JP3576770B2 - Spiral component heat treatment apparatus, spiral component heat treatment method - Google Patents

Spiral component heat treatment apparatus, spiral component heat treatment method Download PDF

Info

Publication number
JP3576770B2
JP3576770B2 JP27013097A JP27013097A JP3576770B2 JP 3576770 B2 JP3576770 B2 JP 3576770B2 JP 27013097 A JP27013097 A JP 27013097A JP 27013097 A JP27013097 A JP 27013097A JP 3576770 B2 JP3576770 B2 JP 3576770B2
Authority
JP
Japan
Prior art keywords
heat treatment
spiral
treatment furnace
coil spring
helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27013097A
Other languages
Japanese (ja)
Other versions
JPH11104774A (en
Inventor
剛 馬場
智政 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27013097A priority Critical patent/JP3576770B2/en
Priority to US09/163,401 priority patent/US6174390B1/en
Publication of JPH11104774A publication Critical patent/JPH11104774A/en
Application granted granted Critical
Publication of JP3576770B2 publication Critical patent/JP3576770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は螺旋状部品の熱処理装置、螺旋状部品の熱処理方法に係り、特に熱処理工程を必要とする螺旋状部品であるコイルバネの加工及び組立装置に好適な技術に関するものである。
【0002】
【従来の技術】
螺旋状部品であるばね加工及び組立装置によれば、ピアノ線やステンレス線などの線材を巻加工して得た後に、外形寸法検査(自由長さ)を行い、さらに巻加工時の残留応力を除去するために約300℃〜500℃程度で所定時間の熱処理をするようにしている。このために、巻加工された多数のコイルバネを一括してケースに入れてケース単位で熱処理装置の熱処理炉に入れて熱処理を行うようにしている。
【0003】
このようにして完成したコイルバネを自動組立するためには、パーツフィーダ等の整列装置で整列させて1個毎の分離を行うようにし、ロボット等で把持して移動して容器本体等に組み付けるようにしている。
【0004】
しかし この方法ではパーツフィーダー内でばねが絡み合うためにロボット等の把持する前段階での整列の信頼性が低いので、自動組立ラインの稼働率の低下を招いていた。これらの対策として従来の熱処理装置として、添付の図8の外観斜視図に示す構成の装置が知られている。
【0005】
本図において、バネ製造機160で製造されたコイルバネWを検査装置150で選別し雨樋形状の受け部材171内に順次落下させることで、この部材171に沿って下流側に移動させて、熱処理炉170内を螺旋状に通過させることにより熱処理を行うようにしていた。
【0006】
また、図9の従来の熱処理装置の外観斜視図に図示のように、バネ製造機160で製造されたコイルバネWを検査装置150で選別し雨樋形状の受け部材171内に順次落下させた後に、ロボット装置181により移動するベルトコンペア上にばねを保持するピンP上に挿入し、ベルトコンペアにより熱処理炉180を通過させることにより熱処理を行うようにしていた。
【0007】
一方、特開平5‐007961号公報に開示のように、フック部を一体形成したコイルバネのフック部を棒体に対して吊るようにし、この棒体の廻りを回転するとともに螺旋溝を形成した螺旋形状部材にフック部を位置させるようにして、1個毎にコイルバネを熱処理部に送るように構成された「コイル成形品の後処理装置」も提案されている。
【0008】
【発明が解決しようとする課題】
しかしながら、ケースにいれてバッチ処理すると均一に熱処理できない場合がある。また、図8で説明した装置構成の場合には、熱処理炉内ではコイルバネWの姿勢及び隣り合う部品同士の接触を規制する機能がないためにコイルバネ同士が重なったり衝突時に絡み合う場合もあった。このような事態が発生した場合には、熱処理時間にバラツキが発生して熱処理の不均一が生じる欠点がある。
【0009】
また、熱処理炉内でコイルバネWの絡み合いが生じると、コイルバネWの絡み状態を解消するためには、炉170の1部を開放し、炉内温度を下げ、処理後にまた炉内温度を挙げなければならず、その分の時間がかかるので、ライン稼働率の低下を招いていた。
【0010】
一方、図9の場合には、コンペアを使用するために熱処理炉160はかなり大がかりになるとともに、また巻加工機からコンペア上の保持ピンPに対し一個一個ピックアンドプレースする移載装置181が必要になるために、コストアップを招く問題があった。また、ピックアンドプレースする移載装置を使用することで移載時のトラブル発生が考えられるために、ラインの稼働率の低下を招いてしまうことになる。このために自動組立ラインに装置を直結することができないという問題点がある。
【0011】
そして、特開平5‐007961号公報による提案は、なるほど1個毎に順次搬送できるが、コイルバネにフック部を一体形成するものに限定される不具合がある。
【0012】
したがって、本発明は上記問題点に鑑みてなされたものであり、螺旋状部品の熱処理装置全体を簡単に構成することができ、螺旋状部品が絡み状態となることがなく、かつ自動組立ラインに直結することができる螺旋状部品の熱処理装置、螺旋状部品の熱処理方法の提供を目的としている。
【0013】
【課題を解決するための手段】
上述した課題を解決し、目的を達成するために、本発明の螺旋状部品の熱処理装置によれば、連続搬送される個々の螺旋状部品を、熱処理炉内を通過させて熱処理する螺旋状部品の熱処理装置であって、製造後の前記螺旋状部品を載置状態で長手方向に連続搬送する載置部を有する第1の案内手段と、前記第1の案内手段の下流側に配設され、前記螺旋状部品を選別後に1個毎に送り出す移送手段と、前記移送手段に連続して設けられるとともに、前記熱処理炉内において前記螺旋状部品を載置状態で長手方向に案内する載置部と、後端側から押す駆動部とを有し、前記載置部は樋状の形状部材から少なくとも構成され、前記熱処理炉は略円筒形状に形成される内壁面を有し、前記形状部材を前記内壁面に沿うように略水平に配設し、前記駆動部を、前記熱処理炉の略中心部に配設される回転軸体から等間隔で複数分が延設される腕部と、前記腕の端部に設けられてなり前記形状部材内に潜入する押圧部とから構成し、前記回転軸体の回転に伴い前記螺旋状部品を通過させる第2の案内手段と、前記移送手段と前記駆動部に接続されてなり前記螺旋状部品を前記第2の案内手段に1個毎に送り出すように制御する制御手段とを具備することを特徴としている。
【0015】
また、前記形状部材を前記内壁面に沿うように上下方向に多段式に配設するとともに、前記螺旋状部品を自由落下させる開口部を形状部材の底面に設け、かつ前記開口部の上下位置関係をずらすとともに前記腕部を多段式に構成することで、前記螺旋状部品を下方の形状部材上へ自由落下させ、前記内壁面に長く沿うように通過させることを特徴としている。
【0016】
また、前記第2の案内手段の前記載置部は樋状の形状部材から少なくとも構成され、前記熱処理炉は略直線的に形成され、かつ略直線的な前記形状部材を内蔵してなり、前記駆動部を、前記形状部材の底面に沿う外周面を有し、前記螺旋状部品の長手方向の寸法に略該当するピッチで設けられる回転螺旋部材と、前記回動螺旋部材を回転駆動するモータ駆動部とから構成し、前記回動螺旋部材の回転に伴い前記螺旋状部品を通過させることを特徴としている。
