JP3577483B2 - Wood drying equipment and low temperature drying method - Google Patents
Wood drying equipment and low temperature drying method Download PDFInfo
- Publication number
- JP3577483B2 JP3577483B2 JP2002047337A JP2002047337A JP3577483B2 JP 3577483 B2 JP3577483 B2 JP 3577483B2 JP 2002047337 A JP2002047337 A JP 2002047337A JP 2002047337 A JP2002047337 A JP 2002047337A JP 3577483 B2 JP3577483 B2 JP 3577483B2
- Authority
- JP
- Japan
- Prior art keywords
- drying
- heat
- house
- larch
- fan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Chemical And Physical Treatments For Wood And The Like (AREA)
- Drying Of Solid Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、温室構造の大型カラマツ丸太ハウス内に桟積みされたカラマツ材及びエゾマツ、トドマツ等の針葉樹材を温泉熱と太陽熱等の地域エネルギーを複合利用して低温乾燥する木材乾燥装置及び低温乾燥方法に関する。
【0002】
【従来の技術】
従来、カラマツ材及びエゾマツ、トドマツ等の針葉樹材の乾燥には電気式除湿乾燥(図4)や蒸気加熱式乾燥(図5)等による100℃以上の中、高温の急速乾燥法が用いられ、この方法では特にカラマツ材はネジレや細かい割れが発生して脆弱となり、梱包材、パレット材、土木用材等、価値の低い利用にしか向かず、建築材としての利用は不可能とされてきた。
カラマツ材を建築用材として付加価値を高めるためには、ネジレや割れの発生を抑えるよう80℃以下の低温人工乾燥により含水率50%から20%以下に乾燥を行う必要がある。
しかし、乾燥に掛かる時間が長くなり、熱源となる燃料費や電気代、人件費等がかさむ結果、製材製品の価値が上昇し、外材との価値競争に勝てない状況にある。
【0003】
【発明が解決しようとする課題】
北海道地方に豊富な温泉熱や太陽熱を熱源として、地域の自然エネルギーの複合利用によるカラマツ材の低温乾燥を行って、低コストで良質のカラマツ乾燥材を量産し、建築材として利活用しようとする、CO2を排出せず、環境にも配慮した木材乾燥装置及び低温乾燥方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
そのため、本発明の木材乾燥装置は、カラマツ丸太と鋼製アングルからなる複合トラス材をフレームに用いた大型空間の建家を造り、該建家の屋根と側壁を透明シートで覆い温室構造のカラマツ丸太ハウスを構築し、該ハウスの内部に透明シート製の大型の箱形袋を天井から蚊帳様につり下げて乾燥室とし、該乾燥室の天井と裾部に循環ファンを設け、前記乾燥室内に熱交換器付きファン及び床暖パネルを配置したものである。
また、本発明の低温乾燥方法は、カラマツ丸太と鋼製アングルからなる複合トラス材をフレームに用いた大型空間の建家を造り、該建家の屋根と側壁を透明シートで覆い温室構造のカラマツ丸太ハウスを構築し、該ハウスの内部に透明シート製の大型の箱形袋を天井から蚊帳様につり下げて乾燥室とし、該乾燥室の天井と裾部に循環ファンを設け、前記乾燥室内に熱交換器付きファン及び床暖パネルを配置した木材乾燥装置を形成し、該木材乾燥装置の乾燥室の内部にカラマツ材及びエゾマツ、トドマツ等の針葉樹材を桟積みし、熱源に温泉熱と太陽熱を複合利用したものである。
さらに、本発明の低温乾燥方法は、温泉熱を利用した熱交換器付きファンを用いた温風乾燥及び床暖パネルを用いたふく射乾燥と対流乾燥、並びに温室効果を利用した太陽熱のパッシブ利用による温風乾燥とふく射乾燥を複合利用したものである。
【0005】
【発明の実施の形態】
本発明の木材乾燥装置の実施の形態について、図面に基いて説明する。
まず、図1に示すように、カラマツ丸太1とアングル材2からなるトラス構造材をフレームとする大空間の建家を建設して、透明シート3で覆って温室構造のカラマツ丸太ハウスを構築する。
カラマツ丸太ハウス内部に透明シート3(一部不透明シート)で造った箱形袋4をハウス天井より天吊棒11で蚊帳様につり下げて大型の乾燥室5を構成し、室内に桟積みした桟積材6を数カ所に配置する。
床(一部壁も使用)にはふく射乾燥用に床暖パネル7を敷き、乾燥室5天井に温風乾燥用の大型循環ファン8を、適当な床高に熱交換器付きファン9を、乾燥室5裾部に小型循環ファン10を設置する。
【0006】
次に、本発明の木材乾燥装置の操作動作について、図1に基づいて説明する。通常は、乾燥室5天井の大型循環ファン8(正転)で乾燥室5内の空気をカラマツ丸太ハウスの天井に向かって吹き出し、小屋裏を下方に下がった空気はハウスと乾燥室5間の両側部を通って乾燥室5裾部に送られ、再び小型循環ファン10で乾燥室5内に取り込まれて温風の循環流を形成し、低温温風乾燥を行う。
日中日照時には、カラマツ丸太ハウスの小屋裏に太陽熱を受けて暖まった高温空気を大型循環ファン8(逆転)で乾燥室5天井から室内に直接引き込んで桟積材6に吹き付け、同時に熱交換器付きファン9で乾燥室5内の桟積材6に送風して中温温風乾燥を行う。
このとき乾燥室5裾部の小型循環ファン10は停止しており、乾燥室5内の空気は裾部下端からハウス両側部に送り出され、温風の逆循環流を形成する。
これら空気の循環流路中にカラマツ丸太ハウスの適所に換気口(図示せず)を設け、桟積材6を除湿乾燥して湿り空気となった温風を一部外部に排出し、その分新しい乾燥空気を取り入れる。
温泉熱は不凍液に熱交換して床暖パネル7と熱交換器付きファン9に送り、それぞれ床暖パネル7によるふく射乾燥と対流乾燥及び熱交換器付きファン9による温風乾燥を常時行う(本装置全体をカラマツ丸太乾燥プラントという)。
乾燥の原理は、温室構造の大型カラマツ丸太ハウスを乾燥室5の上屋に備えて太陽熱のパッシブ利用を基本とし、これに温泉熱を併用して低温乾燥を促進することである。
【0007】
【実施例】
(実施例1)
カラマツ供試材によるカラマツ乾燥プラントの実施例1を詳細に説明する(図1参照)。
(1)カラマツ丸太ハウス;大きさ(間口14.4m、奥行18.0m、軒高5.0m(棟高8.5m))で屋根、側壁を透明シート3で覆い温室構造として、かつ気密を保つ。(適所に除湿換気のための換気口あり)。
(2)乾燥室5;大きさ(10.0mW×14.0mL×5.0mH)で天井から天吊棒11で蚊帳様に吊された透明シート(一部不透明)構造。
(3)集熱面積;乾燥室5床面積140m2(=10.0m×14.0m)に同じ。
(4)ふく射パネル;乾燥室5床面積120m2(=10.0m×12.0m)の温水床暖パネル7を敷設(側壁内側に付設することも可)。
(5)大型熱交換器;温泉熱から不凍液温水への熱交換器(2基)。
(6)送風機(ファン);熱交換器付きファン9(10台)、大型循環ファン8(5台)、小型循環ファン10(10台)。
(7)計測機器類;日射計、温度計、(気温、室温を含む)、熱量計、風量計、湿度計等及びデータ取り込み処理装置一式。
(8)システム制御装置一式。
(9)床暖パネル7、循環ポンプ、配管・バルブ類一式。
(10)床・側壁;コンクリートまたはアスファルト製で断熱構造。
カラマツ供試材は、乾燥室5内部にカラマツ桟積材6(嵩容積3.0mW×4.0mL×3.0mH)を6個を配設し、この規模の乾燥プラントによって乾燥に要する期間は夏場で7日から10日、冬場で10日から15日程度である。
【0008】
温泉熱源;湧出量100L/分、温度53℃の温泉を本システムの熱源として使用するシステムフローの設計例。
1.直流式システムフロー;図2の温度表示には損失は考慮していない。
2.分流式システムフロー;図3の温度表示には損失は考慮していない。
上記システムの熱計算シミュレーションの例を直流式と分流式に分けて以下に示す。
【0009】
(実施例2)
温泉熱源を前段熱交換器と後段熱交換器に直列に配管した実施例2を詳細に説明する(図2を参照)。
A.直流式システム(図2に損失分を考慮する。)
1.温泉熱放熱量(流量×温度差)
(1)熱交換器付きファン9(温風乾燥)
前段熱交換器1次側;温泉流量G1=100L/分、53℃→48℃、△T1=5℃、ηF1=0.9
前段熱交換器2次側;不凍液流量G2=50L/分、52℃→42℃、ΔT2=10℃、ηF2=0.81
QF1=ηF1・c・G1・ΔT1=0.9×1.0×100×5=450kcal/分=648Mcal/日
QF2=ηF2・c・G2・ΔT2=0.81×1.0×50×10=405kcal/分=583Mcal/日
前段熱交換器効率 QF2/QF1=583/648=0.90
(2)床暖パネル7(ふく射乾燥+対流乾燥)
後段熱交換器1次側;温泉流量G1´=100L/分、48℃→43℃、△T1´=5℃、ηp1=0.9
後段熱交換器2次側;不凍液流量G2´=50L/分、47℃→37℃、ΔT2´=10℃、ηp2=0.77
Qp1=ηp1・c・G1´・ΔT1´=0.9×1.0×100×5=450kcal/分=648Mcal/日
Qp2=ηp2・c・G2´・ΔT2´=0.77×1.0×50×10=385kcal/分=554Mcal/日
後段熱交換器効率 Qp2/Qp1=554/648=0.85
2.床暖パネル7放熱量
(1)ふく射放熱量(ふく射乾燥)
パネル面積AP=120m2、T1=47℃、T2=37℃、Tm=42℃
QR12=4.88{[(273+42)/100]4−[(273+32)/100]4 }×1.0×120=585.6×(98.5−86.5)=7027kcal/時=169Mcal/日
(2)対流放熱量(対流乾燥)
床暖パネル7全放熱量 QpT=Qp2=554kcal/日
床暖パネル7対流放熱量 QpC=Qp2−QR12=554−169=385Mcal/日
対流放熱割合 Q pC /QPT=385/554=0.70
ふく射放熱割合 QR12/QPT=0.30
3.太陽熱
足寄町の年間平均日射量 J=3.38kWh/m2d=2907kcal/m2d
太陽集熱面積 AC(=乾燥室5面積)=140m2
シート透過率 τS=0.8
枠材間隙率 τw=0.8
入射日射量 QS=J・τS・τw・AC=2907×0.8×0.8×140=260Mcal/日
温泉放熱量 (=2次側全放熱量)QF2+QP2=583+554=1137Mcal/日
温泉放熱量に占める太陽熱割合 QS/(QF2+QP2)=260/1137=0.229≒1/4.4
4.合計熱量
温泉熱量+太陽熱量=1137+260=1397Mcal/日
【0010】
(実施例3)
温泉熱源を1号熱交換器と2号熱交換器に並列に配管した実施例3を詳細に説明する(図3を参照)。
B.分流式システム(図3に損失分を考慮する。)
1.温泉放熱量(流量×温度差)
(1)熱交換器付きファン9(温風乾燥)
1号熱交換器1次側;温泉流量G1=50L/分、53℃→43℃、ΔT1=10℃、ηF1=0.9
1号熱交換器2次側;不凍液流量G2=50L/分、52℃→42℃、ΔT2=10℃、ηF1=0.81
QF1=ηF1・c・G1・ΔT1=0.9×1.0×50×10=450kcal/分=648Mcal/日
QF2=ηF2・c・G2・ΔT2=0.81×1.0×50×10=405kcal/分=583Mcal/日
1号熱交換器効率 QF2/QF1=583/648=0.90
(2)床暖パネル7(ふく射乾燥+対流乾燥)
2号熱交換器1次側;温泉流量G1´=50L/分、43℃→43℃、△T1´=10℃、ηp1=0.9
2号熱交換器2次側;不凍液流量G2´=50L/分、47℃→37℃、ΔT2´=10℃、ηp2=0.77
Qp1=ηp1・c・G1´・ΔT1´=0.9×1.0×50×10=450kcal/分=648Mcal/日
Qp2=ηp2・c・G2´・ΔT2´=0.77×1.0×50×10=385kcal/分=554Mcal/日
2号熱交換器効率 Qp2/Qp1=554/648=0.85
2.床暖パネル7放熱量
(1)ふく射放熱量(ふく射乾燥)
パネル面積AP=120m2、T1=52℃、T2=42℃、Tm=47℃
QR12=4.88{[(273+47)/100]4−[(273+37)/100]4 }×1.0×120=585.6×(105−92)=7613kcal/時=183Mcal/日
(2)対流放熱量(対流乾燥)
床暖パネル7全放熱量 QpT=Qp2=554kcal/日
床暖パネル7対流放熱量 QpC=Qp2−QR12=554−183=371Mcal/日
対流放熱割合 Q pC /QPT=371/554=0.67
ふく射放熱割合 QR12/QPT=0.33
3.太陽熱
足寄町の年間平均日射量 J=3.38kWh/m2d=2907kcal/m2d
太陽集熱面積 AC(=乾燥室5面積)=140m2
シート透過率 τS=0.8
枠材間隙率 τw=0.8
入射日射量 QS=J・τS・τw・AC=2907×0.8×0.8×140=260Mcal/日
温泉放熱量 (=2次側全放熱量)QF2+QP2=583+554=1137Mcal/日
温泉放熱量に占める太陽熱割合 QS/(QF2+QP2)=260/1137=0.229≒1/4.4
4.合計熱量
温泉熱量+太陽熱量=1137+260=1397Mcal/日
以上の熱設計の結果、直流式と分流式では差はないが、分流式の方は床暖パネル温度が5℃高く、従って乾燥室温度がそれだけ高く、またふく射熱量もそれだけ多くなり、乾燥にはよい条件が創成されることが分かった。
よって分流式の方が若干有利となる。
【0011】
次に、カラマツ材を乾燥(50%→20%)するのに要する必要熱量を計算する。
1)水の気化熱(蒸発熱)
25℃において582.8kcal/kg≒583kcal/kg
100℃において539.8kcal/kg≒540kcal/kg
平均 562kcal/kg
2)供試木材の容積・質量
桟積み材の嵩容積=3.0×4.0×3.0=36m3
実容積=嵩容積×0.6=36×0.6=21.6m3
供試材密度;乾燥材(30℃)のマツ(377kg/m3)、スギ(341kg/m3)の値から推測してカラマツ生材の密度を600kg/m3と仮定する。
1桟積み材の質量=実容積×密度=21.6m3×600kg/m3≒13000kg/積
同上 除水量=13000kg×(0.5−0.2)=3900kg/積
同上 蒸発熱量=3900kg×562kcal/kg=2192Mcal/積
乾燥に必要な全熱量(蒸発の潜熱)=2192Mcal×6≒13150Mcal/6積
平均10日で乾燥するとして1日当たり必要熱量=1315Mcal/日
上記、実施例2及び実施例3において、木材乾燥装置によって取得できる合計熱量1397Mcal/日であり、一方乾燥に要する熱量は1315Mcal/日であるので、木材乾燥装置を用いて所定の期間(年平均10日間)でカラマツ材の乾燥が可能である。
【0012】
【発明の効果】
このようにして、本発明の木材乾燥装置は、北海道地方に豊富な温泉熱や太陽熱を熱源として、地域の自然エネルギーの複合利用によるカラマツ材の低温乾燥を行って、低コストで良質のカラマツ乾燥材を量産し、建築材として利活用することができる。
さらに、本発明の低温乾燥方法は、カラマツに限らずエゾマツ、トドマツ等の針葉樹材にも適用でき、また副次的効果として化石燃料を使用せず、従ってCO2を排出せず、環境にも配慮したものとなっている。
低温乾燥で得られたカラマツ無垢材を建築材に用いることにより、新建材使用によって引き起こされているシックハウス問題を解決することができる。
【図面の簡単な説明】
【図1】本発明の木材乾燥装置の概略構成図である。
【図2】直流式システムフロー図である。
【図3】分流式システムフロー図である。
【図4】従来の電気式除湿機乾燥装置の概略構成図である。
【図5】従来の蒸気加熱式乾燥装置の概略構成図である。
【符号の説明】
1 カラマツ丸太
2 アングル材
3 透明シート
4 箱形袋
5 乾燥室
6 桟積材
7 床暖パネル
8 大型循環ファン
9 熱交換器付きファン
10 小型循環ファン
11 天吊棒
12 風向ガイド[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wood drying apparatus and a low-temperature drying apparatus for low-temperature drying of larch wood and softwood such as spruce and fir that are piled in a large larch log house having a greenhouse structure by using local energy such as hot spring heat and solar heat in combination. About the method.
[0002]
[Prior art]
Conventionally, for drying of larch wood and softwood such as Scots pine and Abies sachalinen, a rapid drying method of 100 ° C or higher and high temperature by electric dehumidification drying (FIG. 4) or steam heating drying (FIG. 5) is used. In this method, larch wood is particularly vulnerable due to twisting and fine cracking, and has been considered only for low-value uses such as packing materials, pallet materials, and civil engineering materials, and has not been possible to use as building materials.
In order to increase the added value of larch wood as a building material, it is necessary to dry to a moisture content of 50% to 20% or less by low-temperature artificial drying at 80 ° C or less to suppress the occurrence of twisting and cracking.
However, as the time required for drying increases, fuel costs, electricity costs, and personnel costs, which are heat sources, increase, the value of lumber products increases, and it is difficult to compete with external materials.
[0003]
[Problems to be solved by the invention]
Using the abundant hot spring heat and solar heat in the Hokkaido region as a heat source, low-temperature drying of larch wood by combined use of local natural energy, mass-producing low-cost larch dried wood, and trying to utilize it as building material , without discharging the CO 2, and an object thereof is to provide a timber drying apparatus and cold drying method with consideration to the environment.
[0004]
[Means for Solving the Problems]
Therefore, the wood drying apparatus of the present invention builds a large space building using a composite truss material composed of larch logs and steel angles for a frame, and covers the roof and side walls of the building with a transparent sheet, and a larch of greenhouse structure. A log house is constructed, and a large box-shaped bag made of a transparent sheet is hung from the ceiling like a mosquito net inside the house to form a drying room, and a circulation fan is provided on the ceiling and the bottom of the drying room, and the drying room is provided. A fan with a heat exchanger and a floor warming panel.
Further, the low-temperature drying method of the present invention is to produce a large-sized house using a composite truss material composed of a larch log and a steel angle as a frame, and cover the roof and side walls of the house with a transparent sheet, and a larch having a greenhouse structure. A log house is constructed, and a large box-shaped bag made of a transparent sheet is hung from the ceiling like a mosquito net inside the house to form a drying room, and a circulation fan is provided on the ceiling and the bottom of the drying room, and the drying room is provided. A wood drying device with a fan with a heat exchanger and a floor warming panel is formed in it, and larch, spruce, fir and other coniferous wood are piled inside the drying room of the wood drying device, and the heat source is supplied with hot spring heat. the solar heat is obtained by complex use.
Furthermore, the low-temperature drying method of the present invention is based on hot air drying using a fan with a heat exchanger using hot spring heat, radiation drying and convection drying using a floor warm panel, and passive use of solar heat using the greenhouse effect. It is a combination of hot air drying and radiation drying.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a wood drying apparatus according to the present invention will be described with reference to the drawings.
First, as shown in FIG. 1, a large-space house is constructed using a truss structural material composed of a larch log 1 and an angle material 2 as a frame, and is covered with a transparent sheet 3 to construct a greenhouse larch log house. .
Inside the larch log house, a box-shaped bag 4 made of transparent sheet 3 (partially opaque sheet) is suspended from the ceiling of the house like a mosquito net with a hanging rod 11 to form a
A floor warm panel 7 is laid on the floor (some walls are used) for radiation drying, a large circulating fan 8 for hot air drying is provided on the ceiling of the
[0006]
Next, the operation of the wood drying apparatus of the present invention will be described with reference to FIG. Normally, the air in the
During the daytime sunshine, the hot air heated by the solar heat on the back of the larch log house is drawn directly into the room from the ceiling of the
At this time, the
A ventilation port (not shown) is provided at an appropriate place of the larch log house in the circulation path of these air, and the hot air that has become wet air by dehumidifying and drying the pile material 6 is partially discharged to the outside. Introduce fresh dry air.
The hot spring heat is exchanged for antifreeze and sent to the floor warm panel 7 and the fan 9 with the heat exchanger, and radiation drying and convection drying by the floor warm panel 7 and hot air drying by the fan 9 with the heat exchanger are always performed. The whole equipment is called larch log drying plant).
The principle of drying is to provide a large larch log house with a greenhouse structure in the shed of the
[0007]
【Example】
(Example 1)
Example 1 of a larch drying plant using larch test materials will be described in detail (see FIG. 1).
(1) Larch log house; size (width 14.4m, depth 18.0m, eave height 5.0m (building height 8.5m)), roof and side walls covered with transparent sheet 3 to form a greenhouse structure and keep airtight . (Ventilation vents in place for dehumidification ventilation).
(2) Drying room 5: Transparent sheet (partially opaque) structure of size (10.0 mW x 14.0 mL x 5.0 mH) and suspended from ceiling on ceiling hanging rod 11 like a mosquito net.
(3) Heat collecting area: Same as 140 m 2 (= 10.0 mx 14.0 m) in 5 drying rooms.
(4) Radiation panel; a hot water floor warm panel 7 having a
(5) Large heat exchanger; two heat exchangers from hot spring heat to antifreeze hot water.
(6) Blowers (fans): Fans 9 (10 units) with heat exchangers, large circulation fans 8 (5 units), and small circulation fans 10 (10 units).
(7) Measuring instruments: pyranometer, thermometer, (including air temperature and room temperature), calorimeter, air flow meter, hygrometer, etc., and a set of data capture processor.
(8) Complete system control device.
(9) Floor warm panel 7, circulating pump, piping and valves.
(10) Floor and side walls; made of concrete or asphalt and heat-insulated.
In the larch test material, six larch piles 6 (bulk volume 3.0 mW x 4.0 mL x 3.0 mH) are arranged inside the
[0008]
Hot spring heat source: An example of a system flow design using a hot spring with a flow rate of 100 L / min and a temperature of 53 ° C. as a heat source of the present system.
1. DC system flow; loss is not taken into account in the temperature display of FIG.
2. Split system flow; loss is not considered in the temperature display of FIG.
An example of a thermal calculation simulation of the above system is shown below, divided into a DC type and a shunt type.
[0009]
(Example 2)
A second embodiment in which a hot spring heat source is piped in series with a front heat exchanger and a rear heat exchanger will be described in detail (see FIG. 2).
A. DC type system (considering loss in Fig. 2)
1. Hot spring heat radiation (flow rate x temperature difference)
(1) Fan 9 with heat exchanger (hot air drying)
Primary heat exchanger primary side; hot spring flow rate G 1 = 100 L / min, 53 ° C. → 48 ° C., ΔT 1 = 5 ° C., η F1 = 0.9
Secondary heat exchanger side; antifreeze liquid flow rate G 2 = 50 L / min, 52 ° C. → 42 ° C., ΔT 2 = 10 ° C., η F2 = 0.81
Q F1 = η F1 · c · G 1 · ΔT 1 = 0.9 × 1.0 × 100 × 5 = 450kcal / min = 648Mcal / day Q F2 = η F2 · c · G 2 · ΔT 2 = 0.81 × 1.0 × 50 × 10 = 405 kcal / min = 583 Mcal / pre-stage heat exchanger efficiency Q F2 / Q F1 = 583/648 = 0.90
(2) Floor warm panel 7 (radiation drying + convection drying)
On the downstream side of the primary heat exchanger; hot spring flow rate G 1 ′ = 100 L / min, 48 ° C. → 43 ° C., ΔT 1 ′ = 5 ° C., η p1 = 0.9
Secondary heat exchanger secondary side; antifreeze liquid flow rate G 2 ′ = 50 L / min, 47 ° C. → 37 ° C., ΔT 2 ′ = 10 ° C., η p2 = 0.77
Q p1 = η p1 · G · 1 ′ · ΔT 1 ′ = 0.9 × 1.0 × 100 × 5 = 450 kcal / min = 648 Mcal / day Q p2 = η p2 · c · G 2 ′ · ΔT 2 ′ = 0.77 × 1.0 × 50 × 10 = 385 kcal / min = 554 Mcal / day post-stage heat exchanger efficiency Q p2 / Q p1 = 554/648 = 0.85
2. Floor warming panel 7 Heat radiation (1) Radiation radiation (radiation drying)
Panel area AP = 120 m 2 , T 1 = 47 ° C., T 2 = 37 ° C., T m = 42 ° C.
Q R12 = 4.88 {[(273 + 42) / 100] 4 -[(273 + 32) / 100] 4 } × 1.0 × 120 = 585.6 × (98.5-86.5) = 7027 kcal / hour = 169 Mcal / day (2) Convection heat release (convection drying)
Floor warm panel 7 total heat dissipation Q pT = Q p2 = 554 kcal / day floor warm panel 7 convection heat dissipation Q pC = Q p2 -Q R12 = 554-169 = 385 Mcal / day convection heat dissipation Q pC / Q PT = 385 / 554 = 0.70
Radiation radiation rate Q R12 / Q PT = 0.30
3. Annual average solar radiation in the solar hot Ashoro-cho J = 3.38 kWh / m 2 d = 2907 kcal / m 2 d
Solar heat collection area A C (= 5 drying rooms) = 140m 2
Sheet transmittance τ S = 0.8
Frame material porosity τ w = 0.8
Incident solar radiation Q S = J · τ S · τ w · A C = 2907 × 0.8 × 0.8 × 140 = 260Mcal / day Onsen heat radiation amount (= secondary total heat radiation amount) Q F2 + Q P2 = 583 + 554 = solar percentage 1137Mcal / day Onsen heat discharge Q S / (Q F2 + Q P2) = 260/1137 = 0.229 ≒ 1 / 4.4
4. Total calorific value of hot spring calorie + solar calorie = 1137 + 260 = 1397 Mcal / day
(Example 3)
Example 3 in which a hot spring heat source is piped in parallel to the first heat exchanger and the second heat exchanger will be described in detail (see FIG. 3).
B. Split-flow system (considering loss in Fig. 3)
1. Hot spring heat release (flow rate x temperature difference)
(1) Fan 9 with heat exchanger (hot air drying)
No. 1 heat exchanger primary side; hot spring flow rate G 1 = 50 L / min, 53 ° C. → 43 ° C., ΔT 1 = 10 ° C., η F1 = 0.9
No. 1 heat exchanger secondary side; antifreeze liquid flow rate G 2 = 50 L / min, 52 ° C. → 42 ° C., ΔT 2 = 10 ° C., η F1 = 0.81
Q F1 = η F1 · c · G 1 · ΔT 1 = 0.9 × 1.0 × 50 × 10 = 450 kcal / min = 648 Mcal / day Q F2 = η F2 · c · G 2 · ΔT 2 = 0.81 × 1.0 × 50 × 10 = 405 kcal / min = 583 Mcal / day No. 1 heat exchanger efficiency Q F2 / Q F1 = 583/648 = 0.90
(2) Floor warm panel 7 (radiation drying + convection drying)
No. 2 heat exchanger primary side; hot spring flow rate G 1 ′ = 50 L / min, 43 ° C. → 43 ° C., ΔT 1 ′ = 10 ° C., η p1 = 0.9
No. 2 heat exchanger secondary side; antifreeze flow rate G 2 ′ = 50 L / min, 47 ° C. → 37 ° C., ΔT 2 ′ = 10 ° C., η p2 = 0.77
Q p1 = η p1 · c · G 1 ′ · ΔT 1 ′ = 0.9 × 1.0 × 50 × 10 = 450 kcal / min = 648 Mcal / day Q p2 = η p2 · c · G 2 ′ · ΔT 2 ′ = 0.77 × 1.0 × 50 × 10 = 385 kcal / min = 554 Mcal / day No.2 heat exchanger efficiency Q p2 / Q p1 = 554/648 = 0.85
2. Floor warming panel 7 Heat radiation (1) Radiation radiation (radiation drying)
Panel area A P = 120 m 2 , T 1 = 52 ° C., T 2 = 42 ° C., T m = 47 ° C.
Q R12 = 4.88 {[(273 + 47) / 100] 4 -[(273 + 37) / 100] 4 } × 1.0 × 120 = 585.6 × (105−92) = 7613 kcal / hour = 183 Mcal / day ( 2) Convection heat dissipation (convection drying)
Floor warm panel 7 total heat dissipation Q pT = Q p2 = 554 kcal / day floor warm panel 7 convection heat dissipation Q pC = Q p2 -Q R12 = 554-183 = 371 Mcal / day convection heat dissipation rate Q pC / Q PT = 371 / 554 = 0.67
Radiation radiation rate Q R12 / Q PT = 0.33
3. Annual average solar radiation in the solar hot Ashoro-cho J = 3.38 kWh / m 2 d = 2907 kcal / m 2 d
Solar heat collection area A C (= 5 drying rooms) = 140m 2
Sheet transmittance τ S = 0.8
Frame material porosity τ w = 0.8
Incident solar radiation Q S = J · τ S · τ w · A C = 2907 × 0.8 × 0.8 × 140 = 260Mcal / day Onsen heat radiation amount (= secondary total heat radiation amount) Q F2 + Q P2 = 583 + 554 = solar percentage 1137Mcal / day Onsen heat discharge Q S / (Q F2 + Q P2) = 260/1137 = 0.229 ≒ 1 / 4.4
4. As a result of the thermal design of the total calorific value of hot spring calorific value + solar calorific value = 1137 + 260 = 1397 Mcal / day or more, there is no difference between the direct current type and the split flow type. The higher the heat and the higher the amount of radiation heat, it was found that good conditions for drying were created.
Therefore, the split flow type is slightly more advantageous.
[0011]
Next, the amount of heat required to dry the larch wood (from 50% to 20%) is calculated.
1) Heat of vaporization of water (heat of evaporation)
582.8 kcal / kg @ 583 kcal / kg at 25 ° C
539.8 kcal / kg @ 540 kcal / kg at 100 ° C
Average 562kcal / kg
2) bulk volume of the volume-weight桟積seen material Yaku material = 3.0 × 4.0 × 3.0 = 36m 3
Actual volume = bulk volume × 0.6 = 36 × 0.6 = 21.6 m 3
Test material density: The density of the larch raw material is assumed to be 600 kg / m 3 by estimating from the values of pine (377 kg / m 3 ) and cedar (341 kg / m 3 ) of the dried material (30 ° C.).
Mass of one pile material = actual volume × density = 21.6 m 3 × 600 kg / m 3 ≒ 13000 kg / loading water removal amount = 13000 kg × (0.5−0.2) = 3900 kg / loading heat of evaporation = 3900 kg × 562 kcal / kg = 2192 Mcal / total heat required for product drying (latent heat of evaporation) = 2192 Mcal × 6 ≒ 13150 Mcal / 6 The required heat per day assuming that the product is dried in an average of 10 days = 1315 Mcal / day The above Examples 2 and Examples 3, the total amount of heat that can be obtained by the wood drying device is 1397 Mcal / day, while the amount of heat required for drying is 1315 Mcal / day. Therefore, the larch is dried using the wood drying device for a predetermined period (an average of 10 days per year). Is possible.
[0012]
【The invention's effect】
In this manner, the wood drying apparatus of the present invention performs low-temperature drying of larch wood using combined use of local natural energy, using abundant hot spring heat and solar heat as a heat source in the Hokkaido region, and provides low-cost larch drying at low cost. Materials can be mass-produced and used as building materials.
Furthermore, low temperature drying process of the present invention, spruce not limited to larch, can be applied to softwood, such as fir, also without the use of fossil fuels as a side effect, therefore without discharging the CO 2, the environmental It has been considered.
By using solid larch obtained by low-temperature drying for building materials, it is possible to solve the sick house problem caused by the use of new building materials.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a wood drying device of the present invention.
FIG. 2 is a DC system flow chart.
FIG. 3 is a flow diagram of a split flow system.
FIG. 4 is a schematic configuration diagram of a conventional electric dehumidifier dryer.
FIG. 5 is a schematic configuration diagram of a conventional steam heating type drying apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Larch log 2 Angle material 3 Transparent sheet 4 Box-shaped
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002047337A JP3577483B2 (en) | 2002-02-25 | 2002-02-25 | Wood drying equipment and low temperature drying method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002047337A JP3577483B2 (en) | 2002-02-25 | 2002-02-25 | Wood drying equipment and low temperature drying method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003245906A JP2003245906A (en) | 2003-09-02 |
JP3577483B2 true JP3577483B2 (en) | 2004-10-13 |
Family
ID=28660423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002047337A Expired - Fee Related JP3577483B2 (en) | 2002-02-25 | 2002-02-25 | Wood drying equipment and low temperature drying method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3577483B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7637030B2 (en) | 2006-05-08 | 2009-12-29 | Marusho-Giken Co., Ltd. | Fully passive-type solar lumber drying house |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UY29217A1 (en) * | 2004-11-19 | 2006-01-31 | Australian Choice Timber Suppl | AN OVEN |
JP4953726B2 (en) * | 2006-08-04 | 2012-06-13 | 住友林業株式会社 | Method for manufacturing consolidated veneer |
US9250015B2 (en) | 2010-05-25 | 2016-02-02 | Solarkilns Pty Ltd | Solar-powered drying, heating and air-conditioning system |
CN104515364B (en) * | 2013-12-25 | 2017-02-08 | 柳州林道轻型木结构制造有限公司 | China fir drying method |
KR101447575B1 (en) | 2014-03-31 | 2014-10-07 | 바다섬완도영어조합법인 | Glasshouse having improved hot air supplying efficiency and drying effciency |
CN106091595A (en) * | 2016-08-17 | 2016-11-09 | 佛山市维科拓科技有限公司 | High-speed wood veneer drying equipment |
CN107265894A (en) * | 2017-08-01 | 2017-10-20 | 郑州三迪建筑科技有限公司 | A kind of ardealite pretreatment system |
CN108168238A (en) * | 2017-12-08 | 2018-06-15 | 安徽金亿禾特种纸有限公司 | A kind of furnace drying method of carbon paper |
-
2002
- 2002-02-25 JP JP2002047337A patent/JP3577483B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7637030B2 (en) | 2006-05-08 | 2009-12-29 | Marusho-Giken Co., Ltd. | Fully passive-type solar lumber drying house |
Also Published As
Publication number | Publication date |
---|---|
JP2003245906A (en) | 2003-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Singh et al. | Recent developments in greenhouse solar drying: A review | |
Azaizia et al. | Investigation of a new solar greenhouse drying system for peppers | |
JP6092478B2 (en) | Solar energy drying system with integrated heat recovery, storage and supply | |
US7637030B2 (en) | Fully passive-type solar lumber drying house | |
JP2007112009A (en) | Apparatus for drying wood passively using solar heat | |
Condorí et al. | Semi-industrial drying of vegetables using an array of large solar air collectors | |
Chaudhari et al. | A review of solar dryer technologies | |
Babagana et al. | Design and construction of forced/natural convection solar vegetable dryer with heat storage | |
Sangamithra et al. | An overview of a polyhouse dryer | |
Jitjack et al. | Improvement of a rubber drying greenhouse with a parabolic cover and enhanced panels | |
JP3577483B2 (en) | Wood drying equipment and low temperature drying method | |
Ugwu et al. | Design, construction, and evaluation of a mixed mode solar kiln with black-painted pebble bed for timber seasoning in a tropical setting | |
JP2007071440A (en) | Solar-based wood and sawdust powder drying device | |
Munir et al. | DEVELOPMENT AND PERFORMANCE EVALUATION OF A LOCALLY FABRICATED PORTABLE SOLAR TUNNEL DRYER FOR DRYING OF FRUITS, VEGETABLES AND MEDICINAL PLANTS. | |
CN108278862A (en) | Solar drying device | |
Shrivastava et al. | Developments in indirect solar dryer: a review | |
Bentayeb et al. | Modelling and simulation of a wood solar dryer in a Moroccan climate | |
Dulawat | Study on forced convection type solar tunnel dryer for industrial applications | |
PT108482A (en) | METHOD FOR THE AUTOMATION OF THE OPERATION OF A HYBRID PLANT SOLAR DRYER | |
CN105054270A (en) | Automatic solar energy tobacco flue-curing house | |
Sivakumar et al. | Different types of solar dryer for agricultural and marine products: a reference guide | |
Shi et al. | Ventilation drying in walls with vapor impermeable claddings | |
Amer | Solar Drying: Principles and Applications | |
BR102017005749A2 (en) | solar energy drying equipment | |
Mamulkar et al. | Performance evaluation of double flow solar air heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040603 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040630 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040712 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070716 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |