JP3577514B2 - Total reflection fluorescence microscope - Google Patents

Total reflection fluorescence microscope Download PDF

Info

Publication number
JP3577514B2
JP3577514B2 JP2001310511A JP2001310511A JP3577514B2 JP 3577514 B2 JP3577514 B2 JP 3577514B2 JP 2001310511 A JP2001310511 A JP 2001310511A JP 2001310511 A JP2001310511 A JP 2001310511A JP 3577514 B2 JP3577514 B2 JP 3577514B2
Authority
JP
Japan
Prior art keywords
total reflection
laser light
objective lens
conversion member
polarization conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001310511A
Other languages
Japanese (ja)
Other versions
JP2003114388A (en
Inventor
祟之 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2001310511A priority Critical patent/JP3577514B2/en
Publication of JP2003114388A publication Critical patent/JP2003114388A/en
Application granted granted Critical
Publication of JP3577514B2 publication Critical patent/JP3577514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Description

【0001】
【発明が属する技術分野】
この発明は、蛍光顕微鏡に関し、特に、蛍光色素分子1個の向きの観察が可能な全反射型蛍光顕微鏡に関するものである。
【0002】
【従来の技術】
蛍光顕微鏡は、ある特定の色の光(特定の波長の光)が当たると、その光の波長より長い波長の光を出す色素を利用し、蛍光色素を光らせるための励起光を照射するための光学系と、それにより発生した蛍光を観察する光学顕微鏡を組み合わせたものである。観察したい細胞内の構造に蛍光色素結合させた試薬を結合させ、ある特定の光をこの蛍光色素分子に当てると、目的の細胞内の構造が暗黒を背景にして光ることになる。このような蛍光色素を顕微鏡標本の染色に応用し観察する方法が蛍光顕微鏡法である。
【0003】
一般の蛍光顕微鏡で観察可能な蛍光色素分子の数は数10個以上であり、蛍光色素分子1個の観察はできない。これは、蛍光色素分子1個から来る信号に比較して、ノイズ、即ち、周囲からの光の信号の方が大きいために1個の蛍光色素分子を識別できないためである。しかし、性能向上のために改良がなされ、フィルターの性質、対物レンズの品質向上等により、1個の蛍光色素分子を可視化できる蛍光顕微鏡が開発されている。
【0004】
また、近年、蛍光色素分子1個の観察のために、図4に示すように、レーザー光源を用い、水溶液とガラス27との境界面上の試料に、ガラス27側から全反射角以上の角度で前記レーザー光28を照射し、前記境界面近傍に発生する非伝播光であるエバネッセント場29により前記試料を照明する方法(以下、全反射照明という)が利用されている。即ち、エバネッセント場による照明により、蛍光色素分子が蛍光を発することを利用する方法である。
【0005】
エバネッセント場29は、図4に示すように、前記境界面に垂直方向に対して指数関数的に減衰し、その減衰常数は屈折率と前記レーザー光の入射角に依存している。従って、エバネッセント場は、前記境界面から水溶液中約150nmの深さの局所領域のみを照明するので、前記全反射照明は、通常光による照明と比較して、背景光が極端に少ない。
【0006】
更に、前記水溶液中に多数の蛍光色素分子(濃度〜50x10-9モル/リットル)が存在するような条件下でも、前記境界面近傍の水溶液側に前記蛍光色素分子が存在する確率は小さいので、前記境界上に固定されている1個の標的蛍光色素分子以外から発せられる蛍光は少ない。従って、背景光及び他の蛍光色素分子の蛍光によるノイズが極端に少ないので、前記標的蛍光分子1個からの蛍光の観察が可能となる。
【0007】
前記全反射照明による1分子の観察では、例えば、蛍光色素で標的した蛋白質、DNA、基質であるATPなどの生体分子をガラス面に結合させ、1個1個の分子を独立した輝点として観察する。前記蛍光色素を励起する場合、色素の振動面と励起光の偏光方向が一致していることが必要である。
【0008】
【発明が解決しようとする課題】
しかしながら、前記従来の全反射照明では、色素の振動面と励起光の偏光方向が一致した分子は明るくて観察できるが、一致しない分子は暗くて観察できない、即ち、励起光の偏光方向に対して、振動面が任意の向きの色素を標的にした分子を観察できないという問題点があった。
【0009】
また、色素の振動面に対し特定の偏光方向では一致せず、観察できないこととなるが、これでは目的の色素の向きが不明となる。本発明は、前記従来の問題点を解決するためになされたもので、振動面が任意の向きの色素を標的にした分子を観察することができる全反射型蛍光顕微鏡を提供することである。
【0010】
【課題を解決するための手段】
そこで、本発明は上記問題を解決するために、請求項1に係る発明は、レーザー光の光軸上に、前記レーザー光の前記光軸を回転軸として回転可能に設けられる前記レーザー光を直線偏光に変換する偏光変換部材と、前記光軸を回転軸として前記偏光変換部材と同期して回転可能に設けられる前記レーザー光の進行方向を変える偏向部材と、集光レンズと、対物レンズと、を備え、前記偏光変換部材、前記偏向部材、前記集光レンズ、前記対物レンズ及び前記レーザー光の全反射面の順序で配置されることを特徴とする全反射型蛍光顕微鏡を提供する。
請求項2に係る発明は、円偏光したレーザー光のレーザー光源と、前記レーザー光の光軸上に、前記レーザー光の前記光軸を回転軸として回転可能に設けられる前記レーザー光を直接偏光に変換する偏光変換部材と、前記光軸を回転軸として前記偏光変換部材と同期して回転可能に設けられる前記レーザー光の進行方向を変える偏向部材と、集光レンズと、対物レンズと、を備え、前記レーザー光源、前記偏光変換部材、前記偏光部材、前記集光レンズ、前記対物レンズ及び前記レーザー光の反射面の順序で配置され、前記対物レンズの後焦点面は、前記集光レンズの焦点面の位置にあり、前記全反射面は、前記対物レンズの焦点面の位置にあることを特徴とする全反射型蛍光顕微鏡を提供する。
請求項3に係る発明は、請求項1又は2に記載の全反射型蛍光顕微鏡であって、前記偏光変換部材が回転することにより前記集光レンズにドーナッツ型の全反射領域ができ、前記対物レンズにもできた全反射領域を透過して全反射面で全反射できることを特徴とする全反射型蛍光顕微鏡を提供する。
請求項4に係る発明は、請求項3に記載の全反射型蛍光顕微鏡であって、全反射面のエバネッセント場におけるレーザー光の偏光方向が回転可能であることを特徴とする全反射型蛍光顕微鏡を提供する。
請求項5に係る発明は、前記偏光変換部材は、1/4波長板であることを特徴とする請求項1乃至4記載の全反射型蛍光顕微鏡を提供する。
ここで、偏光変換部材とは円偏光を直線偏光とするもの、任意の直線偏光を特定の直線偏光とするもの、又はランダム偏光を特定の偏光に変換する機能を有するものが挙げられる。また、ここで偏光変換部材はレーザー光の光軸を軸として自動回転できる機能も付加されており、円偏光等を直線偏光に変換されるだけでなく、当該直線偏光の方向も同時に360°回転変化することができる。さらに、偏向部材とはプリズム等をいい、レーザー光の照射方向を変化させることができる。この偏光部材と偏光変換部材が同期して回転することで、特定の偏光方向及び照射方向により蛍光色素の観察できない向きを捕捉することができる。
【0011】
また、レーザー光源からレーザー光は円偏光、直線偏光又はランダム偏光いずれでもよい。また、レーザー光の波長は目的の蛍光色素により適当な波長とする。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態に関して説明する。図1は、本発明による全反射型蛍光顕微鏡の実施形態を示し、(a)は構成図、(b)はレーザー光の全反射領域を示す図である。
【0013】
図1(a)に示すように、本発明の実施形態の全反射型蛍光顕微鏡1は、円偏光したレーザー光2のレーザー光源と、光軸3を回転軸として回転可能に設けられるレーザー光2を直線偏光に変換する偏光変換部材である1/4波長板4と、光軸3を回転軸として1/4波長板4と同期して回転可能に設けられるレーザー光2の進行方向を変える偏向部材であるプリズム5と、焦点距離f1の集光レンズ6と、焦点距離f2の対物レンズ7と、全反射面8とを備えることを特徴とする。
【0014】
プリズム5は、集光レンズ6の後焦点面の位置、すなわち、1/4波長板4と、集光レンズ6の間にある。また、対物レンズ7の後焦点面は、集光レンズ6の焦点面9の位置にあるものである。従って、平行にプリズム5に入射するレーザー光2は、集光レンズ6に平行に入射し、集光レンズ6の焦点面9で焦点を結んで対物レンズ7に入射し、全反射面8に平行に入射する。ここで、プリズム5と集光レンズ6の間の距離(f1)と集光レンズ6と焦点面9の間の距離(f1)を同距離にした。また、焦点面9と対物レンズ7の間の距離(f2)と対物レンズ7と全反射面8の間の距離(f2)を同距離にした。尚、全反射面8を備えずに、観察する試料に付属するものを全反射面9の位置に設置して全反射面とする形態でもよい。
【0015】
尚、試料が水中にある時には、集光レンズ6の開口数(以下、N.A.という)が1.33以上の時に、エバネッセント場による全反射照明となる。この場合、プリズム5は、垂直に入射するレーザー光2をf1だけ離れた場所で対物レンズ7にとってN.A.=1.33以上に相当する距離だけ光路が変わるような角度のプリズムである必要がある。尚、プリズム5の代りに、ミラーを用いて偏向してもよい。
【0016】
図1(b)に示すように、集光レンズ6のドーナッツ型の全反射領域10に入射するレーザー光11は、対物レンズ7のドーナッツ型の全反射領域12を透過して全反射面8で全反射する。全反射面8は、ガラスと水の境界面のような、高屈折率材料(図1(a)中で左側)と低屈折率材料(図1(a)中で右側)の境界面である。
【0017】
低屈折率材料の屈折率をn1、高屈折率材料の屈折率をn2、即ち、n1<n2とした場合、低屈折率材料と高屈折率材料の境界面である全反射面8では、高屈折率材料側からsinθ=n1/n2を満たす全反射角θ以上の入射角度で入射した光は、全て全反射面8で全反射する。全反射角θは、全反射面を形成する材料の屈折率に依存する。
【0018】
1/4波長板4とプリズム5は、レーザー光2の光軸3を回転軸として同期して回転可能に設けられており、これにより、プリズム5を透過したレーザー光11は偏光方向も回転しながら集光レンズ6上で円を描くように偏向される。従って、レーザー光11を、図1(b)に示すドーナッツ型の全反射領域内10、12に移動させることができる。
【0019】
即ち、図2(a)に示すように、円偏光13のレーザー光2が1/4波長板4とプリズム5を透過した後のレーザー光11は、例えば、直線偏光14で表される方向に偏光しており、集光レンズ6上で円形の透過領域15を透過する。このような状態において、例えば、1/4波長板4とプリズム5とを同期させて光軸3を回転軸として図中で左周りに回転させると、図2(b)に示すように、透過領域15は回転方向17に回転し、偏光方向16も同期して回転する。
【0020】
尚、1/4波長板4とプリズム5とを同期させて回転させる場合、それぞれが所望の回転が得られるように同期の仕方を選択して同期させればよい。また、1/4波長板4を回転させて直線偏光のレーザー光の偏光方向を変える代りに、偏光子や、偏光方向を電気的に制御する素子であるElectro−Optic Modulatorsを用いて前記偏光方向を変えてもよい。また、プリズム5の代りに、光の方向を電気的に制御する素子であるAcousto−Optical Modulatorsを用いることも可能である。
【0021】
次に、全反射面8におけるレーザー光の全反射に関して説明する。図3(a)に示すように、図中下方から対物レンズ7の第1入射点18に入射したレーザー光19が、ガラス20の上面である全反射面8において全反射して、対物レンズ7の第2入射点21に入射する場合を考える。第1入射点18における直線偏光のレーザー光の偏光方向22が図に示す方向であったものが、1/4波長板4とプリズム5とを光軸3を回転軸として同期させて回転させると、レーザー光19は第3入射点23に移動すると共に、レーザー光19の偏光方向22も図に示す方向に変わる。また、全反射面8である試料面上に形成されたエバネッセント場24の偏光方向25は、レーザー光19の偏光方向22と同期して試料面に平行な面内で回転する。
【0022】
即ち、対物レンズ7に入射するレーザー光19が、対物レンズ7上で回転移動すると共に、レーザー光19の偏光方向も回転する。
【0023】
以上示したように、本発明の実施形態の全反射型蛍光顕微鏡1では、レーザー光19の偏光方向22及び全反射面8である試料面に対するレーザー光19の入射方向を時間と共に変化させることができる。前記試料面でのエバネッセント場24の偏光方向25は、レーザー光19の偏光方向及び前記試料面に対するレーザー光19の入射方向により決定されるので、レーザー光19が図3に示すように回転すると、前記試料面上でのエバネッセント場24の偏光方向25は、時間と共に試料面内で回転する。
【0024】
前記試料面に置かれた蛍光色素分子は、その振動面がエバネッセント場の偏光方向と一致した時に最も明るく、90度ずれた時に最も暗くなる。従って、試料面上のエバネッセント場24内にある複数個の蛍光色素分子のうち、エバネッセント場の偏光方向25とその振動面が一致した蛍光色素分子が観測され、図3に示すレーザー光19の回転、即ち、前記試料面に対するレーザー光の入射方向及びその偏光方向22が回転するにつれて、別の蛍光色素分子1個づつの観察が可能となり、且つ蛍光色素分子がどの方向を向いているのかを決定することができる。
【0025】
例えば、回転分子モーターであるF1−ATPaseを始めとして、ミオシンやダイニン、それらと共通する構造を持つ分解酵素であるプロテアソームに対して蛍光色素結合させ、全反射型蛍光顕微鏡1で観察すること等により、多様な機能を持つ蛋白質の複合体である生体超分子が動作するメカニズムを明らかにすることができ、それらを応用した様々な技術の利用が可能となる。
【0026】
【発明の効果】
本発明によれば、レーザー光の偏光方向及び全反射面である試料面に対するレーザー光の入射方向を時間と共に変化させることができる。
従って、前記試料面上の分子の該試料面内における方向を検出することが可能となるので、それを利用した技術の利用が可能となる。
【図面の簡単な説明】
【図1】本発明による全反射型蛍光顕微鏡の実施形態を示し、(a)は構成図、(b)はレーザー光の全反射領域を示す図である。
【図2】図1に示すレーザー光の回転移動及び偏光方向の回転を説明するための図である。
【図3】図1の全反射型蛍光顕微鏡によるエバネッセント場の発生を示し、(a)はレーザー光の偏光方向及び試料面に対するレーザー光の入射方向に対するエバネッセント場の偏光方向を示す図、(b)はレーザー光が回転移動及びその偏光方向が回転した時のエバネッセント場の偏光方向の変化を示す図である。
【図4】エバネッセント場の発生の説明図である。
【符号の説明】
1 全反射型蛍光顕微鏡
2 レーザー光
3 光軸
4 1/4波長板
5 プリズム
6 集光レンズ
7 対物レンズ
8 全反射面
9 焦点面
10 全反射領域
11 レーザー光
12 全反射領域
13 円偏光
14 直線偏光
15 透過領域
16 偏光方向
17 回転方向
18 第1入射点
19 レーザー光
20 ガラス
21 第2入射点
22 偏光方向
23 第3入射点
24 エバネッセント場
25 偏光方向
26 回転方向
27 ガラス
28 レーザー光
29 エバネッセント場
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluorescence microscope, and more particularly to a total reflection fluorescence microscope capable of observing the direction of one fluorescent dye molecule.
[0002]
[Prior art]
Fluorescent microscopes use a dye that emits light of a longer wavelength than that of a specific color (light of a specific wavelength) when irradiated with excitation light to illuminate the fluorescent dye. It is a combination of an optical system and an optical microscope for observing the fluorescence generated thereby. When a reagent bound to a fluorescent dye is bound to the structure in the cell to be observed and a specific light is applied to the fluorescent dye molecule, the target intracellular structure glows against a dark background. Fluorescence microscopy is a method of applying and observing such a fluorescent dye for staining a microscope specimen.
[0003]
The number of fluorescent dye molecules that can be observed with a general fluorescent microscope is several tens or more, and one fluorescent dye molecule cannot be observed. This is because one fluorescent dye molecule cannot be identified because noise, that is, a signal of light from the surroundings is larger than a signal coming from one fluorescent dye molecule. However, improvements have been made to improve the performance, and a fluorescence microscope capable of visualizing one fluorescent dye molecule has been developed due to the properties of the filter and the quality of the objective lens.
[0004]
In recent years, in order to observe one fluorescent dye molecule, as shown in FIG. 4, a laser light source was used to apply an angle greater than the total reflection angle from the glass 27 side to the sample on the interface between the aqueous solution and the glass 27. A method of irradiating the sample with a laser beam 28 and illuminating the sample with an evanescent field 29 which is non-propagating light generated near the boundary surface (hereinafter, referred to as total reflection illumination) is used. That is, this is a method utilizing the fact that the fluorescent dye molecules emit fluorescence by illumination with an evanescent field.
[0005]
As shown in FIG. 4, the evanescent field 29 attenuates exponentially in a direction perpendicular to the boundary surface, and its attenuation constant depends on the refractive index and the incident angle of the laser beam. Therefore, since the evanescent field illuminates only a local region having a depth of about 150 nm in the aqueous solution from the boundary surface, the total reflection illumination has an extremely small amount of background light as compared with illumination by ordinary light.
[0006]
Furthermore, even under conditions where a large number of fluorescent dye molecules (concentration 〜50 × 10 −9 mol / liter) are present in the aqueous solution, the probability that the fluorescent dye molecules are present on the aqueous solution side near the interface is small. There is little fluorescence emitted from other than one target fluorescent dye molecule fixed on the boundary. Therefore, since noise due to the background light and the fluorescence of the other fluorescent dye molecules is extremely small, it is possible to observe the fluorescence from the single target fluorescent molecule.
[0007]
In the observation of one molecule by the total reflection illumination, for example, a biomolecule such as a protein, DNA, or a substrate, ATP, which is targeted by a fluorescent dye, is bonded to a glass surface, and each molecule is observed as an independent bright spot. I do. When exciting the fluorescent dye, it is necessary that the vibration plane of the dye and the polarization direction of the excitation light match.
[0008]
[Problems to be solved by the invention]
However, in the conventional total reflection illumination, molecules in which the vibration plane of the dye and the polarization direction of the excitation light coincide with each other can be observed brightly, but molecules that do not coincide with each other are dark and cannot be observed, that is, with respect to the polarization direction of the excitation light. In addition, there is a problem that a molecule whose vibration surface targets a dye having an arbitrary direction cannot be observed.
[0009]
In addition, a specific polarization direction does not coincide with the vibration plane of the dye, and observation cannot be performed. However, in this case, the direction of the target dye is unknown. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a total reflection fluorescent microscope capable of observing a molecule having a vibrating surface targeting a dye having an arbitrary direction.
[0010]
[Means for Solving the Problems]
Therefore, in order to solve the above-mentioned problem, the present invention relates to an invention according to claim 1, wherein the laser light linearly provided on the optical axis of the laser light so as to be rotatable around the optical axis of the laser light as a rotation axis. A polarization conversion member that converts the light into polarized light, a deflection member that changes the traveling direction of the laser light that is provided rotatably in synchronization with the polarization conversion member with the optical axis as a rotation axis, a condenser lens, and an objective lens. Wherein the polarization conversion member, the deflection member, the condenser lens, the objective lens, and the laser beam total reflection surface are arranged in this order.
The invention according to claim 2 is a laser light source of circularly polarized laser light, and the laser light that is rotatably provided on the optical axis of the laser light around the optical axis of the laser light as a rotation axis is directly polarized. A polarization conversion member for converting, a deflection member for changing the traveling direction of the laser light provided rotatably in synchronization with the polarization conversion member with the optical axis as a rotation axis, a condenser lens, and an objective lens. The laser light source, the polarization conversion member, the polarization member, the condenser lens, the objective lens, and the laser light reflecting surface are arranged in this order, and the rear focal plane of the objective lens is a focal point of the condenser lens. A total reflection surface at a position of a focal plane of the objective lens.
The invention according to claim 3 is the total reflection fluorescence microscope according to claim 1 or 2, wherein the rotation of the polarization conversion member forms a donut-shaped total reflection area in the condenser lens, and Provided is a total reflection fluorescence microscope characterized in that the light can pass through a total reflection area formed on a lens and can be totally reflected on a total reflection surface.
The invention according to claim 4 is the total reflection fluorescence microscope according to claim 3, wherein the polarization direction of the laser light in the evanescent field of the total reflection surface is rotatable. I will provide a.
The invention according to claim 5 provides the total reflection fluorescence microscope according to any one of claims 1 to 4, wherein the polarization conversion member is a quarter-wave plate.
Here, examples of the polarization conversion member include those that convert circularly polarized light into linearly polarized light, those that convert arbitrary linearly polarized light into specific linearly polarized light, and those that convert random polarized light into specific polarized light. In addition, the polarization conversion member is provided with a function of automatically rotating the optical axis of the laser beam as an axis, and not only converts circularly polarized light into linearly polarized light, but also rotates the direction of the linearly polarized light by 360 ° at the same time. Can change. Further, the deflecting member refers to a prism or the like, and can change the irradiation direction of the laser light. By rotating the polarization member and the polarization conversion member in synchronization, it is possible to capture a direction in which the fluorescent dye cannot be observed depending on the specific polarization direction and irradiation direction.
[0011]
Further, the laser light from the laser light source may be any of circularly polarized light, linearly polarized light and random polarized light. The wavelength of the laser light is set to an appropriate wavelength depending on the desired fluorescent dye.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1A and 1B show an embodiment of a total reflection fluorescence microscope according to the present invention, wherein FIG. 1A is a configuration diagram, and FIG. 1B is a diagram showing a laser beam total reflection region.
[0013]
As shown in FIG. 1A, a total reflection fluorescence microscope 1 according to an embodiment of the present invention includes a laser light source of a circularly polarized laser beam 2 and a laser beam 2 rotatably provided around an optical axis 3 as a rotation axis.波長 wavelength plate 4 as a polarization conversion member for converting into linearly polarized light, and deflection for changing the traveling direction of the laser beam 2 rotatably provided in synchronization with the 波長 wavelength plate 4 with the optical axis 3 as a rotation axis. It is characterized by comprising a prism 5 as a member, a condenser lens 6 with a focal length f1, an objective lens 7 with a focal length f2, and a total reflection surface 8.
[0014]
The prism 5 is located at the rear focal plane of the condenser lens 6, that is, between the quarter-wave plate 4 and the condenser lens 6. The rear focal plane of the objective lens 7 is located at the position of the focal plane 9 of the condenser lens 6. Therefore, the laser beam 2 incident parallel to the prism 5 is incident parallel to the condenser lens 6, is focused on the focal plane 9 of the condenser lens 6, is incident on the objective lens 7, and is parallel to the total reflection plane 8. Incident on. Here, the distance (f1) between the prism 5 and the condenser lens 6 and the distance (f1) between the condenser lens 6 and the focal plane 9 were made equal. Further, the distance (f2) between the focal plane 9 and the objective lens 7 and the distance (f2) between the objective lens 7 and the total reflection surface 8 were made equal. Note that a configuration may be adopted in which the sample to be observed is provided at the position of the total reflection surface 9 to provide a total reflection surface without providing the total reflection surface 8.
[0015]
When the sample is in water, when the numerical aperture (hereinafter, referred to as NA) of the condenser lens 6 is 1.33 or more, total reflection illumination by an evanescent field is performed. In this case, the prism 5 separates the vertically incident laser beam 2 from the objective lens 7 at a distance of f1 to the objective lens 7. A. It is necessary that the prism has an angle such that the optical path changes by a distance corresponding to 1.33 or more. Note that a mirror may be used instead of the prism 5 for deflection.
[0016]
As shown in FIG. 1B, the laser beam 11 incident on the donut-shaped total reflection area 10 of the condenser lens 6 is transmitted through the donut-shaped total reflection area 12 of the objective lens 7 and is reflected on the total reflection surface 8. Totally reflected. The total reflection surface 8 is an interface between a high refractive index material (left side in FIG. 1A) and a low refractive index material (right side in FIG. 1A), such as an interface between glass and water. .
[0017]
When the refractive index of the low-refractive index material is n1 and the refractive index of the high-refractive index material is n2, that is, n1 <n2, the total reflection surface 8, which is the interface between the low-refractive index material and the high-refractive index material, has a high refractive index. Light incident from the refractive index material side at an incident angle equal to or greater than the total reflection angle θ satisfying sin θ = n1 / n2 is totally reflected by the total reflection surface 8. The total reflection angle θ depends on the refractive index of the material forming the total reflection surface.
[0018]
The quarter-wave plate 4 and the prism 5 are provided so as to be rotatable in synchronization with the optical axis 3 of the laser beam 2 as a rotation axis, whereby the laser beam 11 transmitted through the prism 5 also rotates in the polarization direction. While being converged, it is deflected on the condenser lens 6 so as to draw a circle. Therefore, the laser beam 11 can be moved to the donut-shaped total reflection areas 10 and 12 shown in FIG.
[0019]
That is, as shown in FIG. 2A, the laser beam 2 after the circularly polarized laser beam 2 has passed through the quarter-wave plate 4 and the prism 5 becomes, for example, in the direction represented by the linearly polarized beam 14. It is polarized and passes through the circular transmission area 15 on the condenser lens 6. In such a state, for example, when the quarter-wave plate 4 and the prism 5 are synchronized and rotated counterclockwise in the figure with the optical axis 3 as a rotation axis, as shown in FIG. The region 15 rotates in the rotation direction 17, and the polarization direction 16 also rotates synchronously.
[0020]
When the quarter-wave plate 4 and the prism 5 are rotated in synchronization with each other, a method of synchronization may be selected and synchronized so that each of them can obtain a desired rotation. Instead of rotating the quarter-wave plate 4 to change the polarization direction of the linearly-polarized laser light, the polarization direction is changed by using a polarizer or Electro-Optic Modulators, which is an element for electrically controlling the polarization direction. May be changed. Instead of the prism 5, it is also possible to use Acousto-Optical Modulators, which are elements for electrically controlling the direction of light.
[0021]
Next, total reflection of laser light on the total reflection surface 8 will be described. As shown in FIG. 3A, the laser beam 19 incident on the first incident point 18 of the objective lens 7 from below in the figure is totally reflected on the total reflection surface 8 which is the upper surface of the glass 20, and the objective lens 7 At the second incident point 21 of FIG. Although the polarization direction 22 of the linearly polarized laser light at the first incident point 18 is the direction shown in the figure, the quarter-wave plate 4 and the prism 5 are rotated in synchronization with the optical axis 3 as the rotation axis. The laser beam 19 moves to the third incident point 23, and the polarization direction 22 of the laser beam 19 also changes to the direction shown in FIG. Further, the polarization direction 25 of the evanescent field 24 formed on the sample surface which is the total reflection surface 8 rotates in a plane parallel to the sample surface in synchronization with the polarization direction 22 of the laser light 19.
[0022]
That is, the laser light 19 incident on the objective lens 7 rotates on the objective lens 7 and the polarization direction of the laser light 19 also rotates.
[0023]
As described above, in the total reflection fluorescence microscope 1 according to the embodiment of the present invention, the polarization direction 22 of the laser beam 19 and the incident direction of the laser beam 19 on the sample surface which is the total reflection surface 8 can be changed with time. it can. Since the polarization direction 25 of the evanescent field 24 on the sample surface is determined by the polarization direction of the laser beam 19 and the incident direction of the laser beam 19 on the sample surface, when the laser beam 19 rotates as shown in FIG. The polarization direction 25 of the evanescent field 24 on the sample surface rotates in the sample surface with time.
[0024]
The fluorescent dye molecules placed on the sample surface are brightest when the vibration plane coincides with the polarization direction of the evanescent field, and darkest when shifted by 90 degrees. Therefore, among the plurality of fluorescent dye molecules in the evanescent field 24 on the sample surface, the fluorescent dye molecules whose vibration plane coincides with the polarization direction 25 of the evanescent field are observed, and the rotation of the laser light 19 shown in FIG. That is, as the direction of incidence of the laser beam on the sample surface and its polarization direction 22 are rotated, it becomes possible to observe another fluorophore one by one, and determine in which direction the fluorophore is oriented. can do.
[0025]
For example, a fluorescent dye is bound to F1-ATPase, which is a rotating molecular motor, myosin and dynein, and a proteasome, which is a degrading enzyme having a structure common to them, and observed with a total reflection fluorescence microscope 1. In addition, it is possible to elucidate the mechanism by which biological supramolecules, which are a complex of proteins having various functions, operate, and it becomes possible to use various technologies that apply them.
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the polarization direction of a laser beam and the incident direction of a laser beam with respect to the sample surface which is a total reflection surface can be changed with time.
Therefore, it is possible to detect the direction of the molecules on the sample surface in the sample surface, and it is possible to use a technique using the direction.
[Brief description of the drawings]
FIGS. 1A and 1B show an embodiment of a total reflection fluorescence microscope according to the present invention, wherein FIG. 1A is a configuration diagram and FIG.
FIG. 2 is a diagram for explaining rotation movement and rotation of a polarization direction of a laser beam shown in FIG. 1;
3A and 3B show the generation of an evanescent field by the total reflection fluorescence microscope of FIG. 1, and FIG. 3A shows the polarization direction of the evanescent field with respect to the polarization direction of the laser beam and the incident direction of the laser beam on the sample surface; () Is a diagram showing a change in the polarization direction of the evanescent field when the laser light is rotationally moved and its polarization direction is rotated.
FIG. 4 is an explanatory diagram of generation of an evanescent field.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Total reflection fluorescence microscope 2 Laser light 3 Optical axis 4 1/4 wavelength plate 5 Prism 6 Condensing lens 7 Objective lens 8 Total reflection surface 9 Focal plane 10 Total reflection area 11 Laser light 12 Total reflection area 13 Circularly polarized light 14 Linear Polarization 15 Transmission area 16 Polarization direction 17 Rotation direction 18 First incidence point 19 Laser light 20 Glass 21 Second incidence point 22 Polarization direction 23 Third incidence point 24 Evanescent field 25 Polarization direction 26 Rotation direction 27 Glass 28 Laser light 29 Evanescent field

Claims (5)

レーザー光の光軸上に、前記レーザー光の前記光軸を回転軸として回転可能に設けられる前記レーザー光を直線偏光に変換する偏光変換部材と、
前記光軸を回転軸として前記偏光変換部材と同期して回転可能に設けられる前記レーザー光の進行方向を変える偏向部材と、
集光レンズと、
対物レンズと、
を備え、
前記偏光変換部材、前記偏向部材、前記集光レンズ、前記対物レンズ及び前記レーザー光の全反射面の順序で配置されることを特徴とする全反射型蛍光顕微鏡。
On the optical axis of the laser light, a polarization conversion member that converts the laser light, which is rotatably provided with the optical axis of the laser light as a rotation axis, into linearly polarized light,
A deflecting member that changes a traveling direction of the laser light, which is rotatably provided in synchronization with the polarization conversion member with the optical axis as a rotation axis,
A condenser lens,
An objective lens,
With
A total reflection fluorescent microscope , wherein the polarization conversion member, the deflecting member, the condenser lens, the objective lens, and the laser beam are arranged in this order .
円偏光したレーザー光のレーザー光源と、
前記レーザー光の光軸上に、前記レーザー光の前記光軸を回転軸として回転可能に設けられる前記レーザー光を直接偏光に変換する偏光変換部材と、
前記光軸を回転軸として前記偏光変換部材と同期して回転可能に設けられる前記レーザー光の進行方向を変える偏向部材と、
集光レンズと、
対物レンズと、
を備え、
前記レーザー光源、前記偏光変換部材、前記偏光部材、前記集光レンズ、前記対物レンズ及び前記レーザー光の反射面の順序で配置され、
前記対物レンズの後焦点面は、前記集光レンズの焦点面の位置にあり、
前記全反射面は、前記対物レンズの焦点面の位置にあることを特徴とする全反射型蛍光顕微鏡。
A laser light source of circularly polarized laser light,
On the optical axis of the laser light, a polarization conversion member that directly converts the laser light, which is rotatably provided with the optical axis of the laser light as a rotation axis, into polarized light,
A deflecting member that changes a traveling direction of the laser light, which is rotatably provided in synchronization with the polarization conversion member with the optical axis as a rotation axis,
A condenser lens,
An objective lens,
With
The laser light source, the polarization conversion member, the polarization member, the condenser lens, the objective lens and the laser light are arranged in the order of the reflection surface,
The rear focal plane of the objective lens is located at the focal plane of the condenser lens,
The said total reflection surface is in the position of the focal plane of the said objective lens, The total reflection type fluorescence microscope characterized by the above-mentioned.
請求項1又は2に記載の全反射型蛍光顕微鏡であって、前記偏光変換部材が回転することにより前記集光レンズにドーナッツ型の全反射領域ができ、前記対物レンズにもできた全反射領域を透過して全反射面で全反射できることを特徴とする全反射型蛍光顕微鏡 3. The total reflection fluorescence microscope according to claim 1, wherein a rotation of the polarization conversion member forms a donut-shaped total reflection region in the condenser lens, and a total reflection region formed in the objective lens. 4. A total reflection type fluorescence microscope characterized by being capable of transmitting light through and totally reflecting on a total reflection surface . 請求項3に記載の全反射型蛍光顕微鏡であって、全反射面のエバネッセント場におけるレーザー光の偏光方向が回転可能であることを特徴とする全反射型蛍光顕微鏡 The total reflection fluorescence microscope according to claim 3, wherein the polarization direction of the laser beam in the evanescent field of the total reflection surface is rotatable . 前記偏光変換部材は、1/4波長板であることを特徴とする請求項1乃至4記載の全反射型蛍光顕微鏡。5. The total reflection fluorescence microscope according to claim 1, wherein the polarization conversion member is a quarter-wave plate.
JP2001310511A 2001-10-05 2001-10-05 Total reflection fluorescence microscope Expired - Lifetime JP3577514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001310511A JP3577514B2 (en) 2001-10-05 2001-10-05 Total reflection fluorescence microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001310511A JP3577514B2 (en) 2001-10-05 2001-10-05 Total reflection fluorescence microscope

Publications (2)

Publication Number Publication Date
JP2003114388A JP2003114388A (en) 2003-04-18
JP3577514B2 true JP3577514B2 (en) 2004-10-13

Family

ID=19129473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001310511A Expired - Lifetime JP3577514B2 (en) 2001-10-05 2001-10-05 Total reflection fluorescence microscope

Country Status (1)

Country Link
JP (1) JP3577514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101218483B (en) * 2005-07-06 2011-11-16 独立行政法人科学技术振兴机构 Three dimensional position observation method and apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302421A (en) * 2003-03-17 2004-10-28 Nikon Corp Total reflection microscope
JP2004347777A (en) * 2003-05-21 2004-12-09 Olympus Corp Total reflection fluorescence microscope
WO2007004708A1 (en) * 2005-06-30 2007-01-11 National University Corporation NARA Institute of Science and Technology Microscope
JP4931717B2 (en) * 2007-07-19 2012-05-16 信越化学工業株式会社 Manufacturing method of pellicle for lithography
KR101431958B1 (en) * 2013-01-31 2014-08-21 연세대학교 산학협력단 Super resolved fluorescence image apparatus and fluorescence image method
JP6249406B2 (en) * 2014-03-31 2017-12-20 学校法人 学習院 Microscope observation method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101218483B (en) * 2005-07-06 2011-11-16 独立行政法人科学技术振兴机构 Three dimensional position observation method and apparatus
US8203720B2 (en) 2005-07-06 2012-06-19 Japan Science And Technology Agency Three dimensional, position observation method and apparatus
US8564789B2 (en) 2005-07-06 2013-10-22 Japan Science And Technology Agency Three dimensional position observation method and apparatus

Also Published As

Publication number Publication date
JP2003114388A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
US9411144B2 (en) Systems for fluorescence illumination using superimposed polarization states
US8362448B2 (en) Apparatus and method for high spatial resolution imaging of a structure of a sample
CN107941763B (en) Coaxial three-dimensional stimulated radiation loss super-resolution microscopic imaging method and device
JP5484879B2 (en) Super-resolution microscope
JP6234105B2 (en) Super-resolution microscope
US5717519A (en) Confocal microscope
Johnson et al. Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events
JP2004038139A (en) Device for coupling light ray into microscope
US6867915B2 (en) Microscope for reflected-light and transmitted-light microscopy
JP5592108B2 (en) Interference confocal microscope and light source imaging method
JP5039307B2 (en) Objective lens and microscope
JP2010015026A (en) Super-resolution microscope and spatial modulation optical element used therein
WO2023221400A1 (en) Super-resolution single-objective light-sheet optical microscopy system and imaging system comprising same
JP3577514B2 (en) Total reflection fluorescence microscope
US20070183029A1 (en) Microscope and its optical controlling method
US7486441B2 (en) Objective and microscope
JP5825476B2 (en) Microscope equipment
US10025081B2 (en) Microscope for evanescent illumination and point-shaped raster illumination
US20020030886A1 (en) Microscope
JP2002521733A (en) Compact single objective θ microscope
US7486440B2 (en) Polarized total internal reflection illumination optical system by rotary annulus light
JP5726656B2 (en) Disc scanning confocal observation device
JP5652310B2 (en) Microscope equipment
CN110118764A (en) Wide field fluorescence imaging laser illuminator system and its application method
JP3671227B2 (en) Total reflection type fluorescence microscope and illumination optical system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350