【0018】
また、連続搬送される個々の螺旋状部品を、熱処理炉内を通過させて熱処理する螺旋状部品の熱処理方法であって、連続搬送する載置部を有する第1の案内手段により製造後の前記螺旋状部品を載置状態で長手方向に搬送し、前記第1の案内手段の下流側に配設され、前記螺旋状部品を選別後に1個毎に送り出す移送手段により搬送し、前記移送手段に連続して設けられるとともに、前記熱処理炉内において前記螺旋状部品を載置状態で長手方向に案内する載置部と、後端側から押す駆動部とを有し、前記載置部は樋状の形状部材から少なくとも構成され、前記熱処理炉は略円筒形状に形成される内壁面を有し、前記形状部材を前記内壁面に沿うように略水平に配設し、前記駆動部を、前記熱処理炉の略中心部に配設される回転軸体から等間隔で複数分が延設される腕部と、前記腕の端部に設けられてなり前記形状部材内に潜入する押圧部とから構成し、前記回転軸体の回転に伴い前記螺旋状部品を通過させる第2の案内手段により熱処理炉内を通過させ、前記移送手段と前記駆動部に接続される制御手段により前記螺旋状部品を前記第2の案内手段に1個毎に送り出すようにすることを特徴としている。
【0020】
また、螺旋状部品の熱処理方法において、前記形状部材を前記内壁面に沿うように上下方向に多段式に配設するとともに、前記螺旋状部品を自由落下させる開口部を形状部材の底面に設け、かつ前記開口部の上下位置関係をずらすとともに前記腕部を多段式に構成することで、前記螺旋状部品を下方の形状部材上へ自由落下させ、前記内壁面に長く沿うように通過させることを特徴としている。
【0021】
また、螺旋状部品の熱処理方法において、前記第2の案内手段の前記載置部は樋状の形状部材から少なくとも構成され、前記熱処理炉は略直線的に形成され、かつ略直線的な前記形状部材を内蔵してなり、前記駆動部を、前記形状部材の底面に沿う外周面を有し、前記螺旋状部品の長手方向の寸法に略該当するピッチで設けられる回転螺旋部材と、前記回動螺旋部材を回転駆動するモータ駆動部とから構成し、前記回動螺旋部材の回転に伴い前記螺旋状部品を通過させることを特徴としている。
【0024】
【発明の実施の形態】
以下に本発明の好適な実施形態について添付図面を参照して述べる。
【0025】
図1は、螺旋状部品の熱処理装置の全体構成を図示した外観斜視図であって、要部を破断して図示している。本図において、60は螺旋状部品であるコイルバネWを巻加工する加工装置であるが、以下の説明において螺旋状部品であるコイルバネWであって、熱処理が必要となる部品について述べるが、これに限定されず、リードネジ、ボルト類など外周面の長手方向に螺旋溝を形成した部品であれば何でも良い。
【0026】
このコイリングマシン60の下流側にはコイルバネWの自由長さを非接触式のセンサ51で測定する測定装置50が配設されており、巻加工終了においてコイルバネWを保持した状態でコイルバネWの自由長さを測定し、良品は次工程に流すために樋状のレール24上に順次送り出す一方で、不良品は排出機(図示せず)により排除するようにして選別する。
【0027】
この樋状のレール24には角度θで下方に向かう傾斜部24aが形成されており、コイルバネWを自重で下方に流れるように移動できるようにして、移動のための動力をなくすようにしている。
【0028】
この傾斜部24aには、熱処理炉20内に投入するコイルバネWを1個分離させるための投入用分離装置40が配設されている。この分離装置40は、熱処理炉20にコイルバネWを1個づつ投入するために流れ止め用のゲート作動用のシリンダ41−2と ゲートピン41−1とコイルバネWを押さえつけるプッシャシリンダ42−1と、これに固定された押さえつけ部42−2とから構成されている。
【0029】
また、21は熱処理炉入り口部のコイルバネWの有無センサである。
【0030】
次に、図2は図1の熱処理装置20のX‐X矢視断面図であり、図1に図2をさらに参照して、熱処理装置20の最上段には0段目の樋状のレール21が設けられており、この樋状のレール21にはコイルバネW落下用ホール21−hが穿設されている。
【0031】
また、熱処理装置20は円筒形状の炉体25で断熱性のある材料で構成されており、側面のヒータ200からの熱を外部に漏らさないようにしている。この炉体25の内部には、コイルバネWの後端部位を押圧移動させる押圧部30を固定した羽根部材23a〜23eの組みを60度間隔で6本となるようにスポーク状に設けた羽根部材が上下段に固定されており、また羽根部材23a〜23eが30度ずれるようにして軸体22に固定されている。この軸体22にはモータ29の出力軸が固定されており、軸体22の回転により羽根部材23−a−1〜6、23−b−1〜6、23−c−1〜6、23−d−1〜6、23−e−1〜6、が同時に回転されることで、コイルバネWの後端が押されてレール上を移動されて、樋状のレール21−a〜eの落下用ホールhを介して下方のレール上に順次落下する。
【0032】
図3の動作連理図と図4の動作説明の展開図において、21−a〜eの樋状レールにはコイルバネW落下用のホール21−a〜e−hが穿設されるとともに、羽根部材23は軸体22からラジアル方向に6本設けられている。さらに樋状レール21が1本とコイルバネW落下用のホール21−hが1個と羽根部材23は円周上に6枚ありこの機構を炉内コイルバネW円周送り機構として上下方向に5個並んでいる。
【0033】
また1番上のコイルバネW円周送り機構の羽根部材23と2番目のコイルバネW円周送り機構の羽根部材23とは30°位相がズレている。また2番のコイルバネW円周送り機構の羽根部材23と3番目のコイルバネW円周送り機構の羽根部材23とは30°位相がズレており、3番のコイルバネW円周送り機構の羽根部材23と4番目のコイルバネW円周送り機構の羽根部材とは30°位相がズレて4番のコイルバネW円周送り機構の羽根部材と5番目のコイルバネW円周送り機構の羽根部材とは30°位相がズレている。
【0034】
また、羽根部材23−1−1〜6と羽根部材23−2−1〜6羽根部材23−3−1〜6と羽根部材23−4−1〜6羽根部材23−5−1〜6は互いに30°づつずれて軸体22と結合している。軸体22は炉体25に対して回転可能に支持されている。また炉内温度制御するための制御装置と炉内温度をあげるヒータ200部を備えている。
【0035】
再度、図1において、10は巻加工と熱処理工程が済んだコイルバネWを整列及び滞留、1個分離するための装置で、12はレール部でコイルバネWを1列に整列させるためのガイド、11は振動体でコイルバネW送り方向(紙面右から左)に振動を伝えることで移動させるためのものである。13は分離コマで先頭のコイルバネW1個を他から分離し、1個毎に分離されたコイルバネWを移載用ロボット(図示せず)により後工程に搬送するように構成されている。
【0036】
以上のように構成される装置において、動作説明を図5の動作説明フローチャートで行うと、ステップS1で、コイルバネWを巻加工するコイリングマシン60で巻加工されたコイルバネWは、ステップS2に進み巻加工終了の保持した状態でコイルバネWの自由長さを非接触式のセンサ51で測定し(ステップS3)良品は次工程に流し不良品は排出機(ステップS4)で排出する。
【0037】
良品と判定されるとステップS5で、樋状のレール24上に巻加工及び検査されたコイルバネWを落下させる。樋状のレール24は傾斜部24aが形成されておりコイルバネWは滑り落ちる。ステップS6では熱処理炉内にコイルバネWを1個づつ投入する投入分離装置40の流れ止め用のゲート作動用のシリンダ41−2がオンされ、ステップSではゲートピン41−1がオンされて堰き止められる。すなわち、堰き止められているコイルバネWの1つ手前のコイルバネWを押さえつけるプッシャシリンダ42−1の押さえつけ部42−2により押さえつけている。
【0038】
次に、ステップS8で熱処理炉入り口のコイルバネWの有無センサ21によりコイルバネWが無いことを確認するとゲートピン41−1を開け樋状レール21上をコイルバネWが滑り落ちコイルバネW落下用ホール21−hからコイルバネWは熱処理炉内の1段目樋状レール21−a上に落下する。
【0039】
これにより熱処理炉入り口の有無センサS1によりコイルバネWが有ることを確認する。そこでゲートピン41−1を閉め 押さえつけ部を開放する。その後押さえつけ部を作動させコイルバネWを押さえ部によりコイルバネWを押さえ付けておく(ステップS9、10)。
【0040】
図4において、先ほど落下したコイルバネW(1番目)のその位置より約15度後退した位置にコイルバネW送り羽根部材23−a−1が位置しており、さらにそれより30°後退した位置にコイルバネW送り羽根部材23−a−2が、それより30°後退した位置にコイルバネW送り羽根部材23−a−3が、それより30°後退した位置にコイルバネW送り羽根部材23−a−4が、それより30°後退した位置にコイルバネW送り羽根部材23−a−5が、それより30°後退した位置にコイルバネW送り羽根部材23−a−6が位置しており、合計で6枚の羽根部材23が有る。
【0041】
このために全体が30°回転するとコイルバネW落下用ホールより落下したコイルバネWがレール21a内を15°分移動するため熱処理炉入り口のコイルバネW有無センサ21によりコイルバネWが無いこと判断する。
【0042】
すると熱処理炉内にコイルバネWを1個づつ投入する動作ゲートピンの開放・堰き止めとコイルバネW押さえ込みにより2番目のコイルバネWは樋状レール21上を滑り落ちコイルバネW落下用ホール21−hから熱処理炉内の1段目樋状レール21−a上に落下する。(炉内入り口に2番目のコイルバネWを供給する、ステップS11)
熱処理炉入り口のコイルバネW有無センサ21によりコイルバネWが有ることを確認するコイルバネW(2番目)が落下した位置より約15°後退した位置にコイルバネWの羽根部材23−a−2があり(以下30°づつずれて羽根部材23が位置する)
1段目円周送り機構(2〜5段目の円周送り機構も同様)は30°回転すると羽根部材23−a−2がコイルバネWの後端を押圧部30で押すことで約15度分回転移動する。コイルバネWの供給回転の動作をさらに3回繰り返すと1個日目のコイルバネWが21−a−hの落下ホールから2段目の円周送り機構の樋状のレール21−b上にコイルバネWは落下する。
【0043】
さらに30°回転すると360°(1回転)する。2段目の円周送り機構はさらにこの動作を5回繰り返すと21−b−hの落下ホールから3段目の円周送り機構の樋状のレール21−c上にコイルバネWは落下する。
【0044】
さらに30°回転すると360°(1回転)する。
【0045】
3段目の円周送り機構はさらにこの動作を5回繰り返すと21−c−hの落下ホールから4段目の円周送り機構の樋状のレール21−d上にコイルバネWは落下する。
【0046】
さらに30°回転すると360°(1回転)する。
【0047】
4段目の円周送り機構この動作を5回繰り返すと21−d−hの落下ホールから5段目の円周送り機構の樋状のレール21−e上にコイルバネWは落下する。
さらに30°回転すると360°(1回転)する。
【0048】
5段目の円周送り機構はさらにこの動作を4回線り返すと21−e−hの落下ホールから熱処理炉外の6段目の樋状のレール21−f上にコイルバネWは落下する。この過程で熱処理は完了する。
【0049】
6段目の樋状のレール21−f上に落下したコイルバネWはプッシャ14により樋状レール24に移動され動作をさらに繰り返すことで巻加工と熱処理工程が済んだコイルバネWを整列及び滞留、1個分離するための装置10上にコイルバネWは移動される。
【0050】
11は振軌捧で振動により紙面左方向に移動させる。
【0051】
分離コマ13上に1個分離されたコイルバネWをロボット等(図示せず)のコイルバネW移載装置により容器本体(図示せず)に組み付ける。
【0052】
次に、図6は別構成の熱処理装置20を使用する場合の概略構成図である。本図において、既に説明済みの構成には同一符号を付して説明を割愛すると、25は炉体で断熱性のある材料で構成されている。
【0053】
54はコイルバネWを移動させるスクリュー状の螺旋送り部材で軸体53と結合しており炉体25の長手方向に回転可能に支持されている。
【0054】
プーリ52は軸体53と結合し、かつまたベルト51を通してプーリと連動している。またプーリとモータ29は結合している。
【0055】
以上の構成において、コイルバネWを巻加工するコイリングマシン60で巻加工されたコイルバネWは巻加工終了の保持した状態でコイルバネWの自由長さを51非接触式のセンサで測定し良品は次工程に流し不良品は排出機(図示せず)で排出する。24は樋状のレールでその上に巻加工されたコイルバネWを落下させる。
【0056】
樋状のレール24は傾斜部24aが設けられておりコイルバネWは滑り落ちるようにしている。
【0057】
40は熱処理炉内にコイルバネWを1個づつ投入する投入分離装置でコイルバネWを投入するため流れ止め用のゲート作動用のシリンダ41−2、ゲートピン41−1により堰き止められている。堰き止められているコイルバネWの1つ手前のコイルバネWを押えつけるプッシャシリンダ42−1押えつけ部42−2により押えつけている。
【0058】
熱処理炉20の入り口の有無センサ21によりコイルバネWがないことを確認するとゲート41−1が開けられて、コイルバネWが滑り落ち、炉内入り口に到着すると、熱処理炉入り口の有無センサ21がコイルバネWが有ることを感知しその場合にはコイルバネWを移動させるスクリュー状の螺旋送り部材54を回転することによりコイルバネWは移動する。
【0059】
次にゲート41を閉めるために、押えつけプッシャを開放するとコイルバネWは滑り落ちゲートにより堰き止められる。
【0060】
スクリュー状の螺旋送り部材54を回転することで、図6のX‐X矢視断面図である図7に図示のようにコイルバネWは移動される。
【0061】
また、熱処理炉入り口の有無センサ21によりコイルバネWが無いことを確認すると再び投入用分離装置40によりコイルバネWを1個投入する。この動作を繰り返すことでコイルバネWは熱処理条件の設定温度・時間を経過した後熱処理がなされる。
【0062】
以上の動作をさらに繰り返すことで巻加工と熱処理工程が済んだコイルバネWを整列及び滞留、1個分離するための装置10上にコイルバネWは移動される。また11は振動体で振動により紙面左方向に移動させ、分離コマ13上に1個分離されたコイルバネWをロボット等(図示せず)のコイルバネW移載装置により容器本体(図示せず)に組み付ける。
【0063】
以上説明したように熱処理炉手前には投入分離装置によりコイルバネWの1個投入を確実に行う事が出来熱処理炉内の樋状レール上を羽根部材によりコイルバネW同士の干渉、衝突がないよう搬送されるため絡み合いが無い。したがって自動組立ラインに対しても稼働率の低下を招く事は無く本装置を自動組立ラインに対し直結することが可能になった。
【0064】
【発明の効果】
以上説明したように本発明によれば、螺旋状部品の熱処理装置全体を簡単に構成することができ、螺旋状部品が絡み状態となることがなく、かつ自動組立ラインに直結することができる螺旋状部品の熱処理装置、螺旋状部品の熱処理方法を提供することができる。
【0065】
【図面の簡単な説明】
【図1】本発明の第1実施形態の熱処理装置の全体構成の外観斜視図である。
【図2】図1のX‐X矢視断面図である。
【図3】動作説明図である。
【図4】動作説明展開図である。
【図5】動作説明フローチャートである。
【図6】本発明の第2実施形態の熱処理装置の全体構成の外観斜視図である。
【図7】図6のX‐X矢視断面図である。
【図8】従来のバネ加工及び組立装置の全体図である。
【図9】従来のバネ加工及び組立装置の全体図である。
【符号の説明】
10 滞留・整列・分離装置
20 熱処理炉
21 有無センサ
22 軸体
23 スクリュー状の螺旋部材
24 樋状のレール部材(第2の案内手段)
25 炉体
30 押圧部
29 モータ
40 投入用ワーク分離装置
60 巻加工装置
W コイルバネ(螺旋状部品)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat treatment apparatus for a spiral part and a heat treatment method for a spiral part, and more particularly to a technique suitable for a processing and assembling apparatus for a coil spring which is a spiral part requiring a heat treatment step.
[0002]
[Prior art]
According to the spring processing and assembling device, which is a spiral part, after winding a wire such as a piano wire or a stainless steel wire, the external dimensions are inspected (free length), and the residual stress during the winding is reduced. In order to remove it, heat treatment is performed at about 300 ° C. to 500 ° C. for a predetermined time. For this purpose, a large number of wound coil springs are collectively put into a case and put into a heat treatment furnace of a heat treatment apparatus for each case to perform heat treatment.
[0003]
In order to automatically assemble the coil spring completed in this way, it is necessary to align the components with an alignment device such as a parts feeder to separate the individual coil springs, and to grip and move with a robot or the like to assemble the container with the container body. I have to.
[0004]
However, in this method, since the spring is entangled in the parts feeder, the reliability of alignment before the robot or the like is gripped is low, so that the operation rate of the automatic assembly line is reduced. As a countermeasure against these problems, an apparatus having a configuration shown in an external perspective view of FIG. 8 is known as a conventional heat treatment apparatus.
[0005]
In this drawing, the coil spring W manufactured by the spring manufacturing machine 160 is selected by the inspection device 150 and sequentially dropped into the rain gutter-shaped receiving member 171 to be moved downstream along the member 171 to perform heat treatment. Heat treatment was performed by spirally passing through the furnace 170.
[0006]
Further, as shown in the external perspective view of the conventional heat treatment apparatus in FIG. 9, after the coil spring W manufactured by the spring manufacturing machine 160 is selected by the inspection apparatus 150 and sequentially dropped into the rain gutter-shaped receiving member 171, Then, the heat treatment is performed by inserting the spring into the pin P holding the spring on the belt compare moved by the robot device 181 and passing the heat through the heat treatment furnace 180 by the belt compare.
[0007]
On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 5-007961, a hook portion of a coil spring integrally formed with a hook portion is hung from a rod, and the spiral is formed by rotating around the rod and forming a spiral groove. There has also been proposed a "post-processing device for a coil molded product" in which a hook portion is positioned on a shape member and a coil spring is sent to a heat treatment unit for each coil spring.
[0008]
[Problems to be solved by the invention]
However, there is a case where heat treatment cannot be performed uniformly in a batch process in a case. In addition, in the case of the apparatus configuration described with reference to FIG. 8, there is a case where the coil springs overlap or become entangled at the time of collision because there is no function of regulating the posture of the coil springs W and the contact between adjacent components in the heat treatment furnace. When such a situation occurs, there is a disadvantage that the heat treatment time varies and the heat treatment becomes non-uniform.
[0009]
Further, when the coil spring W becomes entangled in the heat treatment furnace, in order to eliminate the entanglement of the coil spring W, a part of the furnace 170 must be opened, the furnace temperature must be lowered, and the furnace temperature must be raised again after the treatment. The time required for the operation, which has led to a decrease in the line operation rate.
[0010]
On the other hand, in the case of FIG. 9, the heat treatment furnace 160 becomes considerably large because a compare is used, and a transfer device 181 for picking and placing each of the holding pins P on the compare from the winding machine is required. Therefore, there is a problem that the cost is increased. In addition, the use of a pick-and-place transfer apparatus may cause a trouble at the time of transfer, resulting in a decrease in the line operation rate. For this reason, there is a problem that the apparatus cannot be directly connected to the automatic assembly line.
[0011]
The proposal disclosed in Japanese Patent Application Laid-Open No. 5-007961 can successively transport each piece as much as possible. However, there is a problem that the method is limited to a method in which a hook portion is integrally formed with a coil spring.
[0012]
Therefore, the present invention has been made in view of the above problems, and can easily configure the entire heat treatment apparatus for a spiral part, without causing the spiral part to be entangled, and in an automatic assembly line. It is an object of the present invention to provide a heat treatment apparatus for a spiral component that can be directly connected, and a heat treatment method for a spiral component.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems and achieve the object , according to the heat treatment apparatus for a spiral component of the present invention, a spiral component that continuously heats individual spiral components by passing through a heat treatment furnace is heat-treated. A first guide means having a mounting portion for continuously transporting the manufactured spiral component in a longitudinal direction in a mounted state, and a heat treatment apparatus provided downstream of the first guide means. A transfer means for sending out the spiral parts one by one after sorting, and a mounting part which is provided continuously to the transfer means and guides the spiral parts in the heat treatment furnace in a longitudinal direction in a mounted state. If, possess a driving unit to press the rear end side, the placement section is at least composed of a trough-shaped member, the heat treatment furnace has an inner wall surface formed in a substantially cylindrical shape, said shape member Arranged substantially horizontally along the inner wall, An arm extending a plurality of parts at equal intervals from a rotating shaft disposed substantially at the center of the heat treatment furnace; and an arm provided at an end of the arm and infiltrating into the shape member. A second guide means configured to pass through the helical part with the rotation of the rotary shaft body, and connected to the transfer means and the drive part, and the helical part is connected to the second part. Control means for controlling the guide means so as to send out one by one is provided.
[0015]
In addition, the shape member is arranged in multiple stages in the up and down direction along the inner wall surface, and an opening for freely dropping the spiral part is provided on the bottom surface of the shape member, and the vertical positional relationship of the opening is provided. And the arm is configured in a multi-stage manner so that the helical part can be freely dropped onto a lower shaped member and passed along the inner wall surface for a long time.
[0016]
In addition, the mounting portion of the second guide means is at least composed of a gutter-shaped member, and the heat treatment furnace is formed substantially linearly, and incorporates the substantially linear shape member, A driving unit having an outer peripheral surface along a bottom surface of the shape member, a rotating helical member provided at a pitch substantially corresponding to a longitudinal dimension of the helical component, and a motor drive for rotationally driving the rotating helical member The spiral component is made to pass along with the rotation of the rotating spiral member.
[0018]
Also, a method for heat treatment of a spiral component in which individual spiral components continuously conveyed are passed through a heat treatment furnace and heat-treated, wherein the first guide means having a mounting portion for continuously transporting the spiral components is used for producing the spiral component. The helical part is transported in the longitudinal direction in a mounted state, and is disposed downstream of the first guide means. The helical part is transported by a transport means that sends out the helical parts one by one after sorting, and is transferred to the transport means. with continuously provided, possess a mounting portion for guiding longitudinally placement state the spiral component in the heat-treating furnace, and a drive unit to press the rear end side, the placement section is trough-shaped The heat treatment furnace has an inner wall surface formed in a substantially cylindrical shape, the shape member is disposed substantially horizontally along the inner wall surface, and the driving unit is provided with the heat treatment furnace. Equal distance from the rotating shaft located at the approximate center of the furnace And a pressing portion provided at an end of the arm and infiltrating into the shape member, and passes through the spiral part with the rotation of the rotating shaft body. passed through a second heat treatment furnace by a guide means which causes, to make it send out every one to the second guide means the coiled part by a control means connected to said drive unit and said transfer means Features.
[0020]
Further, in the heat treatment method of the spiral part, the shape member is disposed in a multi-stage manner in the vertical direction along the inner wall surface, and an opening for allowing the spiral part to freely fall is provided on the bottom surface of the shape member, And by shifting the vertical position of the opening and configuring the arms in a multi-stage manner, the spiral part can be freely dropped onto the lower shaped member and passed along the inner wall surface long. Features.
[0021]
Further, in the heat treatment method for a helical part, the placing part of the second guide means is at least constituted by a gutter-shaped member, and the heat treatment furnace is formed substantially linearly, and the substantially linear shape is formed. A rotating helical member having a built-in member, the driving unit having an outer peripheral surface along a bottom surface of the shape member, and being provided at a pitch substantially corresponding to a longitudinal dimension of the helical component; And a motor drive unit that drives the helical member to rotate, so that the helical component passes through the helical member as the rotary helical member rotates.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
[0025]
FIG. 1 is an external perspective view illustrating the entire configuration of a heat treatment apparatus for a spiral part, in which main parts are cut away. In the figure, reference numeral 60 denotes a processing device for winding a coil spring W which is a spiral component. In the following description, a coil spring W which is a spiral component and which requires heat treatment will be described. The component is not limited, and may be any component such as a lead screw or a bolt as long as a spiral groove is formed in the longitudinal direction of the outer peripheral surface.
[0026]
On the downstream side of the coiling machine 60, a measuring device 50 for measuring the free length of the coil spring W with a non-contact type sensor 51 is provided. The length is measured and non-defective products are sequentially sent out on a gutter-shaped rail 24 to be flown to the next process, while defective products are sorted out by a discharger (not shown).
[0027]
The gutter-shaped rail 24 is formed with an inclined portion 24a directed downward at an angle θ, so that the coil spring W can be moved so as to flow downward by its own weight, so that power for movement is eliminated. .
[0028]
An input separation device 40 for separating one coil spring W to be input into the heat treatment furnace 20 is provided in the inclined portion 24a. The separation device 40 includes a cylinder 41-2 for operating a flow stop gate, a gate pin 41-1 and a pusher cylinder 42-1 for holding down the coil spring W in order to feed the coil springs W into the heat treatment furnace 20 one by one. And a pressing portion 42-2 fixed to the holding member.
[0029]
Reference numeral 21 denotes a sensor for the presence or absence of the coil spring W at the entrance of the heat treatment furnace.
[0030]
Next, FIG. 2 is a cross-sectional view of the heat treatment apparatus 20 of FIG. 1 taken along the line XX. Further referring to FIG. The gutter-shaped rail 21 has a coil spring W drop hole 21-h.
[0031]
Further, the heat treatment apparatus 20 is made of a material having a heat insulating property in a cylindrical furnace body 25 so as to prevent the heat from the heater 200 on the side surface from leaking to the outside. Inside the furnace body 25, there are six blade members 23a to 23e each having a pressing portion 30 for pressing and moving the rear end portion of the coil spring W fixedly provided in a spoke shape so as to be six at 60 degree intervals. Are fixed to the upper and lower stages, and the blade members 23a to 23e are fixed to the shaft body 22 so as to be shifted by 30 degrees. An output shaft of a motor 29 is fixed to the shaft body 22, and the blade members 23-a-1, 23-b-1, 23-c-1, 23-c-1, 23-c-1, 23-c-6, 23- -D-1-6, 23-e-1-6 are simultaneously rotated, the rear end of the coil spring W is pushed and moved on the rail, and the gutter-shaped rails 21-a-e fall. Sequentially fall on the lower rail through the use hole h.
[0032]
In the operation linkage diagram of FIG. 3 and the developed view of the operation description of FIG. 4, holes 21-a to eh for dropping the coil spring W are formed in the gutter-shaped rails 21-a to e, and the blade member is formed. Six 23 are provided in the radial direction from the shaft body 22. Further, there is one gutter-shaped rail 21, one hole 21-h for dropping the coil spring W, and six blade members 23 on the circumference. This mechanism is a furnace coil spring W circumferential feed mechanism and five vertically. Lined up.
[0033]
Also, the blade member 23 of the uppermost coil spring W circumferential feed mechanism is out of phase by 30 ° with the blade member 23 of the second coil spring W circumferential feed mechanism. Also, the blade member 23 of the second coil spring W circumferential feed mechanism is out of phase by 30 ° with the blade member 23 of the third coil spring W circumferential feed mechanism, and the blade member of the third coil spring W circumferential feed mechanism. The wing members of the 23rd and fourth coil spring W circumferential feed mechanisms are out of phase by 30 ° with the wing member of the 4th coil spring W circumferential feed mechanism and the wing member of the 5th coil spring W circumferential feed mechanism. ° The phase is out of alignment.
[0034]
Further, the blade members 23-1-1 to 23-6 and the blade members 23-2-1 to 23-6 and the blade members 23-3-1 to 23-6 and the blade members 23-4-1 to 23-6 are blade members 23-5-1 to 23-6. They are connected to the shaft body 22 by being shifted from each other by 30 °. The shaft body 22 is rotatably supported by the furnace body 25. Further, a control device for controlling the furnace temperature and a heater 200 for increasing the furnace temperature are provided.
[0035]
Referring again to FIG. 1, reference numeral 10 denotes a device for aligning and retaining the coil springs W after the winding process and the heat treatment process, and separating the coil springs W from each other. Reference numeral 12 denotes a rail portion for guiding the coil springs W in a row. Is for moving the vibrator by transmitting vibration in the feed direction of the coil spring W (from right to left on the page). Reference numeral 13 denotes a separating frame, which is configured to separate one leading coil spring W from the other, and to transfer the separated coil spring W to a subsequent process by a transfer robot (not shown).
[0036]
In the apparatus configured as described above, the operation will be described with reference to the operation description flowchart of FIG. 5. In step S1, the coil spring W wound by the coiling machine 60 that winds the coil spring W proceeds to step S2. The free length of the coil spring W is measured by the non-contact type sensor 51 in a state where the processing is completed and held (Step S3), and the non-defective product is passed to the next process, and the defective product is discharged by the discharger (Step S4).
[0037]
If it is determined that the coil spring W is non-defective, the coil spring W that has been wound and inspected is dropped on the gutter-shaped rail 24 in step S5. The gutter-shaped rail 24 has an inclined portion 24a, and the coil spring W slides down. In step S6, the cylinder 41-2 for operating the flow stop gate of the charging / separating device 40 for charging the coil springs W one by one into the heat treatment furnace is turned on, and in step S, the gate pin 41-1 is turned on to stop the damping. . That is, the pusher cylinder 42-1 presses the coil spring W just before the damped coil spring W by the pressing portion 42-2.
[0038]
Next, in step S8, when it is confirmed by the presence / absence sensor 21 of the coil spring W at the entrance of the heat treatment furnace that the coil spring W is not present, the gate pin 41-1 is opened, and the coil spring W slides down on the gutter-shaped rail 21, and the coil spring W dropping hole 21-h. From the coil spring W falls on the first-stage gutter-shaped rail 21-a in the heat treatment furnace.
[0039]
Thus, the presence or absence of the coil spring W is confirmed by the presence / absence sensor S1 of the heat treatment furnace entrance. Then, the gate pin 41-1 is closed and the holding part is opened. Thereafter, the pressing portion is operated to hold down the coil spring W by the pressing portion (steps S9, S10).
[0040]
In FIG. 4, the coil spring W feed blade member 23-a-1 is located at a position about 15 degrees retreated from the position of the coil spring W (first) which has just dropped, and further at a position retracted 30 degrees therefrom. The coil spring W feed blade member 23-a-3 is located at a position where the W feed blade member 23-a-2 is retracted by 30 °, and the coil spring W feed blade member 23-a-4 is located at a position where it is retracted 30 ° therefrom. The coil spring W feed blade member 23-a-5 is located at a position retracted by 30 ° from the position, and the coil spring W feed blade member 23-a-6 is located at a position retracted by 30 ° from the position. There is a blade member 23.
[0041]
For this reason, when the entirety rotates 30 °, the coil spring W dropped from the coil spring W dropping hole moves within the rail 21a by 15 °, so that the coil spring W presence sensor 21 at the entrance of the heat treatment furnace determines that there is no coil spring W.
[0042]
Then, the second coil spring W slides on the gutter-shaped rail 21 by opening and blocking the gate pins and pressing down the coil spring W into the heat treatment furnace. Falls on the first-stage gutter-shaped rail 21-a. (Supply the second coil spring W to the furnace entrance, step S11)
The blade member 23-a-2 of the coil spring W is located at a position about 15 ° receded from the position where the coil spring W (second) falls by the coil spring W presence / absence sensor 21 at the entrance of the heat treatment furnace. The blade member 23 is shifted by 30 °)
When the first-stage circumferential feed mechanism (the same applies to the second-fifth-stage circumferential feed mechanism) rotates by 30 °, the blade member 23-a-2 pushes the rear end of the coil spring W with the pressing portion 30 by about 15 degrees. Rotate by a minute. When the supply rotation operation of the coil spring W is further repeated three times, the coil spring W of the first day is placed on the gutter-shaped rail 21-b of the second-stage circumferential feed mechanism from the drop hole of 21-ah, and the coil spring W is moved. Falls.
[0043]
Further rotation by 30 ° results in 360 ° (one rotation). When this operation is further repeated five times by the second-stage circumferential feed mechanism, the coil spring W falls from the falling hole 21-bh onto the gutter-shaped rail 21-c of the third-stage circumferential feed mechanism.
[0044]
Further rotation by 30 ° results in 360 ° (one rotation).
[0045]
When the third-stage circumferential feed mechanism repeats this operation five more times, the coil spring W falls from the falling hole 21-ch onto the gutter-shaped rail 21-d of the fourth-stage circumferential feed mechanism.
[0046]
Further rotation by 30 ° results in 360 ° (one rotation).
[0047]
Fourth-stage circumferential feed mechanism When this operation is repeated five times, the coil spring W falls from the falling hole 21-dh onto the gutter-shaped rail 21-e of the fifth-stage circumferential feed mechanism.
Further rotation by 30 ° results in 360 ° (one rotation).
[0048]
When the fifth-stage circumferential feed mechanism repeats this operation four more times, the coil spring W falls from the falling hole 21-eh onto the sixth-stage gutter-shaped rail 21-f outside the heat treatment furnace. In this process, the heat treatment is completed.
[0049]
The coil spring W that has fallen onto the sixth gutter-shaped rail 21-f is moved to the gutter-shaped rail 24 by the pusher 14, and the operation is further repeated to align and retain the coil spring W that has been subjected to the winding process and the heat treatment process. The coil spring W is moved onto the device 10 for separating.
[0050]
Numeral 11 denotes a vibration gauge which is moved leftward on the paper by vibration.
[0051]
The coil spring W separated one by one on the separation piece 13 is assembled to a container body (not shown) by a coil spring W transfer device such as a robot (not shown).
[0052]
Next, FIG. 6 is a schematic configuration diagram in the case of using a heat treatment apparatus 20 of another configuration. In the figure, the same reference numerals are given to the components already described, and the description thereof will be omitted. Reference numeral 25 denotes a furnace body made of a material having heat insulation.
[0053]
Reference numeral 54 denotes a screw-shaped spiral feed member for moving the coil spring W, which is connected to the shaft 53 and is supported rotatably in the longitudinal direction of the furnace body 25.
[0054]
The pulley 52 is connected to the shaft 53 and is also interlocked with the pulley through the belt 51. The pulley and the motor 29 are connected.
[0055]
In the above configuration, the coil spring W wound by the coiling machine 60 that winds the coil spring W is measured with a 51 non-contact type sensor in a state where the winding process is completed and the non-defective product is processed in the next step. Defective products are discharged by a discharger (not shown). Numeral 24 denotes a gutter-shaped rail for dropping a coil spring W wound thereon.
[0056]
The gutter-shaped rail 24 is provided with an inclined portion 24a so that the coil spring W slides down.
[0057]
Reference numeral 40 denotes a charging / separating device for charging the coil springs W one by one into the heat treatment furnace. The charging / discharging device 40 is blocked by a cylinder 41-2 for operating a flow stop gate and a gate pin 41-1 for charging the coil springs W. The pusher cylinder 42-1 which presses the coil spring W immediately before the damped coil spring W is pressed by the pressing portion 42-2.
[0058]
When it is confirmed that there is no coil spring W by the presence / absence sensor 21 of the entrance of the heat treatment furnace 20, the gate 41-1 is opened and the coil spring W slides down. Is detected, and in that case, the coil spring W moves by rotating the screw-shaped spiral feed member 54 that moves the coil spring W.
[0059]
Next, when the presser pusher is opened to close the gate 41, the coil spring W slides down and is blocked by the gate.
[0060]
By rotating the screw-shaped spiral feed member 54, the coil spring W is moved as shown in FIG. 7, which is a sectional view taken along the line XX of FIG.
[0061]
When the presence / absence of the coil spring W is confirmed by the presence / absence sensor 21 at the entrance of the heat treatment furnace, one of the coil springs W is again supplied by the input separation device 40. By repeating this operation, the heat treatment of the coil spring W is performed after the set temperature and time of the heat treatment conditions have elapsed.
[0062]
By repeating the above operation, the coil spring W is moved to the device 10 for aligning, retaining, and separating the coil spring W after the winding process and the heat treatment process. Reference numeral 11 denotes a vibrating body which is moved leftward on the paper surface by vibration, and a coil spring W separated on the separating piece 13 is transferred to a container body (not shown) by a coil spring W transfer device such as a robot (not shown). Assemble.
[0063]
As described above, one of the coil springs W can be reliably fed by the loading / separating device in front of the heat treatment furnace, and the blade members are conveyed on the gutter-like rails in the heat treatment furnace by the blade members so that there is no interference or collision between the coil springs W. There is no entanglement. Therefore, the present apparatus can be directly connected to the automatic assembly line without lowering the operation rate even for the automatic assembly line.
[0064]
【The invention's effect】
As described above, according to the present invention, the entire heat treatment apparatus for a helical component can be simply configured, and the helical component does not become entangled and can be directly connected to an automatic assembly line. A heat treatment apparatus for a spiral part and a heat treatment method for a spiral part can be provided.
[0065]
[Brief description of the drawings]
FIG. 1 is an external perspective view of the overall configuration of a heat treatment apparatus according to a first embodiment of the present invention.
FIG. 2 is a sectional view taken along line XX of FIG.
FIG. 3 is an operation explanatory diagram.
FIG. 4 is an operation development diagram.
FIG. 5 is an operation explanatory flowchart.
FIG. 6 is an external perspective view of the overall configuration of a heat treatment apparatus according to a second embodiment of the present invention.
FIG. 7 is a sectional view taken along the line XX of FIG. 6;
FIG. 8 is an overall view of a conventional spring working and assembling apparatus.
FIG. 9 is an overall view of a conventional spring working and assembling apparatus.
[Explanation of symbols]
Reference Signs List 10 Retention / alignment / separation device 20 Heat treatment furnace 21 Presence sensor 22 Shaft 23 Screw-shaped spiral member 24 Gutter-shaped rail member (second guide means)
25 Furnace body 30 Pressing part 29 Motor 40 Work separation device for input 60 Winding device W Coil spring (spiral part)

Claims (6)

連続搬送される個々の螺旋状部品を、熱処理炉内を通過させて熱処理する螺旋状部品の熱処理装置であって、製造後の前記螺旋状部品を載置状態で長手方向に連続搬送する載置部を有する第1の案内手段と、
前記第1の案内手段の下流側に配設され、前記螺旋状部品を選別後に1個毎に送り出す移送手段と、
前記移送手段に連続して設けられるとともに、前記熱処理炉内において前記螺旋状部品を載置状態で長手方向に案内する載置部と、後端側から押す駆動部とを有し、前記載置部は樋状の形状部材から少なくとも構成され、前記熱処理炉は略円筒形状に形成される内壁面を有し、前記形状部材を前記内壁面に沿うように略水平に配設し、前記駆動部を、前記熱処理炉の略中心部に配設される回転軸体から等間隔で複数分が延設される腕部と、前記腕の端部に設けられてなり前記形状部材内に潜入する押圧部とから構成し、前記回転軸体の回転に伴い前記螺旋状部品を通過させる第2の案内手段と、
前記移送手段と前記駆動部に接続されてなり前記螺旋状部品を前記第2の案内手段に1個毎に送り出すように制御する制御手段とを具備することを特徴とする螺旋状部品の熱処理装置。
A heat treatment apparatus for a spiral part, in which individual spiral parts conveyed continuously are passed through a heat treatment furnace and heat-treated, wherein the spiral parts after production are continuously conveyed in the longitudinal direction in a mounted state. First guiding means having a portion;
A transfer means disposed downstream of the first guide means and sending out the spiral parts one by one after sorting;
A mounting unit that is provided continuously to the transfer means and guides the spiral component in the heat treatment furnace in a longitudinal direction in a mounted state, and a driving unit that presses from a rear end side; The part is at least constituted by a gutter-shaped member, the heat treatment furnace has an inner wall surface formed in a substantially cylindrical shape, the shape member is disposed substantially horizontally along the inner wall surface, and the driving unit An arm extending a plurality of portions at equal intervals from a rotating shaft disposed substantially at the center of the heat treatment furnace; and a pressure provided at an end of the arm and infiltrating into the shaped member. A second guide means configured to pass through the helical part with the rotation of the rotating shaft body,
A heat treatment device for a spiral part, comprising: a control part connected to the transfer part and the drive part for controlling the spiral part to be sent out to the second guide part one by one. .
前記形状部材を前記内壁面に沿うように上下方向に多段式に配設するとともに、前記螺旋状部品を自由落下させる開口部を形状部材の底面に設け、かつ前記開口部の上下位置関係をずらすとともに前記腕部を多段式に構成することで、前記螺旋状部品を下方の形状部材上へ自由落下させ、前記内壁面に長く沿うように通過させることを特徴とする請求項1に記載の螺旋状部品の熱処理装置。The shape member is vertically arranged in multiple stages along the inner wall surface, and an opening for allowing the spiral part to freely fall is provided on the bottom surface of the shape member, and the vertical position of the opening is shifted. 2. The spiral according to claim 1, wherein the arm part is configured in a multi-stage manner so that the spiral part is freely dropped onto a lower shape member and passes along the inner wall surface long. 3. Heat treatment equipment for shaped parts. 連続搬送される個々の螺旋状部品を、熱処理炉内を通過させて熱処理する螺旋状部品の熱処理装置であって、製造後の前記螺旋状部品を載置状態で長手方向に連続搬送する載置部を有する第1の案内手段と、
前記第1の案内手段の下流側に配設され、前記螺旋状部品を選別後に1個毎に送り出す移送手段と、
前記移送手段に連続して設けられるとともに、前記熱処理炉内において前記螺旋状部品を載置状態で長手方向に案内するために樋状の形状部材から構成される載置部を有する第2の案内手段と、前記螺旋状部品の後端側から押す駆動部とを備え
前記熱処理炉は略直線的に形成され、かつ略直線的な前記形状部材を内蔵してなり、
前記駆動部を、前記形状部材の底面に沿う外周面を有し、前記螺旋状部品の長手方向の寸法に略該当するピッチで設けられる回転螺旋部材と、前記回動螺旋部材を回転駆動するモータ駆動部とから構成し、前記回動螺旋部材の回転に伴い前記螺旋状部品が前記熱処理炉内を通過することを特徴とする螺旋状部品の熱処理装置。
A heat treatment apparatus for a spiral part, in which individual spiral parts conveyed continuously are passed through a heat treatment furnace and heat-treated, wherein the spiral parts after production are continuously conveyed in the longitudinal direction in a mounted state. First guiding means having a portion;
A transfer means disposed downstream of the first guide means and sending out the spiral parts one by one after sorting;
A second guide which is provided continuously with the transfer means and has a mounting portion formed of a gutter-shaped member for guiding the spiral component in the longitudinal direction in a mounted state in the heat treatment furnace; Means, and a drive unit pushing from the rear end side of the spiral part ,
The heat treatment furnace is formed substantially linearly, and incorporates the substantially linear shape member,
A rotating spiral member having an outer peripheral surface along a bottom surface of the shape member, the rotating portion being provided at a pitch substantially corresponding to a longitudinal dimension of the spiral component, and a motor for rotationally driving the rotating spiral member A heat treatment apparatus for a helical part , wherein the helical part passes through the inside of the heat treatment furnace as the rotating helical member rotates.
連続搬送される個々の螺旋状部品を、熱処理炉内を通過させて熱処理する螺旋状部品の熱処理方法であって、
連続搬送する載置部を有する第1の案内手段により製造後の前記螺旋状部品を載置状態で長手方向に搬送し、
前記第1の案内手段の下流側に配設され、前記螺旋状部品を選別後に1個毎に送り出す移送手段により搬送し、
前記移送手段に連続して設けられるとともに、前記熱処理炉内において前記螺旋状部品を載置状態で長手方向に案内する載置部と、後端側から押す駆動部とを有し、前記載置部は樋状の形状部材から少なくとも構成され、
前記熱処理炉は略円筒形状に形成される内壁面を有し、
前記形状部材を前記内壁面に沿うように略水平に配設し、
前記駆動部を、前記熱処理炉の略中心部に配設される回転軸体から等間隔で複数分が延設される腕部と、前記腕の端部に設けられてなり前記形状部材内に潜入する押圧部とから構成し、前記回転軸体の回転に伴い前記螺旋状部品を通過させる第2の案内手段により熱処理炉内を通過させ、
前記移送手段と前記駆動部に接続される制御手段により前記螺旋状部品を前記第2の案内手段に1個毎に送り出すようにすることを特徴とする螺旋状部品の熱処理方法。
A method for heat treatment of a spiral component in which individual spiral components that are continuously conveyed are passed through a heat treatment furnace and heat-treated.
The spiral component after manufacture is transported in the longitudinal direction in a mounted state by the first guide means having a mounting portion for continuous transport,
The helical part is disposed downstream of the first guide means, and is conveyed by a transfer means for sending out the helical parts one by one after sorting.
A mounting unit that is provided continuously to the transfer means and guides the spiral component in the heat treatment furnace in a longitudinal direction in a mounted state, and a driving unit that presses from a rear end side; The part is at least composed of a gutter-shaped member,
The heat treatment furnace has an inner wall surface formed in a substantially cylindrical shape,
The shape member is disposed substantially horizontally along the inner wall surface,
The drive unit, an arm portion that is extended a plurality of portions at equal intervals from a rotating shaft that is disposed at a substantially central portion of the heat treatment furnace, and provided in the end of the arm and within the shape member. And a second guide means that passes through the spiral part with the rotation of the rotating shaft, and passes through the inside of the heat treatment furnace,
A method for heat treating a helical component, wherein the helical component is sent out to the second guide unit one by one by a control unit connected to the transfer unit and the drive unit.
前記形状部材を前記内壁面に沿うように上下方向に多段式に配設するとともに、前記螺旋状部品を自由落下させる開口部を形状部材の底面に設け、かつ前記開口部の上下位置関係をずらすとともに前記腕部を多段式に構成することで、前記螺旋状部品を下方の形状部材上へ自由落下させ、前記内壁面に長く沿うように通過させることを特徴とする請求項4に記載の螺旋状部品の熱処理方法。The shape member is vertically arranged in multiple stages along the inner wall surface, and an opening for allowing the spiral part to freely fall is provided on the bottom surface of the shape member, and the vertical position of the opening is shifted. 5. The spiral according to claim 4, wherein the arm part is configured in a multi-stage manner so that the spiral part can be freely dropped onto a lower shaped member and passed along the inner wall surface long. 6. Heat treatment method for shaped parts. 連続搬送される個々の螺旋状部品を、熱処理炉内を通過させて熱処理する螺旋状部品の熱処理装置であって、製造後の前記螺旋状部品を載置状態で長手方向に連続搬送する載置部を有する第1の案内手段と、
前記第1の案内手段の下流側に配設され、前記螺旋状部品を選別後に1個毎に送り出す移送手段と、
前記移送手段に連続して設けられるとともに、前記熱処理炉内において前記螺旋状部品を載置状態で長手方向に案内するために樋状の形状部材から構成される載置部を有する第2の案内手段と、前記螺旋状部品の後端側から押す駆動部とを備え
前記熱処理炉は略直線的に形成され、かつ略直線的な前記形状部材を内蔵してなり、
前記駆動部を、前記形状部材の底面に沿う外周面を有し、前記螺旋状部品の長手方向の寸法に略該当するピッチで設けられる回転螺旋部材と、前記回動螺旋部材を回転駆動するモータ駆動部とから構成し、前記回動螺旋部材の回転に伴い前記螺旋状部品が、前記熱処理炉内を通過されることを特徴とする螺旋状部品の熱処理方法。
A heat treatment apparatus for a spiral part, in which individual spiral parts conveyed continuously are passed through a heat treatment furnace and heat-treated, wherein the spiral parts after production are continuously conveyed in the longitudinal direction in a mounted state. First guiding means having a portion;
A transfer means disposed downstream of the first guide means and sending out the spiral parts one by one after sorting;
A second guide which is provided continuously with the transfer means and has a mounting portion formed of a gutter-shaped member for guiding the spiral component in the longitudinal direction in a mounted state in the heat treatment furnace; Means, and a drive unit pushing from the rear end side of the spiral part ,
The heat treatment furnace is formed substantially linearly, and incorporates the substantially linear shape member,
A rotating spiral member having an outer peripheral surface along a bottom surface of the shape member, the rotating portion being provided at a pitch substantially corresponding to a longitudinal dimension of the spiral component, and a motor for rotationally driving the rotating spiral member And a driving unit , wherein the helical component is passed through the heat treatment furnace with the rotation of the rotating helical member.
JP27013097A 1997-10-02 1997-10-02 Spiral component heat treatment apparatus, spiral component heat treatment method Expired - Fee Related JP3576770B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27013097A JP3576770B2 (en) 1997-10-02 1997-10-02 Spiral component heat treatment apparatus, spiral component heat treatment method
US09/163,401 US6174390B1 (en) 1997-10-02 1998-09-30 Spiral parts heat treatment apparatus and method, and spiral part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27013097A JP3576770B2 (en) 1997-10-02 1997-10-02 Spiral component heat treatment apparatus, spiral component heat treatment method

Publications (2)

Publication Number Publication Date
JPH11104774A JPH11104774A (en) 1999-04-20
JP3576770B2 true JP3576770B2 (en) 2004-10-13

Family

ID=17481979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27013097A Expired - Fee Related JP3576770B2 (en) 1997-10-02 1997-10-02 Spiral component heat treatment apparatus, spiral component heat treatment method

Country Status (1)

Country Link
JP (1) JP3576770B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679130B2 (en) * 2004-12-17 2011-04-27 ヤマウチ株式会社 Method for producing semi-hard magnetic material
JP4825606B2 (en) * 2006-07-19 2011-11-30 住友電気工業株式会社 Alignment mechanism of spiral wire
JP7067794B2 (en) * 2019-08-01 2022-05-16 富士フィルター工業株式会社 Method for manufacturing a metal porous body

Also Published As

Publication number Publication date
JPH11104774A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JP6779527B2 (en) Coil assembly equipment, coil assembly method and rotary electric machine manufacturing equipment
US5135435A (en) System for transporting and stacking coins
JP6107746B2 (en) Transport device
US20150251860A1 (en) Conveying apparatus
ITBO960344A1 (en) METHOD AND DEVICE FOR THE CONVEYANCE, WITH VERTICAL MOVEMENT, OF PACKAGES OF CIGARETTES
JPH04213512A (en) Conveyor system and its using method
TWI641445B (en) Bar feeder
JP3576770B2 (en) Spiral component heat treatment apparatus, spiral component heat treatment method
JPH0699038B2 (en) Conveying device for continuous wavy fins
US4274532A (en) Can handling system
JPS62159440A (en) High speed integrated circuit handler
CA1262922A (en) Apparatus and method for storing and feeding tire beads
US6174390B1 (en) Spiral parts heat treatment apparatus and method, and spiral part
US3561500A (en) Wire-forming apparatus and method
JPH07106402A (en) Platelike material transfer system
US5765343A (en) Individual dental floss packaging method and apparatus
US2848175A (en) Linear feed mat winding machine
US3346094A (en) Container loader apparatus for washers
JP2000015375A (en) Work transporting device
JP3864575B2 (en) Valve sorter
CN111513103B (en) Noodle stretching process
JPH0759335B2 (en) Coil molding post-processing equipment
JP3297349B2 (en) Reverse winding device for chain-type terminal parts
US3312453A (en) Spring handling apparatus
KR100928582B1 (en) Wire Coil Transfer Device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees