to 3E are actually in a state in which a specified one of the optical intensity modulator 30, the optical phase modulator 34, and the polarization modulator 38 is not driven. Then, the optical pulse waveform output from the polarization modulator 38 at the time of the measurement was measured.
[0023]
Although the optical duobinary signal is already phase-modulated as shown in FIG. 2 (f), by further applying phase modulation to the entire signal light by the optical phase modulator 34, the signal spectrum can be obtained even in long-distance transmission. Spread of the line width can be suppressed. This was confirmed by orbital experiments. With the same signal band, the number of multiplexed wavelengths can be increased as compared with the NRZ signal. In addition, the light intensity modulation by the light intensity modulator 30 makes it more resistant to noise and can extend the transmission distance.
[0024]
When the transmission characteristics were evaluated by loop transmission experiments, good values similar to those of the normal NRZ waveform were obtained. For example, for a transmission rate of about 10 Gbit / s, an optical duobinary signal alone has a transmission distance of about 3,000 km, but a light intensity modulation (light intensity modulator 30) of 6,000 to 6,800 km. The transmission distance was reached, and the optical phase modulation (optical phase modulator 34) and the polarization scrambler (polarization modulator 38) were added to obtain a Q value of 15.9 dB after 9,000 km transmission. Incidentally, the Q value when the polarization modulator 38 is omitted is 15.5 dB, which means that the polarization scramble by the polarization modulator 38 has improved 0.4 dB.
[0025]
In the above embodiment, the optical phase modulator 34 is arranged after the optical intensity modulator 30. On the contrary, the optical phase modulator may be arranged after the optical phase modulator. By using modulation elements having the same composition for each of the modulators 24, 30, 34, and 38, characteristics can be easily adjusted and integration can be easily performed.
[0026]
The receiving device may have the same configuration as a conventional receiving device corresponding to an RZ signal.
[0027]
Summarizing the above, in the present embodiment, the transmission distance can be lengthened because the time waveform is hardly deteriorated even when transmitted. Since the spread of the spectral line width can be suppressed by the additional phase modulation, the wavelength multiplexing interval in the wavelength division multiplexing transmission system can be narrowed, and the number of wavelength multiplexing can be increased even in the same wavelength band.
[0028]
【The invention's effect】
As can be easily understood from the above description, according to the present invention, since the spread of the signal spectrum line width can be suppressed, the number of wavelength multiplexing in the wavelength division multiplexing transmission system can be increased, and the transmission capacity can be increased. it can. Further, the transmission distance can be lengthened.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of an embodiment of the present invention.
FIG. 2 is a timing chart until an optical duobinary signal is generated in the embodiment.
FIG. 3 is an example of an actually measured light pulse waveform showing the effects of light intensity modulation, phase modulation, and polarization modulation of the present embodiment.
[Explanation of symbols]
10: Data generation circuits 12a, 12b: Low-pass filter (LPF)
14a, 14b: amplitude adjustment circuits 16a, 16b: amplifiers 20a, 20b: voltage adjustment circuits 22a, 22b: delay circuit 24: two-electrode optical modulator 30: light intensity modulator 32: drive circuit 32a: amplitude adjustment circuit 32b: Amplifier 32c: Voltage adjustment circuit 32d: Delay circuit 34: Optical phase modulator 36: Drive circuit 36a: Amplitude adjustment circuit 36b: Amplifier 36c: Voltage adjustment circuit 36d: Delay circuit 38: Polarization modulator 40: Drive circuit 40a: Amplitude Adjustment circuit 40b: Amplifier 40c: Voltage adjustment circuit 40d: Delay circuit

Claims (7)

デュオバイナリ光信号を発生する信号光発生手段と、
当該信号光発生手段の出力光を光強度変調及び光位相変調する光強度・位相変調手段と
当該光強度・位相変調手段の出力光を偏波スクランブルする偏波スクランブラ
とを具備することを特徴とする光送信装置。
Signal light generating means for generating a duobinary optical signal;
Light intensity / phase modulation means for light intensity modulation and optical phase modulation of the output light of the signal light generation means ,
Polarization scrambler for polarization scrambling the output light of the light intensity / phase modulation means
An optical transmission device comprising:
当該光強度・位相変調手段が、当該信号光発生手段の出力光を光強度変調する光強度変調手段と、当該光強度変調手段の出力光を光位相変調する光位相変調手段とからなる請求項1に記載の光送信装置。The light intensity / phase modulation means comprises light intensity modulation means for modulating the light intensity of the output light of the signal light generation means, and optical phase modulation means for optically modulating the output light of the light intensity modulation means. 2. The optical transmission device according to 1. 当該光強度・位相変調手段が、当該信号光発生手段の出力光を光位相変調する光位相変調手段と、当該光位相変調手段の出力光を光強度変調する光強度変調手段とからなる請求項1に記載の光送信装置。The light intensity / phase modulation means comprises an optical phase modulation means for optically modulating the output light of the signal light generation means, and a light intensity modulation means for optically modulating the output light of the optical phase modulation means. 2. The optical transmission device according to 1. 当該光強度変調手段が、変調度100%で入力光を光強度変調する請求項2又は3に記載の光送信装置。The optical transmitter according to claim 2, wherein the light intensity modulating unit modulates the input light with a modulation degree of 100%. 当該信号光発生手段が、電気デュオバイナリ信号を発生する電気信号発生手段と、信号波長の光を発生する光源と、当該電気信号発生手段の発生する当該デュオバイナリ信号に従い、当該光源の出力光を強度及び位相変調する光変調手段とからなる請求項1乃至4の何れか1項に記載の光送信装置。The signal light generating means, an electric signal generating means for generating an electric duobinary signal, a light source for generating light having a signal wavelength, and the output light of the light source according to the duobinary signal generated by the electric signal generating means. The optical transmission device according to claim 1, further comprising an optical modulation unit that performs intensity and phase modulation. 当該光変調手段及び当該光強度・位相変調手段が、同じ組成の変調素子からなる請求項5に記載の光送信装置。6. The optical transmission device according to claim 5, wherein the light modulating means and the light intensity / phase modulating means are composed of modulating elements having the same composition. 当該偏波スクランブラが、当該光強度・位相変調手段と同じ組成の変調素子からなる請求項1乃至6の何れか1項に記載の光送信装置。The polarization scrambler, optical transmitter according to any one of claims 1 to 6 consisting of the modulation device having the same composition as the optical intensity and phase modulation means.
JP03141398A 1998-02-13 1998-02-13 Optical transmitter Expired - Fee Related JP3577931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03141398A JP3577931B2 (en) 1998-02-13 1998-02-13 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03141398A JP3577931B2 (en) 1998-02-13 1998-02-13 Optical transmitter

Publications (2)

Publication Number Publication Date
JPH11234213A JPH11234213A (en) 1999-08-27
JP3577931B2 true JP3577931B2 (en) 2004-10-20

Family

ID=12330581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03141398A Expired - Fee Related JP3577931B2 (en) 1998-02-13 1998-02-13 Optical transmitter

Country Status (1)

Country Link
JP (1) JP3577931B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3094950B2 (en) * 1997-05-28 2000-10-03 日本電気株式会社 Optical transmission device and optical transmission method
JP3173591B2 (en) 1998-06-09 2001-06-04 日本電気株式会社 Optical transmitter, optical transmission system and signal light modulation method
FR2803144B1 (en) * 1999-12-27 2002-03-15 Cit Alcatel ALTERNATING PHASE MODULATION FOR NON-SOLITON OPTICAL RZ TRANSMISSIONS

Also Published As

Publication number Publication date
JPH11234213A (en) 1999-08-27

Similar Documents

Publication Publication Date Title
JP3364076B2 (en) Optical transmitter
JP4646048B2 (en) Single sideband signal light generation method and single sideband signal light generation circuit
KR100221265B1 (en) Syncrhonous polarization and phase modulation using a periodic waveform with complex harmonics for improved performance of optical transmission systems
US6763197B1 (en) Optical transmitter and optical transmitter control method using variable duty ratio setting and alternate phase inversion for optical clock pulses
EP1511195B1 (en) Duobinary optical transmission device using one semiconductor optical amplifier
JP4532367B2 (en) Optical transmission apparatus and method using frequency shift keying
JP2006033792A (en) Duo-binary optical transmission apparatus
US7206519B2 (en) Duobinary optical transmission apparatus
US20040062554A1 (en) Duo-binary optical transmission apparatus
EP1416654B1 (en) Duobinary optical transmission
JP2004343766A (en) Duobinary optical transmission apparatus using semiconductor optical amplifier
JP3931670B2 (en) Optical transmitter for optical fiber transmission
JP2004140833A (en) Optical transmission system
JP3577931B2 (en) Optical transmitter
US7212691B2 (en) Polarization-shaped duobinary optical transmission apparatus
JP2004312676A (en) Optical transmission system using optical phase modulator
JP2823872B2 (en) Optical transmitter
JP2000162561A (en) Light subcarrier phase modulator and optical spectrum spread transmitter using same
US7224907B2 (en) Duobinary optical transmission apparatus
JPH10285144A (en) Optical signal output device
KR100469740B1 (en) Duobinary optical transmitter
EP1422842B1 (en) Duobinary optical transmission apparatus
JP2003134050A (en) Optical transmitter
US20040218929A1 (en) Duobinary optical transmission apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees