JP3576565B6 - 三次元ビューイング環境における、二次元超音波画像表示システム - Google Patents

三次元ビューイング環境における、二次元超音波画像表示システム Download PDF

Info

Publication number
JP3576565B6
JP3576565B6 JP1998539390A JP53939098A JP3576565B6 JP 3576565 B6 JP3576565 B6 JP 3576565B6 JP 1998539390 A JP1998539390 A JP 1998539390A JP 53939098 A JP53939098 A JP 53939098A JP 3576565 B6 JP3576565 B6 JP 3576565B6
Authority
JP
Japan
Prior art keywords
dimensional
image
generating
converter
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1998539390A
Other languages
English (en)
Other versions
JP3576565B2 (ja
JP2000512188A (ja
Inventor
ヴェセリー,イヴァン
Original Assignee
ソノメトリクス コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/815,386 external-priority patent/US5817022A/en
Application filed by ソノメトリクス コーポレイション filed Critical ソノメトリクス コーポレイション
Publication of JP2000512188A publication Critical patent/JP2000512188A/ja
Publication of JP3576565B2 publication Critical patent/JP3576565B2/ja
Application granted granted Critical
Publication of JP3576565B6 publication Critical patent/JP3576565B6/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

関連出題
本発明は、1996年3月24日に出願された同時係属国際特許出願PCT/CA96/00194号の一部継続出願(CIP)である。PCT/CA96/00194号は、現在米国特許5515853号となっている、1995年3月28日出願の米国特許番号08/411959号の一部継続出願(CIP)である。これら両出願とも、本明細書中に援用して用いる。
発明の分野
本発明は、一般に画像生成システムに関し、より詳細には、三次元ビューイング環境内で、二次元超音波画像を表示するシステムに関する。
発明の背景
診断及び外科的処置の多くは、従来、二次元エコー撮像技術を補助手段として行われてきた。この点に関して、医師が、患者の身体内で外科用器具(例えば、プローブ、カテーテル等)を操作し、同時に、超音波ビームが器具を横切り、その器具が表示モニター上で見えるようになるまで、エコー機の撮像ヘッドを傾斜させる。多くの場合、かなりの「捜索」をした後に器具の位置決めが行われ、そのプロセスそのものが極めて非能率的である。この処置は、羊水穿刺やバイオプシーでよく使用される。どちらの場合も、超音波撮像による誘導によって、針や「穿孔具」が挿入される。羊水穿刺の場合、医師が、腹部を通し子宮内に針を挿入し、そのとき同時に、助手が、羊水穿刺針が確実に像を横切るよう超音波プローブをしっかりと保持する。これにより、針を見ることができるようになる。
従来の二次元エコー心臓検査法で得られる情報は、僧帽弁等の心臓構造が非常に複雑であり、それらの形を画像から読みとるのが難しいため、医師にとって充分とは言えぬものである。三次元エコー心臓検査法は、心臓解剖学が現在抱えている、視覚化する上での問題の多くを解決する可能性がある。しかし、三次元エコーの開発に伴い、新たな一連の問題が存在することが明らかとなった。第1の問題は、適当な時間フレームでのデータ獲得能力に関する。基本的な問題は、超音波の飛行時間である。この点に関し、心臓を撮像するため、超音波を深さ15cmまで心臓組織内に送り込み、再び戻す必要がある。心臓組織内の音速をおよそ1500m/秒とすれば、上記プロセスは、0.2ミリ秒かかることになる。良好な画像を得るためには、200の走査線が要される。従って、各画像撮像には、40ミリ秒必要である。この結果、撮像速度は25Hzとなる。この撮像速度は、二次元超音波撮像の場合、必要な高さに辛うじて届く程度なので、30Hz、又は50Hzの撮像速度を達成するために、技術革新が推し進められてきた。三次元の超音波立体画像を得るためには、二次元画像をおよそ100個得る必要がある。つまり、従来の技術を使うと、2、3秒に一回、新しい立体画像が得られるということである。このプロセスでは、ほとんどの内部器官、及び前立腺、胎児等の静的な構造体に関しては良好な三次元画像が生成されるが、常に動いている心臓についてはうまくゆかない。
単なる二次元画像でなく、超音波立体画像を得るために、データ速度を100倍(by a factor of 100)増加するシステムが、その他にも知られている。このようなシステムの1つが、米国特許第4949310号(以降、「特許'310」という)に記載されている。このシステムは、超音波画像収集速度に影響を与える多くのパラメーターの譲歩及び最適化を施行することで、リアルタイム三次元超音波画像を生成することを試みている。これらの方式の幾つかは、焦点収束法(dynamic focussing)により同時に数本のチャンネルからデータを受け取り、空間的且つ時間的にも画像解像度を減少させるものである。
しかし、一旦三次元画像セットを獲得すると、次の問題は、どのようにして情報を表示するかということである。この点に関して、立体画像閾値化法と表面レンダリング(surface rendering)は、本来極めて雑音が多いため、超音波画像撮影では非常に困難であることが分かっている。三次元画像の表面(surface)は、データセットについて相当な画像処理を行う必要があり、その抽出は容易ではない。このような後処理には、(1)核点の拡張、(2)大きな構造の骨格化、(3)ある程度見栄えのよい三次元表面を生成するための連続性のチェック及び穴埋め等の方式からなる。これらのうち、たとえ三次元超音波データを、特許'310記載の技術で得ることができるとしても、現在リアルタイムで実行できるものは一つもない。
特許'310記載の方式では、多面表示が使用される。この点に関し、リアルタイム立体画像セットを、多くの平面で交差(intersect)させ、その平面によって分割された立体画像データセットは、該平面上に「写像される」。この平面が、データセットの軸と直交する方向に配置される場合、視覚化平面上へのデータ平面の写像は、比較的簡単である。この点に関して、三次元セットから、適当な二次元画素マトリクスが抽出される。平面が基本軸に対し傾斜する場合、画素に対する画像抽出及び補間が必要となる。この処理を行う多くの確立されたアルゴリズムが存在している。特許'310の方式では、従って多重ビューイング平面が利用される。この平面は、三次元データ集合を通過し、その上に、適当なグラフィック・ハードウェアを使い、適当な二次元画像が「テクスチャマッピング」される。このようなテクスチャマッピングハードウェアは、例えば、シリコン・グラフィックス社等による、多くのハイエンド・コンピューターで見られる。
リアルタイム三次元超音波方式に代わるより簡単な方式として、画像が長い時間にわたって形成され、データ集合を視覚化するように再生される方式が上げられる。心臓の場合、多くの心臓周期にわたって、鼓動心臓の高解像画像を得ることができる。立体画像データ集合が心臓の100スライスを含む場合、これは、二次元超音波方式で毎秒30回データを得、また各心臓鼓動が1秒続くと仮定して、これらスライスを100回の心臓鼓動で得ることができる。最初の心臓鼓動中、超音波撮像変換器は、心臓の尖端等、1つのビューイング位置に配置され、その鼓動中に画像を30枚記録する。従って、心臓鼓動中に30回撮像された心臓の一スライスが得られる。次の心臓鼓動では、超音波撮像変換器が、第1撮像平面のそばから少し離れた撮像平面に位置決めされ、第2心臓鼓動中に画像がまた30枚得られる。このプロセスは、100回の心臓周期で100の隣接撮像平面が得られるよう、繰り返し行われる。どの場合も、各30枚の画像セットにより、特定スライス部位での心臓運動が記述される。合計すると、完全な形での心臓が、100の部位、及び心臓周期の30の時間点上で撮像されたことになる。次に、これらの画像は、画像30枚の100データ集合としてではなく、画像100枚の30データセットとして表現されるよう、その形式が再フォーマットされる。各画像セットは、心臓周期の特定時点における、心臓の三次元立体画像のスナップ撮影であり、30枚のこの三次元データ集合のコピー数が、心臓周期中の変化につれて得られる。次に、この1心臓周期は、ある適当な形式でコンピュータ画面に再生可能である。
前記特許'310の方式のように、データ集合を横断する平面上にデータ集合の一部を投影し、何度も心臓周期を再生するフォーマットが、しばしば選択される。米国特許第5454371号、及び第5562095号には、三次元超音波画像の獲得、表示手段が記載されている。三次元画像表示方式は、次のように動作する。コンピューター画面に、データ立方体が遠近表示される。ここでは、6面それぞれが、そこに超音波画像データが写像された平面を有している。これらの面は、コンピューターのマウスを移動することにより、対話的に立方体内に押し込むことができる。立方体面が内部に向かって移動するにつれ、面位置に対応してデータの新しい交差平面が算出され、適当な画像が、その平面上に写像される。このプロセスの間に、元の多くの心臓周期から再構築された単一心臓周期を通して全三次元データセットが何度も何度も再生され、立方体の可視面は、動く超音波画像を表示する。前記特許'310同様、この方法でも、ユーザーがその時視覚化したい所定平面上へと、前に得たデータ集合の特定撮像平面を写像することが利用される。元の三次元データ集合の位置及び方位、並びに現在の平面を記述するワイヤー・フレーム・ボックスが、表示中の画像解剖位置に該システムのユーザーを誘導するために大変有効である。この点に関し、図1Aに直交スライスが、図1Bに斜めスライスが示されている。
この方式の欠点の1つは、以前に得た超音波データ集合の再生のみしかできないということである。また、このような視覚化法では、一度に一つの撮像平面しか得られないことにも留意する必要がある。ユーザーは、該撮像平面を選び、そのデータ集合の再生を見る。ユーザは撮像平面を前後に動かし、横に傾斜させ、代わりの撮像平面を見ることができるが、一度に見ることのできる撮像平面は1個のみである。この表示形式は、ユーザが、撮像平面の移動、傾斜にともなって前の撮像平面の位置がどこであったか、そしてどう構造が変化したかについての情報を心に留めることができる時に有効である。最後に、ユーザーが二次元平面を操作し、頭の中に相互に十分な情報を構築するため、ユーザーの心の中で、三次元の構造モデルが構築される。現実には、完全なボリュームの情報は必要ではなく、必要なのは所定時に任意の平面を見れる能力だけである(図2参照)。
高周波超音波の飛行時間原理を使用し、外科的処置中に、生物体内等、水様媒体内の距離を正確に測定可能であることが知られている。高周波音波、又は超音波は、100kHzから10MHzの周波数範囲を有する振動エネルギーとして定義される。音波を使い三次元の測定値を得るのに使用される装置は、測音器(ソノマイクロメータ)として知られている。一般に、ソノマイクロメーターは、一対の圧電交換器(即ち、一方が送信機として働き、他方が受信機として働く)を具備している。変換器は媒体内にうめ込まれ、電子回路機構に接続される。変換器間の距離を測定するため、送信機が電気的に励起され、超音波を生成する。次に、結果として生じる音波が、受信機により検出されるまで、媒体を通って伝わる。
一般に、送信機は、高電圧スパイク波、すなわちマイクロ秒以下で続く衝撃関数により励起される圧電振動子の形態を取る。これにより、圧電振動子は、固有の共振周波数で発振する。送信機信号の包絡線は、時間と共に急激に減衰し、通常、送信機から水様媒体に伝搬する6周期以上にわたるパルス列を生成する。音エネルギーも、遭遇する各境界面ごとに減衰する。
また、受信機も、一般的に圧電振動子(送信機圧電振動子と同様の特徴を有する)の形態を取る。この圧電振動子は、送信機生成の音エネルギーを検出し、それに応答して振動を開始する。この振動により、ミリボルト単位の電子信号が生成される。この電子信号は、適当な受信機回路機構で増幅可能である。
水様媒体内での超音波伝播速度については、よく資料が揃っている。超音波1パルスが走行する距離は、従って、音波発信時と受信時との間の時間的遅延を単に記録するだけで測定できる。三次元座標は、距離測定値から決定できる。
本発明は、先行技術の二次元エコー撮像方式の欠点を解決するのに、前記原理を応用するものである。また、基準フレームを提供する座標系内で、三次元空間での二次元超音波画像の操作を可能とするシステムを提供することが目的である。これにより、ユーザは、対話形式で分析中の構造をメンタルに構成することができる。
発明の概要
本発明によれば、三次元ビューイング環境内で、二次元超音波画像を表示するエコー撮像システムが提供される。
本発明の目的は、ユーザーが、外科用器具の位置及び進行を視覚化することができるエコー撮像システムを提供することである。
本発明の他の目的は、画像がフィードバックされ、目指すところの身体的構造が処置されていることが確認できるエコー撮像方式を提供することである。
本発明の他の目的は、従来の二次元超音波撮像ヘッドを改変して、三次元位置追跡(トラッキング)が可能なものとするための着脱可能な装置を提供することである。
本発明の更なる目的は、二次元超音波画像の三次元位置情報を得るため、従来の二次元超音波撮像ヘッドに装着可能な装置を提供することである。
本発明の他の目的及び利点は、当業者であれば、以下の詳細な説明、および添付の図面と請求項を読み理解すれば明白である。
【図面の簡単な説明】
本発明は、ある部品及びその部品の配置においては物理的形態を取り、本発明の好適実施例及び方法は、明細書、添付の図面で詳細に説明且つ例示されるが、ここで各図面は以下の通りである。
図1A,1Bは、従来の三次元超音波方式により提供される表示例を示す図である。
図2は、従来の三次元超音波方式により提供される、使用に適する情報の表示例を示す図である。
図3は、本発明の好適実施例による、三次元超音波追跡及び画像表示方式のブロック図である。
図4は、本発明の好適実施例による、着脱可能な追跡クリップを取り付けた超音波撮像ヘッドの斜視図である。
図5は、図4に示す超音波撮像ヘッド及びそこに付けられた着脱可能追跡クリップの分解図である。
図6は、基準フレーム、外科用器具の位置と方向、並びに超音波セクター画像を示す三次元シーンである。
好適実施例の詳細な説明
次に、本発明の好適実施例を図面を参照し説明するが、その際、図面は本発明をその実施例に限定するものではない。図3は、本発明のエコー撮像システムに関連して使用される三次元(3−D)追跡及び画像表示システム方式100を示す図である。三次元追跡及び画像表示システム100は、概して、コンピューター・システム110、移動(モバイル)変換器132、基準変換器134、器具130、オプションのロボット・サブシステム140を具備する。
コンピューター・システム110は、概して、三次元追跡システム112、イメージングモダリティ(imaging modality)システム114、イメージレジストレーション(画像記憶)システム116、画像歪曲(ワーピング)及び幾何変換システム118(「ワープシステム」)、ユーザー・インタフェース120、表示器122を具備する。三次元追跡システム112は、音波ベースのシステム、又は電磁気ベースのシステムの形態を取ることができる。距離判定には、飛行時間(time of flight)、位相関係の両方を用いることができる。好ましくは、三次元追跡システム112は、ここで援用して用いる米国特許第5515853号、PCT出願第WO96/31753号に記載の三次元超音波追跡システムの形態を取る。
器具130は、カテーテル、プローブ(探針)、センサー、針、メス、鉗子、或いは他の外科、診断処置で使われる装置、器具の形態を取ることができる。移動変換器132及び基準交換器134は、超音波変換器、又は電子変換器の形態でよい。しかしここでは、本発明の好適実施例の説明のため、変換器132及び134は、超音波変換器(即ち、圧電素子結晶)の形態を取るものとする。
複数の移動変換器132が、器具130に装着される。1つ以上の基準変換器134により、移動変換器132に対する基準となる位置が与えられる。この点に関し、基準変換器134は、患者身体内の内部基準枠を提供するよう配置されてもよいし、或は患者身体の表面に配置され、外部基準枠を提供するようにしてもよい。
前記のように、基準変換器134は、移動変換器132が検出可能な、超音波、又は電磁放射を生成できる送信機、トランシーバー(送受信機)、又は受信機であってよい。
三次元追跡システム112により、前記詳細に説明したように、全変換器132、134間の複数の距離測定値が、基準座標軸に対するXYZ座標に変換される。ここで、理解しておくべきは、基準変換器134が提供する基準枠は、自己決定的(self−determining)である必要がある。即ち、基準枠に歪みが生じた場合、この歪みは基準変換器134により検出される必要がある。一般に、検出は、如何なる2種の変換器組合せ間の距離でも判定でき、従って三次元空間におけるそれらの相対空間座標も判定できるトランシーバーを使い行われる。この点に関して、変換器の位置については、変換器の配置された場所を”点”で示している身体構造(例えば、組織・器官)の3D画像において得られる。または、変換器が身体構造内に在るとき、その変換器自体からも得られる。全ての各変換器間の距離に不整合があるときは、イメージを取得した後に、その身体構造が変形(即ち、「ワープ(歪曲)」)したものと考えられる。画像データセットを正確に補正し、かつこの歪曲の原因を正確に説明する方法を特定するには、数学的座標変換を用いることができる。全ての各変換器間の距離は、各変換器からその他の全ての変換器に信号を送ることによって、決定する。このようにして、各変換器間の全距離を知ることができる。これらの距離測定値から、いくつかの変換器を原点として、XYZ座標を算出することができる。
イメージングモダリティシステム114は、MRI(磁気共鳴撮像法)や、CT(コンピューター断層撮影法)、および2D又は3D超音波装置等の撮像源から、2D、3D、又は4Dの画像データセットを獲得し、それにより「テンプレート」を提供する。このテンプレートを通し、或いはそれを背景に、位置が追跡される器具130の形、位置、移動が表示可能となる。このテンプレートは、典型的には、器具を取り巻く周囲環境(例えば、身体構造)の画像の形態を取る。多数の(三次元)立体画像を異なる時間間隔で取得した場合に、四次元画像(即ち、時間変化する三次元画像)が得られることに注意されたい。
画像レジストレーションシステム116は、撮像モダリティシステム114によって与えられる画像データセットの空間座標内における、器具130の位置を登録(記録;registration)する。器具130の位置は3Dトラッキングシステムによって与えられる。イメージ記憶システム116は、器具130の身体構造に於ける適切な三次元上の配置と、身体構造に対する配向を示す画像表示を提供する。ここでは、レジストレーションシステム116は、ユーザが支援するものでもよいし、イメージ処理アルゴリズムが画像データセットにおける変換器(通常は基準変換器)の空間的位置を自動検知する場合は完全に自動であってもよい。
ワープシステム118はソフトウェアベースのシステムであって、整形に相当する適切な値により、画像データセットを変換する(”ワープする”)。この整形とは、画像データセットが得られた時間と、術中にこの処理が実行される時間との間に、基準フレームに生じたものである。従って、ワープシステム118は通常は、整形された図形をオリジナルのイメージデータセット上に写像し、適切に変形させる行列変換ルーチンから構成される。
ユーザインターフェイス120によって、ユーザはコンピュータシステム110と対話することができる。それにはコンピュータシステム110に望みの機能を実行させるようにプログラムすることも含まれる。例えば、ディスプレイで特定の画面を選択することができる。プローブやカテーテルなどの器具130は、このユーザインターフェイス120を用いて作動させることができる。ディスプレイ122は、イメージ登録システム116から提供される記憶イメージをユーザに表示する。
オプションのロボットシステム140は、概して、ロボット制御システム142と、ロボット操作システム144とから構成される。ロボット制御システム142は、ロボット操作システム144を、プログラムされた経路に従って動くように制御する。この経路プログラムは、術中の、体の構造の移動、ねじれ、および変化に基づいて適宜変更が可能である。ロボット操作システム144は、ロボット制御システム142からの指示に従い器具130を物理的に動かす。
本発明は、三次元ビューイング環境において、二次元超音波画像を表示するエコー撮像方式に関する。この点に関し、患者の背部、及び/又は腹部上に基準変換器を幾つか配置し、コンピュータディスプレイ上に簡単な座標系が生成される。この座標系は、頭部及び足、患者の左右側、そして前部、背部への方向を示すものである。初めにこれは、簡単なグラフィック、即ち矢印とともに空箱としてディスプレイ上に現れ、また表面変換器も図形として表示される。複数の移動「位置」変換器が、撮像探針の超音波撮像ヘッドに実装される。よって、撮像探針が、胸部、又は腹部上に配置される時、撮像ヘッドの撮像変換器によって得られつつある撮像平面の位置、角度は、三次元環境内で表示可能となる。この三次元シーンは、コンピューターディスプレイ上で、単にマウスを動かし、視覚シーンを回転させるだけで何れの視点からでも見ることができる。
次に、本発明のエコー撮像方式の好適実施例を、図3乃至5を参照して詳細に説明する。典型的なエコー機超音波撮像ヘッド200は、一般に、メインユニット(図示せず)に接続されるケーブル210付きプラスチック製ハンドヘルド(手持ち)部分を有する。また、撮像ヘッド200はウインドウ(窓部)も有し、このウインドウを通して、超音波が超音波変換器204により送受信される。超音波撮像ヘッド200は、着脱可能な追跡クリップの形態を取り、撮像ヘッド200に取り付け可能である変換器ハウジング220に装着される。図5にその分解図を示す。
変換器ハウジング220は、撮像ビームに垂直な平面を形成する3個以上の位置変換器222を保持する。位置変換器222は、撮像ヘッド200とヘッド200が接触する表皮間に存在する。図4、5では位置変換器222が4個示されているが、全角度の測定には、位置変換器222が3個必要なだけである。基準変換器224(図6参照)は、患者の皮膚(例、背部、胸部)に取り付けられる。
撮像ヘッド200が、腹部に押しあてられつつ、傾斜され、角度を付けられると、位置変換器222の座標により、超音波撮像ビームに垂直の平面が定められる。従って、位置変換器222の座標により、撮像平面の三次元座標が決定される。ここで、変換器ハウジング220は、腹部と接触することに留意する必要がある。或いは、撮像ヘッドは、電子ポテンシオメーターに装着のジンバルにより、変換器平面と相対に接合可能である。この電子ポテンシオメーターは、撮像平面の角度を、患者の皮膚に沿って水平に滑動する変換器平面に対して関連付けすることができる。患者の座標系に関連して、三次元空間での撮像平面の位置及び方向が分かると、超音波撮像ヘッド200によって行われる一般にパイ形をしたセクター走査画像が、患者の三次元シーン内に挿入可能となる。従って、三次元シーンには、患者の基準フレームの遠近法レンダリング(perspective rendering)が含まれることになり、図6に示すように、パイ形超音波セクター走査画像が、三次元シーン内で適切に方向付けされる。
超音波画像は、三次元シーン内のパイ形多角形上に、ビデオ信号をテクスチャマッピングすることにより、遠近法によりリアルタイムで表示することもできる。現世代のグラフィック・コンピューターにより、この種のリアルタイム画像変換が可能である。ここで注意すべきは、全変換器の各変換器に対する位置は、前記の方法で決定できる。変換器位置の1つを原点、2番目をx軸、3番目をy軸、4番目をz軸として選ぶ。この座標系は、ユーザーにより決定される。撮像平面の方向性は、4個の撮像ヘッド位置変換器222の角度と、患者の身体に載置される基準変換器によって規定される座標系とから算出される。
挿入された外科用器具に対する撮像平面の位置を視覚化することによって、外科用器具(例えば、羊水穿刺針)を横断するまで、撮像ヘッド200をより速く操作し、角度調整をすることができる。この点に関し、器具の概略的表示、及び器具の基準変換器に対するその現在位置を得るために、移動変換器が外科用器具に装着される。更に、外科用器具の影が、テクスチャマッピングされたリアルタイム超音波画像内で見えるようになり、器具の概略的な表示は、その影を見られる超音波画像を貫通して示すことができる。従って、医師は、どの方向に撮像ヘッド200を傾けるべきか、或は外科用器具を可視シーン内で適当な方位に向けるために、どの方向に動かすべきかを、直ちに決定できる(図6)。従って、本発明により、より安全、速く且つ正確な外科処置を行うことが可能となる。
以上、本発明をその好適実施例を基に述べてきた。本明細書を読み、理解のうえでの修正、変更が可能であることは言うまでもない。例えば、位置決定手段として、音波に代わり、電磁波を用いてもよい。この場合、超音波変換器を、電磁変換器に変更することが適切である。このような修正、変更は全て、添付の請求項、ないしはその均等の範囲内に収まる限りにおいて範囲に属することが意図されている。

Claims (10)

  1. 三次元ビューイング環境において、二次元超音波画像を生成するシステムであり、二次元エコー画像平面を生成する画像変換器手段と、前記画像変換器に実装される移動変換器手段と、各複数の固定位置に配置される複数の基準変換器手段とを含み、前記複数の基準変換器手段が、基準枠を確立するシステムであり、
    前記基準変換器手段は前記基準枠を確立する際の歪みを検出し適切に変形させる手段を有し、
    前記基準枠に関連して、前記移動変換器手段の三次元座標を生成する座標生成手段と、
    前記三次元座標で、前記二次元エコー画像平面を登録する登録手段と、
    前記基準枠に関連して、前記三次元座標において、前記二次元エコー画像平面を表示する表示手段と、
    関連する外科用具手段に固着される複数の移動変換器と、
    前記複数の基準変換器手段により確立される基準枠に関連して、前記外科用具手段に実装される複数の移動変換器の少なくとも1つについて、その三次元座標を生成する座標生成手段と、
    前記外科用具手段に実装される移動変換器の前記三次元座標から、前記外科用具手段の概略画像を生成し、前記表示手段上に、前記外科用具手段の概略画像を表示する概略生成手段と
    を具備することを特徴とするシステム。
  2. 三次元ビューイング環境において、二次元超音波画像を生成するシステムであり、二次元エコー画像平面を生成する画像変換器手段と、前記画像変換器に実装される移動変換器手段と、各複数の固定位置に配置される複数の基準変換器手段とを含み、前記複数の基準変換器手段が、基準枠を確立するシステムであり、
    前記基準枠に関連して、前記移動変換器手段の三次元座標を生成する座標生成手段と、
    前記三次元座標で、前記二次元エコー画像平面を登録する登録手段と、
    前記基準枠に関連して、前記三次元座標において、前記二次元エコー画像平面を表示する表示手段と、
    関連する外科用具手段に固着される複数の移動変換器と、
    前記複数の基準変換器手段により確立される基準枠に関連して、前記外科用具手段に実装される複数の移動変換器の少なくとも1つについて、その三次元座標を生成する座標生成手段と、
    前記外科用具手段に実装される移動変換器の前記三次元座標から、前記外科用具手段及びその周囲環境の概略画像を生成し、前記表示手段上に、前記周囲環境の画像から提供されたテンプレートを通して又は背景として、前記外科用具手段の概略画像を表示する概略生成手段と
    を具備することを特徴とするシステム。
  3. 三次元ビューイング環境において、二次元超音波画像を生成するシステムであり、二次元エコー画像平面を生成する画像変換器手段と、前記画像変換器に実装される移動変換器手段と、各複数の固定位置に配置される複数の基準変換器手段とを含み、前記複数の基準変換器手段が、基準枠を確立するシステムであり、
    前記基準変換器手段は前記基準枠を確立する際の歪みを検出し適切に変形させる手段を有し、
    前記基準枠に関連して、前記移動変換器手段の三次元座標を生成する座標生成手段と、
    前記三次元座標で、前記二次元エコー画像平面を登録する登録手段と、
    前記基準枠に関連して、前記三次元座標において、前記二次元エコー画像平面を表示する表示手段と、
    関連する外科用具手段に固着される複数の移動変換器と、
    前記複数の基準変換器手段により確立される基準枠に関連して、前記外科用具手段に実装される複数の移動変換器の少なくとも1つについて、その三次元座標を生成する座標生成手段と、
    前記外科用具手段に実装される移動変換器の前記三次元座標から、前記外科用具手段の概略画像を生成し、前記表示手段上に、前記周囲環境の画像から提供されたテンプレートを通して又は背景として、前記外科用具手段の概略画像を表示する概略生成手段と
    を具備することを特徴とするシステム。
  4. 請求の範囲第1〜3項のいずれかに記載のシステムであり、前記複数の固定位置の1つは患者の背部であり、前記複数の固定位置のもう1つは患者の腹部である。
  5. 請求の範囲第1〜3項のいずれかに記載のシステムであり、前記移動変換器手段は、前記用具に装着される着脱可能ハウジング上に配置される。
  6. 請求の範囲第1〜3項のいずれかに記載のシステムであり、前記移動変換器手段は、前記画像変換器手段が生成する撮像ビームに垂直な平面の三次元座標を生成するため、少なくとも3個の変換器を具備する。
  7. 請求の範囲第6項に記載のシステムであり、前記画像変換器手段は、前記移動変換器手段に相互関連付け可能な撮像ヘッドと、
    前記移動変換器手段が生成する平面の三次元座標に対して、前記撮像ヘッドの角度を相互に関連付けるポテンシオメーターと、
    を含む。
  8. 請求の範囲第1〜3項のいずれかに記載のシステムであり、前記複数の基準変換器手段が、少なくとも3個の超音波変換器を含む。
  9. 請求の範囲第1〜3項のいずれかに記載のシステムであり、前記複数の基準変換器手段が、少なくとも4個の超音波変換器を含む。
  10. 請求の範囲第1〜3項のいずれかに記載のシステムであり、前記概略生成手段が、前記表示手段上に、前記二次元エコー画像平面と同じ座標枠内で、前記概略画像を同時に表示する。
JP1998539390A 1997-03-11 1998-03-11 三次元ビューイング環境における、二次元超音波画像表示システム Expired - Fee Related JP3576565B6 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/815,386 1997-03-11
US08/815,386 US5817022A (en) 1995-03-28 1997-03-11 System for displaying a 2-D ultrasound image within a 3-D viewing environment
PCT/IB1998/000519 WO1998040760A1 (en) 1997-03-11 1998-03-11 System for displaying a 2-d ultrasound image within a 3-d viewing environment

Publications (3)

Publication Number Publication Date
JP2000512188A JP2000512188A (ja) 2000-09-19
JP3576565B2 JP3576565B2 (ja) 2004-10-13
JP3576565B6 true JP3576565B6 (ja) 2005-02-02

Family

ID=

Similar Documents

Publication Publication Date Title
EP0966691B1 (en) System for displaying a 2-d ultrasound image within a 3-d viewing environment
King et al. Three‐dimensional spatial registration and interactive display of position and orientation of real‐time ultrasound images.
US5608849A (en) Method of visual guidance for positioning images or data in three-dimensional space
EP0946886B1 (en) Apparatus and method for visualizing ultrasonic images
CN1853574B (zh) 超声数据以预获取图像的配准
EP1253855B1 (en) Ultrasonic imager
JP4745133B2 (ja) 超音波診断装置、医用画像処理装置及び医用画像処理プログラム
JP5367215B2 (ja) 超音波イメージングデータの電気マッピングとの同期化
EP1523940B1 (en) Ultrasound diagnosis apparatus
JP5454844B2 (ja) 超音波診断装置、超音波画像表示装置及び超音波画像表示プログラム
US20070255137A1 (en) Extended volume ultrasound data display and measurement
EP2807978A1 (en) Method and system for 3D acquisition of ultrasound images
JP6873647B2 (ja) 超音波診断装置および超音波診断支援プログラム
JPH04317641A (ja) 超音波映像化装置
JPH07171154A (ja) 3次元エコーグラフィシステム及び方法
JP4855926B2 (ja) 旋回3次元超音波表示の振動対象との同期化
JP2021045561A (ja) 医用4dイメージングにおける動き適応型可視化
Boctor et al. PC-based system for calibration, reconstruction, processing, and visualization of 3D ultrasound data based on a magnetic-field position and orientation sensing system
JP2012101058A (ja) 超音波撮像のためのシステム及び方法
Rohling 3D freehand ultrasound: reconstruction and spatial compounding
JP4350214B2 (ja) 超音波診断装置
JP4709419B2 (ja) 細径プローブ型超音波診断装置
JP3576565B6 (ja) 三次元ビューイング環境における、二次元超音波画像表示システム
JP7418445B2 (ja) 異方性組織のせん断波キャラクタリゼーションのための超音波システムおよび方法
EP3843637B1 (en) Ultrasound system and methods for smart shear wave elastography