JP3576204B2 - Antistatic gloves - Google Patents

Antistatic gloves Download PDF

Info

Publication number
JP3576204B2
JP3576204B2 JP12568394A JP12568394A JP3576204B2 JP 3576204 B2 JP3576204 B2 JP 3576204B2 JP 12568394 A JP12568394 A JP 12568394A JP 12568394 A JP12568394 A JP 12568394A JP 3576204 B2 JP3576204 B2 JP 3576204B2
Authority
JP
Japan
Prior art keywords
fiber base
base material
side member
fibers
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12568394A
Other languages
Japanese (ja)
Other versions
JPH0726405A (en
Inventor
郁夫 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP12568394A priority Critical patent/JP3576204B2/en
Publication of JPH0726405A publication Critical patent/JPH0726405A/en
Application granted granted Critical
Publication of JP3576204B2 publication Critical patent/JP3576204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gloves (AREA)

Description

【0001】
【産業上の利用分野】
本発明は制電手袋に関する。
【0002】
【従来の技術】
IC等の電子部品製造工場内においては、人体や衣服等に帯電した静電気の放電によって電子部品を破損したり、静電気によって衣類に付着した塵埃による電子部品の汚染を防止するため、作業者は帯電防止処理を施した衣類を着用して作業を行っている。例えば、電子部品を直接手で取り扱う作業者は、導電性の繊維基材よりなる制電手袋を手にはめて作業を行っている。
【0003】
【発明が解決しようとする課題】
制電手袋には帯電防止性や導電性とともに、屈曲性、伸縮性が要求されるため、制電手袋に用いる導電性の繊維基材として、導電性繊維を織り込んだり、編み込んだ織布、編布等が用いられている。織布、編布等の繊維基材よりなる制電手袋は、通気性にも優れるため作業者の手の蒸れ防止効果をも有する。しかしながら、その反面、繊維基材の目を通して手の汗が手袋表面に滲み出して電子部品を汚染する等の虞れもあった。
【0004】
また人体等に帯電した静電気は制電手袋を経て放出されるため、高い制電効果を得る目的で手袋に高い導電性を付与すると、人体等に帯電した静電気が一度に多量に手袋に流れ、かえって電子部品を破損する等の虞れがあった。
【0005】
本発明は上記の点に鑑みなされたもので、上記従来の欠点を解消した制電手袋を提供することを目的とする。
【0006】
【課題を解決するための手段】
即ち本発明の制電手袋は、伸縮性繊維基材よりなる手形状の甲側部材と、伸縮性繊維基材に合成樹脂層を積層した非通気性材料よりなる手形状の平側部材とを重ね合わせ、その周囲部分が手挿入口を残して接合一体化されてなり、且つ甲側部材を構成する伸縮性繊維基材の一部又は全部の繊維、平側部材を構成する伸縮性繊維基材の一部又は全部の繊維、及び平側部材を構成する合成樹脂層に、抵抗値が甲側部材<平側部材内面側<平側部材外面側となる導電性が付与されていることを特徴とする。
【0007】
本発明の制電手袋は、平側部材を構成する合成樹脂層は、天然タンパク質系微粉末を含有することが好ましく、また甲側部材を構成する伸縮性繊維基材の繊維の一部又は全部が熱収縮性を有し、該熱収縮性の繊維が、甲側部材と平側部材の周囲部分の接合後に熱収縮されていることが好ましい。本発明において導電性はポリピロールにより付与されていることが好ましい。
【0008】
【実施例】
以下、本発明の一実施例を図面に基き説明する。
【0009】
図1は本発明の制電手袋1の一例を示し、該制電手袋1は、手形状の甲側部材2と、手形状の平側部材3とを重ね合わせ、図2に示すように手挿入口5を残して、周囲部分4を接合一体化して構成されている。甲側部材2は伸縮性繊維基材2aよりなり、平側部材3は伸縮性繊維基材3aの表面に合成樹脂層3bを積層した非通気性素材よりなる。甲側部材2と平側部材3の周囲部分の接合一体化には、超音波ウェルダー加工、熱プレス、高周波加工等による熱融着や、接着、縫着等の方法が採用されるが、製造コスト的にも、製造工程での埃付着の虞れがない点でも熱融着による接合が好ましい。
【0010】
熱融着により甲側部材2と平側部材3とを接合する場合、平側部材3の合成樹脂層3bに熱融着性を有する素材を用い、合成樹脂層3b側が甲側部材2と接するように甲側部材2と平側部材3とを重ね合わせて周囲部分を熱融着することが好ましい。通常、上記のようにして甲側部材と平側部材とを重ね合わせて周囲部分を接合した後、接合部分が裏側に位置するように折り返して使用する。従って、合成樹脂層3bを熱融着性の樹脂により構成して熱融着によって甲側部材2と平側部材3とを接合した場合、図1、2に示すように合成樹脂層3bが手袋1の表面側に位置することとなるが、縫着や接着等による場合や、熱融着でも合成樹脂層を熱融着剤として利用せず、別に熱融着剤を用いる場合には、合成樹脂層3bは手袋1の表面側に位置するようにすることも、裏面側に位置するようにすることもできる。
【0011】
甲側部材2を構成する伸縮性繊維基材2aや、平側部材3を構成する非通気性素材における伸縮性繊維基材3aとしては、柔軟性、伸縮性に優れた織布、編布等が好ましいが、合成樹脂層3bとの均一で強固な接着性(平側部材3を構成する非通気性素材における伸縮性繊維基材3aとの層間の接着性及び、甲側部材2と平側部材3の周囲部分を熱融着する際の甲側部材2と平側部材3との間の接着性等)を有するために、できるだけ平滑な繊維基材が好ましい。伸縮性繊維基材2a、3aに使用するフィラメント糸は、ウーリー加工されたアクリル繊維、ポリエステル繊維、ポリアミド繊維等の30〜300デニールのものが好ましく、特に30〜150デニールのものが好ましい。
【0012】
平側部材3を構成する非通気性素材における合成樹脂層3bは、繊維基材2a、3aの伸縮性に追従可能な伸縮性を有し、また手袋として着用した際の柔軟性をも有する必要がある。また繊維基材3aとの接着性に優れるとともに、甲側部材2と平側部材3とを合成樹脂層3bを利用して熱融着する場合には、繊維基材2aに対する熱融着性を有する必要もある。これらを考慮して、熱融着によって甲側部材2と平側部材3とを接合する場合の合成樹脂層3bを構成する合成樹脂としては、ポリエステルエラストマー、ポリウレタンエラストマー、ポリ塩化ビニル、ポリオレフィン、アクリル系ゴム等が好ましく、特にポリウレタンエラストマーが好適である。合成樹脂層3aの厚みは、繊維基材2a、3aに対する充分な接着性が得られ、且つ手袋としての充分な着用性が得られれば特に限定されないが、通常は10〜50μm程度、特に15〜30μmが好ましい。
【0013】
上記合成樹脂層3aを構成する樹脂がポリウレタンエラストマーである場合、ポリウレタンエラストマーを構成するポリオール成分の種類が、繊維基材2aに対する熱融着性を左右する重要な要因となる。このため特に繊維基材2aがポリエステル繊維、ポリアミド繊維からなる場合には、ポリウレタンエラストマーのポリオール成分が、ポリ−ε−カプロラクトン、ポリ(ブチレングリコールアジペート)、ポリ(ヘキシレングリコールアジペート)、ポリ(ブチレンヘキシレングリコールアジペート)、ポリ(3−メチルペンタンジオールアジペート)、ポリ(β−メチルバレロラクトングリコール)であることが好ましい。これらは単独又は2種以上を組み合わせて用いることができる。
【0014】
ポリウレタンエラストマーを構成するイソシアネート成分としては、トリレンジイソシアネート、4,4´−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4´−ジシクロヘキシルメタンジイソシアネート、リシンジイソシアネート等が単独で又は2種以上組み合わせて使用される。
【0015】
ポリウレタンエラストマーにおける鎖伸長剤としては、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール等のグリコール類、エチレンジアミン、イソホロンジアミン、ヘキサメチレンジアミン、プロピレンジアミン、4,4´−ジシクロヘキシルメタンジアミン等のジアミン類が単独又は2種以上混合して用いられる。
【0016】
上記ポリウレタンエラストマーとしては、熱軟化点が90〜200℃のものが好ましいが、甲側部材2と平側部材3とを熱融着させる際の加圧条件を選定すれば、熱軟化点が更に高いものも用いることができる。
【0017】
ポリウレタンエラストマーの滑性、熱融着性改良のためにポリウレタンエラストマー中にポリエステルを添加することもできる。添加するポリエステルとしては、ネオペンチルグリコール、1,4−ブタンジオール等のグリコールと、テレフタル酸、イソフタル酸、セバシン酸、アジピン酸等の二塩基酸との重縮合物等が挙げられる。上記ポリエステルのポリウレタンエラストマー中への添加量は5〜50重量%程度であるが、ポリエステルの分子量に応じて添加量を調整することができる。分子量の高いポリエステルを多量に添加すると、手袋の風合いが硬くなる傾向にある。
【0018】
ポリウレタンエラストマー等からなる合成樹脂層3bを、伸縮性繊維基材3a上に形成する方法としては、合成樹脂の溶融押出フィルムを伸縮性繊維基材3aに加熱圧着させるか、離型紙やシリコーンコーティングしたポリエステルフィルム等の上に、ポリウレタンエラストマー等の合成樹脂溶液を塗布して乾燥させた後、加熱加圧して接着させるか、或いは接着剤を用いて接着する等の方法が挙げられる。合成樹脂層3aと伸縮性繊維基材3aとの接着は、接着後の伸縮性や柔軟性の点から非連続的な接着状態が好ましい。このため接着剤により接着させる場合、接着剤を筋状又は斑点状に塗布することが最も好ましい。
【0019】
本発明の制電手袋1は、上記甲側部材2を構成する伸縮性繊維基材2a、平側部材3を構成する非通気性素材における伸縮性繊維基材3aのうち、少なくとも甲側部材2を構成する伸縮性繊維基材2aは、一部又は全部の繊維に導電性が付与されている。
【0020】
上記導電性を有する繊維としては、従来公知の導電性繊維を用いることができるが、伸縮性繊維基材2a、3aの伸縮性を阻害しない繊維であることが必要である。導電性繊維としては、例えば導電性ポリマーと複合一体化した導電性繊維が挙げられる。導電性ポリマーを形成するモノマーとしては、アニリン類、チオフェン類、ピロール類等が挙げられる。ピロール類としては、ピロール、3−メチルピロール、3−オクチルピロール、3,5−ジメチルピロール、3−メチル−4−ブチルエステルピロール、N−メチルピロール等が挙げられるが、無置換ピロールが最も好ましい。導電性繊維として好適なものは、ポリアミド、ポリエステル、ポリアクリロニトリル系合成繊維のウーリー加工されたマルチフィラメント糸をベースとし、上記ピロール類の重合により生成するポリピロールと複合一体化して導電性を付与した導電性繊維である。
複合紡糸法導電性繊維では、繊維強度を高く維持する必要性から、一般的には芯鞘構造で芯成分に導電性成分が入り、繊維表面の導電性が低くなることから、静電気除去性能は乏しいものとなるが、ポリピロールを複合一体化した導電性繊維では、外部に対して最も近い部位(例えば繊維表面上)に導電層が配されているために極めて静電気除去性能に優れたものとなる。
硫化銅法による導電性繊維は、ポリピロールによる導電性繊維に比較して、発塵性の問題があり、また導電性或いは帯電防止塗料等を塗布した導電性繊維は屈曲性に劣り、金属蒸着繊維は素材に制限を受ける。
【0021】
伸縮性繊維基材2aを構成する全繊維中の導電性繊維の割合は、5重量%以上が好ましいが、伸縮性繊維基材2aの一部に導電性繊維を混合するだけでも充分な導電性が得られるため、通常、伸縮性繊維基材2a中の繊維の5〜25重量%を導電性繊維とすることで充分に目的を達成することができる。また平側部材3を構成する非通気性素材に用いる伸縮性繊維基材3aの一部又は全部を導電性繊維とすることもできるが、平側部材3における合成樹脂層3bの厚みが15〜20μm程度であれば、甲側部材2を構成する伸縮性繊維基材2aの繊維の一部を導電性繊維とするだけでも充分な効果を得ることができる。
【0022】
伸縮性繊維基材2a、3aを構成する繊維の一部に導電性繊維を用いる場合、伸縮性基材2a、3aを製造する際に予め導電性処理を施した導電性繊維を混合すれば良いが、伸縮性繊維基材2a、3aを構成する全繊維を導電性繊維とする場合には、予め導電性を付与した繊維を用いて伸縮性繊維基材を製造する他に、伸縮性繊維基材とした後に導電化処理する方法、手袋とした後に導電化処理する方法等も採用できる。また予め導電性を付与した繊維を用いた伸縮性繊維基材や、この基材から製造した手袋を、更に導電化処理する等の方法も採用できる。
【0023】
導電性ポリマーを形成するモノマーによって導電性を付与する方法としては、酸化重合剤の存在下に導電性ポリマーを形成するモノマーを被処理物(繊維、伸縮性繊維基材或いは手袋)と接触させ、導電性ポリマーを形成するモノマーを重合させて、被処理物と導電性ポリマーとを複合一体化せしめる方法が挙げられる。
【0024】
被処理物をピロール系モノマーと接触させる方法としては、ピロール系モノマーを含む処理液中に被処理物を浸漬する方法、ピロール系モノマーのガス雰囲気中に被処理物を晒してピロール系モノマーのガスと接触させる方法等が挙げられる。
【0025】
ピロール系モノマーを重合する酸化重合剤としては、過マンガン酸、過マンガン酸カリウム等の過マンガン酸又はその塩;三酸化クロム等のクロム酸塩;硝酸銀等の硝酸塩類;塩素、臭素等のハロゲン類;過酸化水素、過酸化ベンゾイル等の過酸化物;ペルオクソ二硫酸等のペルオクソ酸(またはその塩);次亜塩素酸ナトリウム等の酸素酸(またはその塩);塩化第二鉄等の遷移金属塩化物;或いは硫酸第二鉄、過硫酸カリウム、過硫酸アンモニウム、過塩素酸第二鉄等が挙げられる。
【0026】
被処理物に付与される導電性を更に高めるためには、導電性ポリマーを形成するモノマーを重合させる際に、ドーパントを併用することが好ましい。ドーパントとしては、五弗化リン等のルイス酸;塩酸、硫酸、p−トルエンスルホン酸、1,5−ナフタレンスルホン酸、ドデシルベンゼンスルホン酸、ハロゲン化ベンゼンスルホン酸、サリチル酸、酢酸、安息香酸等のプロトン酸やこれらの可溶性塩;過塩素酸銀、弗化ホウ素銀等の遷移金属化合物等が挙げられる。
【0027】
尚、前記酸化重合剤のうち、ハロゲン類、ペルオクソ酸(又はその塩)、遷移金属塩化物もドーパントとして機能するため、これらの化合物を酸化重合剤として用いた場合には、敢えてドーパントを併用する必要はないが、ドーパントと併用した場合には、より高い導電性を付与することができ、導電性ポリマー層をより薄膜化することができて好ましい。
【0028】
被処理物をピロール系モノマーを含む処理液中に浸漬して処理して導電性を付与する方法では、▲1▼ピロール系モノマーと酸化重合剤及び必要によりドーパントを添加した処理液に、モノマーが実質的に重合する以前に被処理物を浸漬して処理する方法、▲2▼酸化重合剤と必要によりドーパントとを添加した処理液と、ピロール系モノマーを含有する処理液とに、被処理物を順次浸漬して処理する方法、▲3▼酸化重合剤と必要によりドーパントを添加した処理液に被処理物を浸漬した後、この処理液中にピロール系モノマーを添加する方法等が挙げられる。いずれの場合でも、処理液を攪拌しながら処理することが好ましい。
【0029】
酸化重合剤は、一般にピロール系モノマーに対して1当量〜3当量程度使用される。またピロール系モノマーの濃度は付与する導電性の程度にもよるが、繊維重量の0.01〜5重量%程度が好ましい。またドーパントを併用する場合、ドーパントはピロール系モノマー1モル当たり、0.01〜0.5モル程度使用することが好ましい。
【0030】
上記▲1▼〜▲3▼の方法のうち、▲2▼、▲3▼の方法において先ず酸化重合剤を含む溶液に被処理物を20〜60分浸漬した後、ピロール系モノマーと接触させる方法を採用することが好ましい。ピロール系モノマーと接触させる際の処理液の温度は、優れた導電性を得るためには、0〜40℃、特に0〜5℃が好ましい。またピロール系モノマーを含む処理液への浸漬時間はピロール系モノマーや酸化重合剤の濃度、所望する導電性の程度、被処理物の材質、形態等によっても異なるが、通常30分〜3時間程度である。尚、導電化処理に先立って被処理物に染色処理を施しても良い。
【0031】
上記導電化処理はロータリー式染色機を用いて行うことが好ましい。ロータリー式染色機は固定された外胴と、該外胴内を回転可能に構成された内胴とからなる。内胴には、ドラム式、ワッシャー式等の方式があり、いずれの方式であっても良いが、ドラム式が好ましい。また導電化処理を行う際、処理液は染色機の内容積の2〜9割程度注入して使用するが、内胴がドラム式の場合には5割程度、ワッシャー式の場合には6割程度注入することが好ましい。また被処理物に対する処理液の割合は、重量比で、被処理物:処理液=1:8〜1:50が好ましい。
【0032】
上記ロータリー染色機の内胴に処理液と被処理物を入れ、内胴を3〜20回転/分程度の回転速度で回転させて導電化処理を行う。処理時間は30〜240分程度が好ましい。また、このとき必要に応じて内胴の回転方向を交互に反転させながら処理することもできる。ピロール系モノマー等を含む処理液における溶媒としては、通常水が使用されるが、脂肪族アルコール類を用いることもできる。尚、染色機内には窒素等の不活性ガスを充填しておくことが好ましい。
【0033】
本発明の制電手袋1は、甲側部材、平側部材内面側及び平側部材外面側に、抵抗値が、甲側部材<平側部材内面側<平側部材外面側となるように導電性が付与されており、甲側部材2側より、平側部材の外面側(図2に示す例では合成樹脂層3b側)が高抵抗であることにより、必要以上の導電性がなく、対象物の静電気除去のみに著しい効果がある。また甲側部材2、平側部材3の内面側より低抵抗であるため、静電気除去性能に特に優れ、抵抗値の低い甲側部材2が対象物から最も遠い距離にあるにもかかわらず、静電気を除去できる効果がある。甲側部材2は103〜104Ω程度の導電性を有することが好ましく、平側部材3の内面側は104〜105Ω程度の導電性を有することが好ましい。更に静電気除去を確実にするため、平側部材3の外面側、106〜108Ω程度の導電性が付与されていることが好ましい
【0034】
上記抵抗値が、甲側部材2<平側部材3の内面側<平側部材3の外面側、の順となる手袋1は、種々の方法で製造することができる。例えば甲側部材2を構成する伸縮性繊維基材2aに、平側部材3を構成する伸縮性繊維基材3a、合成樹脂層3bよりも高導電性を付与したものを用い、平側部材3として、上記伸縮性繊維基材2aよりは低い導電性を付与した伸縮性繊維基材3aと、該伸縮性繊維基材3aよりも低い導電性を付与するか、或いは導電性を付与していない合成樹脂層3bとからなるものを用い、平側部材3の合成樹脂層3bが外側となるように(例えば甲側部材2と平側部材3とを、平側部材3の合成樹脂層3bが甲側部材2と接するように重ね合わせて両者を接合した後、裏返して合成樹脂層3bが外側となるように)手袋1を製造すれば良い。
平側部材外面の合成樹脂層3bに導電性が付与されていなくても、合成樹脂層3bが乾燥時に絶縁性であっても大気中の水分、使用者より発散される水分を吸着することができる保湿機能を付与することにより、高い抵抗値であってもある一定範囲での帯電防止性能を付与することができる。
吸湿、保湿機能を高めるには、例えばポリウレタンエラストマーのソフトセグメントの一部にポリエチレングリコールを使用して吸湿性を高める方法、吸湿性を付与する添加剤を用いる方法等が挙げられる。セルロース系微粉末も用いられるが、天然皮革等より精製したコラーゲン微粉末、ゼラチン微粉末等が水分の吸着及び大気中への放散効果が特に顕著である。その粒径としては平均粒径10μm以下が好ましく、使用量は1〜100重量部が好ましい。
【0035】
また甲側部材2と平側部材3とによって手袋形状に形成した後、導電化処理を施すことによっても良い。手袋状としたものを、前記導電性ポリマーを形成するモノマーによって導電化処理する場合、処理液の通液性が良いために処理液が最も良く付着する甲側部材2に最も高い導電性が付与され、処理液の付着性が次いで良好な平側部材3の伸縮性繊維基材3aに次に高い導電性が付与され、これら甲側部材2、平側部材3の伸縮性繊維基材3aに比べて処理液の付着性が最も低い平側部材3の合成樹脂層3bに最も低い導電性が付与される。
【0036】
この場合、特に甲側部材2を構成する伸縮性繊維基材2aとしてポリアミド繊維編布を用い、平側部材3としてポリエステル、ポリアミド等の伸縮性繊維基材3aに、含金染料及び/又は酸性染料で染色されにくいポリウレタン樹脂からなる合成樹脂層3bを積層したものを用い、予め含金染料及び/又は酸性染料で染色してから導電化処理を施すと、導電性ポリマーの付着性が向上し、しかも安定した品質が得られることとなり好ましい。
【0037】
手袋状とした後に導電化処理をする場合、手形状の甲側部材2と手形状の平側部材3とを、平側部材3の合成樹脂層3bが内側となるように重ね合わせ、その周囲部分を手挿入口を残して接合一体化して手袋形状とした後、導電化処理を施し、次いで合成樹脂層3bが外側となるように裏返して制電手袋1を得る方法と、上記と同様にして手袋状としたものを、合成樹脂層3bが外側となるように裏返した後に導電化処理を施して制電手袋1を得る方法とが挙げられる。前者の方法では後者の方法よりも、平側部材3の伸縮性繊維基材3aに高い導電性が付与される一方、合成樹脂層3bには低い導電性が付与される(甲側部材2に付与される導電性はいずれの方法でも殆ど同じである。)。従って、平側部材3の伸縮性繊維基材3aに比較的高い導電性を付与し、合成樹脂層3bには比較的低い導電性を付与したい場合には、前者の方法が好ましく、この逆の場合には後者の方法が好ましい。しかしながら、いずれの方法でも抵抗値が、甲側部材2<平側部材3の内面側(即ち伸縮性繊維基材3a)<平側部材3の外面側(即ち、合成樹脂層3b)、の順で高くなる手袋1が得られることにはかわりない。
【0038】
本発明の制電手袋1は、甲側部材2を構成する伸縮性繊維基材2aの繊維の一部又は全部が熱収縮性の繊維であり、甲側部材2と平側部材3との周囲部分を熱融着した後に、熱収縮性の繊維が熱収縮されていることが好ましい。甲側部材2中の熱収縮性繊維が、甲側部材2と平側部材3とを熱融着後に熱収縮せしめられると、図3に示すように甲側部材2と平側部材3との接合位置が指6の先端よりも甲側に位置するようになるため、電子部品を摘んだ時に、手先の汗等が通気性の甲側部材2から漏れ出して電子部品を汚染する等の虞れを防止でき、本発明の効果が更に高められる。
【0039】
甲側部材2を構成する伸縮性繊維基材2aの繊維の一部が導電性繊維である場合、導電性繊維の全部又は一部が熱収縮性の繊維であっても、導電性繊維以外の繊維の全部又は一部が熱収縮性の繊維であっても、両方の繊維の全部又は一部が熱収縮性の繊維であっても良い。また伸縮性繊維基材2aが全て導電性繊維からなる場合、導電性繊維の全部が熱収縮性の繊維であっても良いが、一部の導電性繊維のみが熱収縮性有し、残りの導電性繊維は非熱収縮性のものであっても良い。
【0040】
上記熱収縮性の繊維とは、熱によって単純な繊維長の収縮のみが生じるだけのものに限らず、捲縮が生じる熱捲縮性の繊維であっも良い。繊維に熱収縮性、熱捲縮性を付与する方法としては、繊維のポリマー組成、紡糸条件、ヒートセット条件を調節する方法、撚糸による方法、サイド・バイ・サイド型繊維のように熱収縮性の異なる素材を複合する方法、海島繊維、芯鞘繊維とする方法等が挙げられる。例えばサイド・バイ・サイド型繊維としては、分子量、化学構造、結晶性等の異なるポリエステルを組み合わせたポリエステル繊維を例示することができる。
【0041】
次に本発明の制電手袋1の具体的実施例を示す。
【0042】
実施例1
50D/24Fのウーリー加工ポリエステル糸84本と、150D/60Fのアクリル糸(ポリピロールによって導電加工した抵抗値0.1kΩの導電糸)6本の原糸よりなる丸編天竺(28ゲージ/30インチ直径)を手形状に加工したものを2枚作成し、1枚はそのまま甲側部材とし、他の1枚には表面に厚み28μのポリウレタンエラストマー層を形成(離型紙による転写法により形成)して平側部材とした。上記甲側部材と平側部材とを重ね合わせ、高周波加工によって周囲部分を手挿入口を残して融着させて手袋とした。この手袋の摩擦帯電圧は実質的に0Vであった。またこの手袋を着用して電子部品を取扱作業を行ったが、手の汗により電子部品等を汚染することもなかった。
【0043】
実施例2
甲側部材を構成する丸編天竺のみ、ウーリー加工ポリエステル繊維の30%を熱収縮性のポリエステル繊維(130℃で50%収縮)に置き換えた他は、実施例1と同様にして手袋を製造した。尚、甲側部材と平側部材の周囲部を高周波加工によって融着せしめた後、甲側部材中の熱収縮性のポリエステル繊維を熱収縮させた。得られた手袋の摩擦帯電圧は実質的に0Vであった。またこの手袋を着用して電子部品を取り扱ったところ、手の汗による電子部品等の汚染を確実に防止できた。
【0044】
実施例3
50D/17Fのポリアミドウーリー加工糸丸編天笠を甲側部材として、50D/17Fポリアミド丸編天笠上に熱融着性に優れたポリウレタンエラストマー(レザミン:大日精化工業製)15μmを、2液型ポリウレタン接着剤(クリスボン:大日本インキ化学工業製)15μmを介して積層したものを離型紙転写法で得て平側部材とし、超音波ウェルダー法で手袋を製造した。
次いでAcidol Green(BASF社製)を常法に従い、ポリウレタン及びポリアミドが均一な色相となるように染色した後、塩化第二鉄、パラトルエンスルホン酸、ピロールの混合水溶液により、ポリピロールが0.035μmとなるように処理して導電性を付与した。
得られた手袋は、甲側部材表面10Ω、平側部材外側10Ω、平側部材内側10Ω(二端針法)であり、制電作業用として優れたものであった。
【0045】
実施例4
牛皮を微粉砕した平均粒径3μmのコラーゲン粉末を固形分比で、実施例3と同様のポリウレタンエラストマーに対して100/20となるように分散し、平滑な離型紙上に膜厚が15μmとなるようにコーティングし、次いで二液型ポリウレタン接着剤(実施例3で用いたものと同じ)を膜厚15μmとなるように重ねてコーティングし、50D/17Fウーリーナイロン天笠を貼着した。これを十分に硬化させたものを平側部材とし、ウーリーナイロン天笠を甲側部材とし高周波融着加工により手袋を製造した。次いで塩化第二鉄、パラトルエンスルホン酸、ピロールを含む処理液中に、18℃にて240分間浸漬し制電手袋とした。得られたものは平側部材外側10Ω、平側部材内側10Ω、甲側部材表面10Ωであり、制電作業用手袋として好適なものであった。
【0046】
【発明の効果】
以上説明したように本発明の制電手袋は、少なくとも甲側部材を構成する伸縮性繊維基材中の繊維の一部又は全部を導電性繊維としたから、帯電防止性に優れるとともに、平側部材が非通気性素材よりなるため手の汗等の漏れ出しが防止され、汗等により電子部品等を汚染する虞れがない等の効果を有する。
【0047】
また平側部材が、内面側より外面側が高抵抗値を有していることにより必要以上の導電性がなく、静電気除去を中心とした制電手袋となり、更に甲側部材が、平側部材の内面側より低い抵抗値を有していることにより制電性に特に優れたものとなる効果がある。しかも平側部材の外面側も導電性が付与されていることにより、電子部品等と直接接触することのない離れた距離にある甲側で静電気除去できる効果がある。
【0048】
しかも甲側部材を構成する伸縮性繊維基材の繊維の一部又は全部を熱収縮性とし、甲側部材と平側部材の周囲部分の接合後に熱収縮性の繊維が熱収縮されていると、甲側部材と平側部材との接合部分が指先よりも甲側に位置するため、指先の汗等の漏れが更に防止される等の効果を有する。
【図面の簡単な説明】
【図1】本発明の制電手袋の斜視図である。
【図2】図1のII−II 線に沿う縦断面図である。
【図3】本発明手袋の他の実施例を示す縦断面図である。
【符号の説明】
1 制電手袋
2 甲側部材
3 平側部材
2a 伸縮性繊維基材
3a 伸縮性繊維基材
3b 合成樹脂層
4 周囲部分
5 手挿入口
[0001]
[Industrial applications]
The present invention relates to antistatic gloves.
[0002]
[Prior art]
In a factory for manufacturing electronic components such as ICs, workers are charged with static electricity to prevent damage to the electronic components due to the discharge of static electricity charged on the human body and clothes, and to prevent contamination of the electronic components by dust attached to the clothes due to static electricity. Work is being done by wearing clothing that has been treated for prevention. For example, a worker who directly handles electronic components by hand carries out antistatic gloves made of a conductive fiber base material.
[0003]
[Problems to be solved by the invention]
Antistatic gloves are required to have flexibility and elasticity, as well as antistatic properties and conductivity. Therefore, as a conductive fiber base material for antistatic gloves, woven or knitted conductive fibers are used. Cloth or the like is used. Antistatic gloves made of a fibrous base material such as a woven fabric or a knitted fabric are also excellent in air permeability, and thus also have an effect of preventing a worker's hand from getting wet. However, on the other hand, there is also a risk that sweat of the hand will ooze out to the glove surface through the eyes of the fiber base material and contaminate the electronic components.
[0004]
In addition, since static electricity charged on the human body is released through antistatic gloves, if high conductivity is given to gloves for the purpose of obtaining a high antistatic effect, a large amount of static electricity charged on the human body will flow to gloves at once, On the contrary, there is a fear that the electronic component may be damaged.
[0005]
The present invention has been made in view of the above points, and an object of the present invention is to provide an antistatic glove which has solved the above-mentioned conventional disadvantages.
[0006]
[Means for Solving the Problems]
That is, the antistatic glove of the present invention includes a hand-shaped upper side member made of a stretchable fiber base material and a hand-shaped flat side member made of a non-breathable material obtained by laminating a synthetic resin layer on the stretchable fiber base material. Stretchable fiber base material that is superimposed, its peripheral part is joined and integrated leaving a hand insertion port, and constitutes the instep-side memberSome or all of the fibersStretchable fiber base material constituting flat side memberOneParts or all fibers,In addition, the resistance value of the synthetic resin layer constituting the flat side member is such that the instep side member <the flat side member inner surface side <the flat side member outer surface sideWith conductivityRukoAnd features.
[0007]
The antistatic glove of the present invention,flatThe synthetic resin layer constituting the side member preferably contains a natural protein-based fine powder.ShellSome or all of the fibers of the stretchable fiber base material constituting the side member have heat shrinkability, and the heat shrinkable fiber is heat shrunk after joining the instep side member and the peripheral portion of the flat side member. Is preferred. In the present invention, the conductivity is preferably provided by polypyrrole.
[0008]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0009]
FIG. 1 shows an example of an antistatic glove 1 according to the present invention. In the antistatic glove 1, a hand-shaped upper member 2 and a hand-shaped flat member 3 are superimposed, and as shown in FIG. The peripheral part 4 is joined and integrated, leaving the insertion opening 5. The upper member 2 is made of a stretchable fiber base material 2a, and the flat member 3 is made of a non-breathable material in which a synthetic resin layer 3b is laminated on the surface of the stretchable fiber base material 3a. For the joining and integration of the instep-side member 2 and the peripheral portion of the flat-side member 3, methods such as ultrasonic welding, heat pressing, high-frequency processing, and the like, heat bonding, bonding, sewing, and the like are employed. From the viewpoint of cost, there is no fear of dust adhesion in the manufacturing process.
[0010]
When joining the instep-side member 2 and the flat-side member 3 by heat fusion, a material having heat-fusibility is used for the synthetic resin layer 3b of the flat-side member 3, and the synthetic resin layer 3b side is in contact with the instep-side member 2. As described above, it is preferable that the instep-side member 2 and the flat-side member 3 are overlapped with each other and the peripheral portion is heat-sealed. Usually, after the instep side member and the flat side member are overlapped and the peripheral portion is joined as described above, the folded portion is used so that the joined portion is located on the back side. Accordingly, when the synthetic resin layer 3b is made of a heat-fusible resin and the upper member 2 and the flat member 3 are joined by heat fusion, as shown in FIGS. However, if the synthetic resin layer is not used as a heat-sealing agent and a separate heat-sealing agent is used for the heat-sealing, the synthetic The resin layer 3b can be located on the front side of the glove 1 or on the back side.
[0011]
The stretchable fiber base material 2a forming the upper member 2 and the stretchable fiber base material 3a in the non-breathable material forming the flat member 3 may be a woven fabric, a knitted fabric, or the like having excellent flexibility and stretchability. It is preferable to have uniform and strong adhesion to the synthetic resin layer 3b (adhesion between the elastic fiber base material 3a and the interlayer between the stretchable fiber base material 3a in the non-permeable material constituting the flat side member 3 and the flat side member 2 and the flat side). In order to have the adhesiveness between the instep-side member 2 and the flat-side member 3 when the peripheral portion of the member 3 is heat-sealed, a fiber substrate as smooth as possible is preferable. The filament yarn used for the stretchable fiber base materials 2a and 3a is preferably 30 to 300 denier, particularly preferably 30 to 150 denier, such as wooly-processed acrylic fiber, polyester fiber, and polyamide fiber.
[0012]
The synthetic resin layer 3b of the non-breathable material constituting the flat side member 3 must have elasticity that can follow the elasticity of the fiber base materials 2a, 3a, and also have flexibility when worn as gloves. There is. Further, when the back member 2 and the flat member 3 are heat-sealed using the synthetic resin layer 3b while having excellent adhesiveness to the fiber base material 3a, the heat-sealing property to the fiber base material 2a is improved. You also need to have. In consideration of these, as the synthetic resin constituting the synthetic resin layer 3b when the upper side member 2 and the flat side member 3 are joined by heat fusion, polyester elastomer, polyurethane elastomer, polyvinyl chloride, polyolefin, acrylic A rubber or the like is preferable, and a polyurethane elastomer is particularly preferable. The thickness of the synthetic resin layer 3a is not particularly limited as long as sufficient adhesiveness to the fiber base materials 2a and 3a is obtained and sufficient wearability as a glove is obtained. 30 μm is preferred.
[0013]
When the resin constituting the synthetic resin layer 3a is a polyurethane elastomer, the type of the polyol component constituting the polyurethane elastomer is an important factor that determines the heat-fusibility to the fiber base material 2a. Therefore, particularly when the fiber base material 2a is made of a polyester fiber or a polyamide fiber, the polyol component of the polyurethane elastomer is poly-ε-caprolactone, poly (butylene glycol adipate), poly (hexylene glycol adipate), poly (butylene). Hexylene glycol adipate), poly (3-methylpentanediol adipate), and poly (β-methylvalerolactone glycol) are preferred. These can be used alone or in combination of two or more.
[0014]
As the isocyanate component constituting the polyurethane elastomer, tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, lysine diisocyanate, etc., alone or in combination of two or more kinds used.
[0015]
Examples of the chain extender in the polyurethane elastomer include glycols such as ethylene glycol, propylene glycol, butanediol, diethylene glycol and dipropylene glycol, ethylenediamine, isophoronediamine, hexamethylenediamine, propylenediamine, and 4,4′-dicyclohexylmethanediamine. Diamines are used alone or in combination of two or more.
[0016]
The polyurethane elastomer preferably has a thermal softening point of 90 to 200 ° C., but if the pressurizing conditions for heat-sealing the upper member 2 and the flat member 3 are selected, the thermal softening point is further increased. Higher ones can also be used.
[0017]
Polyester can be added to the polyurethane elastomer to improve the lubricity and heat-fusibility of the polyurethane elastomer. Examples of the polyester to be added include polycondensates of glycols such as neopentyl glycol and 1,4-butanediol with dibasic acids such as terephthalic acid, isophthalic acid, sebacic acid and adipic acid. The amount of the polyester added to the polyurethane elastomer is about 5 to 50% by weight, but the amount can be adjusted according to the molecular weight of the polyester. If a large amount of high molecular weight polyester is added, the texture of gloves tends to be hard.
[0018]
As a method of forming the synthetic resin layer 3b made of a polyurethane elastomer or the like on the stretchable fiber base material 3a, a synthetic resin melt extruded film is heat-pressed to the stretchable fiber base material 3a, or a release paper or silicone coating is applied. A method of applying a synthetic resin solution such as a polyurethane elastomer on a polyester film or the like, drying the applied solution, and then applying heat and pressure to bond or using an adhesive to bond the solution. The bonding between the synthetic resin layer 3a and the stretchable fiber base material 3a is preferably a discontinuous bonding state in terms of stretchability and flexibility after the bonding. For this reason, when bonding with an adhesive, it is most preferable to apply the adhesive in a streak-like or spot-like manner.
[0019]
The antistatic glove 1 of the present invention includes at least the back member 2a of the stretchable fiber base material 2a constituting the back member 2 and the stretchable fiber base material 3a of the non-breathable material constituting the flat member 3. In the stretchable fiber base material 2a, the conductivity is given to some or all of the fibers.
[0020]
Conventionally known conductive fibers can be used as the conductive fibers, but it is necessary that the fibers do not impair the elasticity of the elastic fiber base materials 2a and 3a. As the conductive fiber, for example, a conductive fiber integrated with a conductive polymer in a composite manner is exemplified. Examples of the monomer that forms the conductive polymer include anilines, thiophenes, and pyrroles. Examples of pyrroles include pyrrole, 3-methylpyrrole, 3-octylpyrrole, 3,5-dimethylpyrrole, 3-methyl-4-butylesterpyrrole, N-methylpyrrole, and the like, with unsubstituted pyrrole being most preferred. . Suitable as conductive fibers are polyamide, polyester, polyacrylonitrile-based synthetic fibers based on a wooly-processed multifilament yarn, and a conductive material provided with conductivity by being integrated with polypyrrole produced by polymerization of the pyrroles. Fiber.
In the composite spinning conductive fiber, it is necessary to maintain a high fiber strength.In general, the conductive component enters the core component in a core-sheath structure, and the conductivity of the fiber surface becomes low. Although it is poor, the conductive fiber in which polypyrrole is compounded and integrated has extremely excellent static electricity removing performance because the conductive layer is arranged at a portion closest to the outside (for example, on the fiber surface). .
Copper sulfide conductive fibers have a problem of dust generation compared to polypyrrole conductive fibers, and conductive fibers coated with conductive or antistatic paint have poor flexibility and metal-deposited fibers. Is limited by material.
[0021]
The proportion of the conductive fibers in all the fibers constituting the stretchable fiber base material 2a is preferably 5% by weight or more, but sufficient conductivity can be obtained only by mixing the conductive fibers into a part of the stretchable fiber base material 2a. In general, the purpose can be sufficiently achieved by using 5 to 25% by weight of the fibers in the stretchable fiber base material 2a as conductive fibers. Further, a part or all of the stretchable fiber base material 3a used for the non-breathable material constituting the flat side member 3 can be made of conductive fiber. If it is about 20 μm, a sufficient effect can be obtained even if only a part of the fibers of the elastic fiber base material 2a constituting the upper member 2 are made of conductive fibers.
[0022]
When conductive fibers are used as a part of the fibers constituting the stretchable base materials 2a and 3a, conductive fibers that have been subjected to a conductive treatment in advance when manufacturing the stretchable base materials 2a and 3a may be mixed. However, when all the fibers constituting the stretchable fiber base materials 2a and 3a are conductive fibers, in addition to manufacturing the stretchable fiber base material using fibers having conductivity in advance, the stretchable fiber base material may be used. A method of conducting a conductive treatment after forming a material, a method of conducting a conductive treatment after forming a glove, and the like can also be adopted. In addition, a method of further conducting a conductive treatment on a stretchable fiber base material using fibers to which conductivity has been imparted in advance or a glove manufactured from this base material can also be adopted.
[0023]
As a method of imparting conductivity by a monomer that forms a conductive polymer, a monomer that forms a conductive polymer in the presence of an oxidizing polymerization agent is brought into contact with an object to be processed (fiber, stretchable fiber substrate or glove), A method of polymerizing a monomer that forms a conductive polymer to form a composite body of the object and the conductive polymer is exemplified.
[0024]
The method of contacting the object to be treated with the pyrrole-based monomer includes a method of immersing the object to be treated in a treatment liquid containing the pyrrole-based monomer, and a method of exposing the object to be treated in a gas atmosphere of the pyrrole-based monomer to thereby obtain a gas of the pyrrole-based monomer. And the like.
[0025]
Examples of the oxidizing polymerization agent for polymerizing the pyrrole-based monomer include permanganic acid and salts thereof such as permanganic acid and potassium permanganate; chromates such as chromium trioxide; nitrates such as silver nitrate; halogens such as chlorine and bromine. Classes; peroxides such as hydrogen peroxide and benzoyl peroxide; peroxoacids (or salts thereof) such as peroxodisulfuric acid; oxygen acids (or salts thereof) such as sodium hypochlorite; transitions such as ferric chloride Metal chloride; or ferric sulfate, potassium persulfate, ammonium persulfate, ferric perchlorate, and the like.
[0026]
In order to further increase the conductivity imparted to the object to be treated, it is preferable to use a dopant together when polymerizing the monomer forming the conductive polymer. Examples of the dopant include Lewis acids such as phosphorus pentafluoride; hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, 1,5-naphthalenesulfonic acid, dodecylbenzenesulfonic acid, halogenated benzenesulfonic acid, salicylic acid, acetic acid, benzoic acid and the like. Protonic acids and soluble salts thereof; and transition metal compounds such as silver perchlorate and silver borofluoride.
[0027]
In addition, among the oxidative polymerization agents, halogens, peroxo acids (or salts thereof), and transition metal chlorides also function as dopants. Therefore, when these compounds are used as the oxidative polymerization agent, the dopant is intentionally used in combination. Although it is not necessary, when used in combination with a dopant, higher conductivity can be imparted and the conductive polymer layer can be made thinner, which is preferable.
[0028]
In the method of imparting conductivity by immersing an object to be treated in a processing solution containing a pyrrole-based monomer to impart conductivity, (1) the monomer is added to a processing solution containing a pyrrole-based monomer, an oxidizing polymer, and a dopant as necessary. A method of immersing the object to be treated before substantially polymerizing; (2) a treatment solution containing an oxidized polymerization agent and, if necessary, a dopant, and a treatment solution containing a pyrrole-based monomer; And (3) a method of immersing an object to be treated in a treatment liquid to which an oxidative polymerization agent and, if necessary, a dopant are added, and then adding a pyrrole-based monomer to the treatment liquid. In any case, it is preferable to perform the treatment while stirring the treatment liquid.
[0029]
The oxidation polymerization agent is generally used in an amount of about 1 to 3 equivalents based on the pyrrole-based monomer. Further, the concentration of the pyrrole-based monomer depends on the degree of conductivity to be provided, but is preferably about 0.01 to 5% by weight of the fiber weight. When a dopant is used in combination, the dopant is preferably used in an amount of about 0.01 to 0.5 mol per 1 mol of the pyrrole-based monomer.
[0030]
Of the above methods (1) to (3), in the methods (2) and (3), first, the object to be treated is immersed in a solution containing an oxidizing polymerization agent for 20 to 60 minutes, and then contacted with a pyrrole-based monomer. It is preferable to employ The temperature of the treatment liquid when it is brought into contact with the pyrrole-based monomer is preferably 0 to 40 ° C, particularly preferably 0 to 5 ° C, in order to obtain excellent conductivity. The immersion time in the processing solution containing the pyrrole-based monomer varies depending on the concentration of the pyrrole-based monomer and the oxidizing polymerization agent, the desired degree of conductivity, the material and form of the object to be treated, but usually about 30 minutes to 3 hours. It is. Note that a dyeing treatment may be performed on the object to be processed before the conductivity treatment.
[0031]
It is preferable that the conductive treatment is performed using a rotary dyeing machine. The rotary dyeing machine includes a fixed outer body and an inner body configured to be rotatable inside the outer body. The inner body includes a drum type and a washer type, and any type may be used, but a drum type is preferable. When conducting treatment, the treatment liquid is used by injecting about 20 to 90% of the inner volume of the dyeing machine. When the inner body is of a drum type, it is about 50%, and when it is of a washer type, about 60%. It is preferable to implant to a degree. Further, the ratio of the processing liquid to the processing object is preferably 1: 8 to 1:50 in terms of weight ratio.
[0032]
The processing solution and the object to be processed are put in the inner body of the rotary dyeing machine, and the inner body is rotated at a rotation speed of about 3 to 20 revolutions / minute to perform the conductivity treatment. The processing time is preferably about 30 to 240 minutes. Further, at this time, the processing can be performed while alternately reversing the rotation direction of the inner body as necessary. Water is usually used as a solvent in the processing solution containing a pyrrole-based monomer and the like, but aliphatic alcohols can also be used. It is preferable that the dyeing machine is filled with an inert gas such as nitrogen.
[0033]
The antistatic glove 1 of the present inventionThe instep member, the inner surface side of the flat member and the outer surface side of the flat member are provided with electrical conductivity such that the resistance value becomes the instep member <the inner surface side of the flat member <the outer surface side of the flat member,Since the outer surface side (the synthetic resin layer 3b side in the example shown in FIG. 2) of the flat member has a higher resistance than the instep member 2 side, there is no unnecessary conductivity, and it is remarkable only for static electricity removal of the object. effective. Instep member 2Is, Lower resistance than the inner surface of the flat member 3For, Especially excellent in static electricity removal performance,The lower side member 2 with low resistanceEven though the object is farthest from the object, there is an effect that static electricity can be removed. Instep member 2 is 10Three-10FourIt is preferable that the flat side member 3 has a conductivity ofFour-10FiveIt is preferable to have conductivity of about Ω. In order to further remove static electricity, the outer side of the flat member 3Is, 106-108Preferably, conductivity of about Ω is provided..
[0034]
The glove 1 having the resistance value in the order of the upper member 2 <the inner surface of the flat member 3 <the outer surface of the flat member 3 can be manufactured by various methods. For example, a stretchable fiber base material 2a constituting the back side member 2 is provided with a higher conductivity than the stretchable fiber base material 3a constituting the flat side member 3 and the synthetic resin layer 3b. And a stretchable fiber base material 3a having a lower conductivity than the stretchable fiber base material 2a and a lower conductivity than the stretchable fiber base material 3a, or no conductivity. The synthetic resin layer 3b is used so that the synthetic resin layer 3b of the flat side member 3 is on the outside (for example, the upper side member 2 and the flat side member 3 are The gloves 1 may be manufactured such that they are overlapped so as to be in contact with the instep-side member 2 and joined together, and then turned upside down so that the synthetic resin layer 3b is on the outside.
Even if the synthetic resin layer 3b on the outer surface of the flat side member is not provided with conductivity, even if the synthetic resin layer 3b is insulative when dried, it can adsorb moisture in the air and moisture radiated from the user. By providing a possible moisturizing function, antistatic performance in a certain range can be provided even with a high resistance value.
In order to enhance the moisture absorbing and moisturizing functions, for example, a method of increasing the hygroscopicity by using polyethylene glycol for a part of the soft segment of the polyurethane elastomer, a method of using an additive for imparting hygroscopicity, and the like can be mentioned. Cellulose-based fine powder is also used, but collagen fine powder, gelatin fine powder and the like purified from natural leather and the like are particularly remarkable in the effect of adsorbing moisture and dispersing them into the atmosphere. The average particle size is preferably 10 μm or less, and the amount is preferably 1 to 100 parts by weight.
[0035]
Alternatively, after forming the glove shape by the upper side member 2 and the flat side member 3, a conductive treatment may be performed. When the glove-shaped material is subjected to a conductive treatment with a monomer that forms the conductive polymer, the highest conductivity is imparted to the instep-side member 2 to which the processing liquid adheres best because the liquid permeability of the processing liquid is good. Then, the next highest conductivity is given to the stretchable fiber base material 3a of the flat side member 3 having the next good adhesion of the processing liquid, and the stretchable fiber base material 3a of the upper side member 2 and the flat side member 3 is provided. The lowest conductivity is imparted to the synthetic resin layer 3b of the flat member 3 having the lowest adhesion of the processing liquid.
[0036]
In this case, in particular, a polyamide fiber knitted fabric is used as the stretchable fiber base material 2a constituting the upper side member 2, and the stretchable fiber base material 3a made of polyester, polyamide or the like is used as the flat side member 3, and the metal-containing dye and / or the acid If a layer of a synthetic resin layer 3b made of a polyurethane resin that is difficult to be dyed with a dye is used, and the layer is dyed with a gold-containing dye and / or an acid dye in advance and then subjected to a conductive treatment, the adhesion of the conductive polymer is improved. In addition, stable quality is obtained, which is preferable.
[0037]
When conducting the conductive treatment after forming the glove shape, the hand-shaped upper side member 2 and the hand-shaped flat side member 3 are overlapped so that the synthetic resin layer 3b of the flat side member 3 is located inside, and the periphery thereof is formed. A method of obtaining an antistatic glove 1 in the same manner as described above, in which a part is joined and integrated to leave a hand insertion opening to form a glove shape, then subjected to a conductive treatment, and then turned over so that the synthetic resin layer 3b is on the outside, to obtain an antistatic glove 1. The glove-shaped material is turned over so that the synthetic resin layer 3b is on the outside, and then subjected to a conductive treatment to obtain the antistatic glove 1. In the former method, a higher conductivity is imparted to the stretchable fiber base material 3a of the flat side member 3 than in the latter method, while a lower conductivity is imparted to the synthetic resin layer 3b (to the upper member 2). The conductivity imparted is almost the same in any method.) Therefore, when it is desired to impart relatively high conductivity to the stretchable fiber base material 3a of the flat side member 3 and to impart relatively low conductivity to the synthetic resin layer 3b, the former method is preferable, and vice versa. In this case, the latter method is preferred. However, in any of the methods, the resistance value is in the order of the upper member 2 <the inner surface side of the flat member 3 (that is, the elastic fiber base material 3a) <the outer surface side of the flat member 3 (that is, the synthetic resin layer 3b). It does not change that the glove 1 which becomes higher by the above is obtained.
[0038]
In the antistatic glove 1 of the present invention, a part or all of the fibers of the elastic fiber base material 2a constituting the upper member 2 are heat-shrinkable fibers. It is preferable that the heat-shrinkable fibers are heat-shrinked after the portions are heat-sealed. When the heat-shrinkable fibers in the instep member 2 are thermally contracted after the infusion of the instep member 2 and the flat member 3, as shown in FIG. Since the joining position is located on the instep side of the tip of the finger 6, when the electronic component is picked, there is a risk that sweat on the hand leaks out from the air-permeable back side member 2 and contaminates the electronic component. This can be prevented, and the effect of the present invention can be further enhanced.
[0039]
When some of the fibers of the stretchable fiber base material 2a constituting the instep-side member 2 are conductive fibers, even if all or some of the conductive fibers are heat-shrinkable fibers, other than the conductive fibers All or some of the fibers may be heat-shrinkable fibers, or all or some of both fibers may be heat-shrinkable fibers. When the stretchable fiber base material 2a is entirely made of conductive fibers, all of the conductive fibers may be heat-shrinkable fibers, but only some of the conductive fibers have heat-shrinkability, and the remaining The conductive fibers may be non-heat-shrinkable.
[0040]
The above-mentioned heat-shrinkable fiber is not limited to a fiber that causes only simple fiber length contraction by heat, and may be a heat-crimpable fiber that causes crimping. Methods for imparting heat shrinkability and heat crimpability to fibers include adjusting the polymer composition of the fiber, spinning conditions, heat setting conditions, twisting yarns, and heat shrinkage as in side-by-side type fibers. And a method of forming sea-island fibers and core-sheath fibers. For example, as the side-by-side type fiber, a polyester fiber obtained by combining polyesters having different molecular weights, chemical structures, crystallinities and the like can be exemplified.
[0041]
Next, specific examples of the antistatic glove 1 of the present invention will be described.
[0042]
Example 1
Circular knitted jersey (28 gauge / 30 inch diameter) consisting of 84 50D / 24F wooly-processed polyester yarns and 6 150D / 60F acrylic yarns (conductive yarns having a resistance value of 0.1 kΩ, which has been conductively processed with polypyrrole). ) Is processed into a hand shape, and two sheets are prepared. One sheet is directly used as the back side member, and the other sheet is formed with a 28 μm thick polyurethane elastomer layer on the surface (formed by a transfer method using release paper). It was a flat member. The upper side member and the flat side member were overlapped, and the peripheral portion was fused by high frequency processing leaving a hand insertion opening to obtain a glove. The friction band voltage of this glove was substantially 0V. In addition, while handling the electronic parts while wearing the gloves, the electronic parts and the like were not contaminated by sweat of the hands.
[0043]
Example 2
Gloves were manufactured in the same manner as in Example 1 except that only the circular knitted sheeting constituting the back member replaced 30% of the wooly-processed polyester fiber with heat-shrinkable polyester fiber (50% shrinkage at 130 ° C.). . In addition, after the periphery of the back side member and the flat side member were fused by high-frequency processing, the heat-shrinkable polyester fiber in the back side member was thermally shrunk. The frictional charge voltage of the obtained glove was substantially 0V. In addition, when the electronic components were handled while wearing the gloves, contamination of the electronic components and the like due to sweat from hands was reliably prevented.
[0044]
Example 3
Using a 50D / 17F polyamide wooly-processed circular knitted Alaska as the instep side member, a 15 μm polyurethane elastomer (Resamine: manufactured by Dainichi Seika Kogyo Co., Ltd.) having excellent heat-sealing properties on a 50D / 17F polyamide circular knitted Alaska. Gloves were manufactured by an ultrasonic welder method using a laminate obtained by laminating with a polyurethane adhesive (Chris Bon: manufactured by Dainippon Ink and Chemicals, Inc.) through a release paper transfer method.
Subsequently, Acidol Green (manufactured by BASF) was dyed according to a conventional method so that the polyurethane and the polyamide had a uniform hue, and then polypyrrole was adjusted to 0.035 μm with a mixed aqueous solution of ferric chloride, paratoluenesulfonic acid, and pyrrole. To give conductivity.
The obtained glove has a back side member surface 103Ω, outside of flat side member 106Ω, inside the flat side member 105Ω (two-ended needle method), which was excellent for antistatic work.
[0045]
Example 4
A collagen powder having an average particle size of 3 μm obtained by pulverizing cowhide is dispersed at a solid content ratio of 100/20 with respect to the same polyurethane elastomer as in Example 3, and the film thickness becomes 15 μm on a smooth release paper. And then coated with a two-component polyurethane adhesive (same as that used in Example 3) so as to have a film thickness of 15 μm, and 50D / 17F Woolly nylon Amanakasa was attached. Gloves were manufactured by high-frequency fusion processing using a sufficiently cured product as a flat member and a wooly nylon Amakasa as a back member. Next, it was immersed in a treatment solution containing ferric chloride, p-toluenesulfonic acid, and pyrrole at 18 ° C. for 240 minutes to obtain an antistatic glove. The obtained one is the outer member 10 of the flat side member.8Ω, inside the flat side member 106Ω, back side member surface 104Ω, which was suitable as antistatic work gloves.
[0046]
【The invention's effect】
As described above, the antistatic glove of the present invention has excellent antistatic properties because at least a part or all of the fibers in the stretchable fiber base material constituting the instep-side member are excellent in antistatic properties. Since the member is made of a non-breathable material, leakage of hand sweat and the like is prevented, and there is an effect that there is no risk of contaminating electronic components and the like by the sweat and the like.
[0047]
The flat member has a higher resistance value on the outer surface than on the inner surface.ByIt is an antistatic glove with no conductivity more than necessary, mainly for removing static electricity, and the upper side member has a lower resistance value than the inner surface side of the flat side memberByThis has the effect of being particularly excellent in antistatic properties.MoreoverConductivity is also given to the outer surface side of the flat side memberBy doing so,Direct contactNever doThere is an effect that static electricity can be removed on the back side at a distance.
[0048]
Moreover, if a part or all of the fibers of the stretchable fiber base material constituting the instep-side member are made heat-shrinkable, and the heat-shrinkable fibers are heat-shrinked after joining the instep-side member and the peripheral portion of the flat-side member. Since the joint portion between the back side member and the flat side member is located on the back side of the fingertip, leakage of sweat and the like at the fingertip is further prevented.
[Brief description of the drawings]
FIG. 1 is a perspective view of an antistatic glove of the present invention.
FIG. 2 is a longitudinal sectional view taken along the line II-II in FIG.
FIG. 3 is a longitudinal sectional view showing another embodiment of the glove of the present invention.
[Explanation of symbols]
1 Antistatic gloves
2 Instep materials
3 Flat member
2a Stretchable fiber base material
3a Stretchable fiber base material
3b Synthetic resin layer
4 Surrounding part
5 Hand insertion slot

Claims (4)

伸縮性繊維基材よりなる手形状の甲側部材と、伸縮性繊維基材に合成樹脂層を積層した非通気性材料よりなる手形状の平側部材とを重ね合わせ、その周囲部分が手挿入口を残して接合一体化されてなり、且つ甲側部材を構成する伸縮性繊維基材の一部又は全部の繊維、平側部材を構成する伸縮性繊維基材の一部又は全部の繊維、及び平側部材を構成する合成樹脂層に、抵抗値が甲側部材<平側部材内面側<平側部材外面側となる導電性が付与されていることを特徴とする制電手袋。A hand-shaped back side member made of a stretchable fiber base material and a hand-shaped flat side member made of a non-breathable material obtained by laminating a synthetic resin layer on the stretchable fiber base material are overlapped, and the surrounding area is manually inserted. it is integrally joined to leave the mouth, and some or all of the fibers of the stretchable fiber base material constituting the Kabutogawa member, part or all of the fibers of the stretchable fiber base material constituting the Tairagawa member, and a synthetic resin layer constituting the Tairagawa member, antistatic gloves resistance back side member <Tairagawa member inner surface <conductivity comprising a Tairagawa member outer surface is characterized by a Turkey have been granted. 平側部材が、伸縮性繊維基材と、天然タンパク質系微粉末を含有する合成樹脂層とからなることを特徴とする請求項1記載の制電手袋。Tairagawa member, stretchable fiber base and, claim 1 Symbol placement of antistatic gloves, characterized in that it consists of a synthetic resin layer containing a natural protein-based powder. 甲側部材を構成する伸縮性繊維基材の繊維の一部又は全部が熱収縮性を有し、該熱収縮性の繊維が、甲側部材と平側部材の周囲部分の接合後に熱収縮されていることを特徴とする請求項1又は2記載の制電手袋。Some or all of the fibers of the stretchable fiber base material constituting the instep member have heat shrinkability, and the heat-shrinkable fibers are heat shrunk after joining the instep member and the peripheral portion of the flat member. The antistatic glove according to claim 1 or 2, wherein 導電性がポリピロールにより付与されている請求項1〜のいずれかに記載の制電手袋。The antistatic glove according to any one of claims 1 to 3 , wherein the conductivity is provided by polypyrrole.
JP12568394A 1993-05-14 1994-05-16 Antistatic gloves Expired - Fee Related JP3576204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12568394A JP3576204B2 (en) 1993-05-14 1994-05-16 Antistatic gloves

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-30615 1993-05-14
JP3061593 1993-05-14
JP12568394A JP3576204B2 (en) 1993-05-14 1994-05-16 Antistatic gloves

Publications (2)

Publication Number Publication Date
JPH0726405A JPH0726405A (en) 1995-01-27
JP3576204B2 true JP3576204B2 (en) 2004-10-13

Family

ID=26369006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12568394A Expired - Fee Related JP3576204B2 (en) 1993-05-14 1994-05-16 Antistatic gloves

Country Status (1)

Country Link
JP (1) JP3576204B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2826712B2 (en) * 1995-03-31 1998-11-18 株式会社山忠 Hand gloves for preventing rough skin
KR100615830B1 (en) * 2006-06-12 2006-08-28 정현배 Electric discharging golves
JP4725576B2 (en) * 2007-12-18 2011-07-13 ショーワグローブ株式会社 Manufacturing method of gloves
JP6516361B2 (en) * 2015-07-02 2019-05-22 有限会社中田久吉商店 Conductive gloves
JP2017186708A (en) * 2016-04-08 2017-10-12 株式会社フクシン Knitted glove and manufacturing method thereof
KR101864148B1 (en) * 2017-04-03 2018-06-04 주식회사 뉴랩 Roll type disposable sanitary gloves

Also Published As

Publication number Publication date
JPH0726405A (en) 1995-01-27

Similar Documents

Publication Publication Date Title
JP4007994B2 (en) Fiber products
EP0296364B1 (en) Elastic, laminated, waterproof, moisture-permeable fabric
US4992335A (en) Composite material and method of making same
EP0511681B1 (en) Gloves and methods of manufacturing the same
US4359783A (en) Wearing apparel and methods for the manufacturing of wearing apparel
JP3576204B2 (en) Antistatic gloves
WO2007034837A1 (en) Sealing tape and fiber product making use of the same
JP2006328610A (en) Conductive fiber and method for producing the same
JP4048229B2 (en) Laminated body for waterproof and moisture-permeable textile products
JP3782268B2 (en) Manufacturing method of work gloves
EP0103039B1 (en) Wearing apparel and methods for the manufacture of wearing apparel
JPS60224804A (en) Glove
JP3910674B2 (en) Antistatic clothing material
JP2003049306A (en) Resinated glove
JPH0124625B2 (en)
JPS58209330A (en) Wiping cloth
JPS6316512Y2 (en)
JPH0250201B2 (en)
JPH0619526Y2 (en) Precision work gloves
JPS626903A (en) Moisture/air permeable work glove
JPH0230408Y2 (en)
JPH0619525Y2 (en) Work gloves
JPS62289603A (en) Glove made of artificial leather
JPH11172209A (en) Sealing tape
JPS62263302A (en) Waterproof glove and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees