JP3575566B2 - Construction method of resin mortar - Google Patents

Construction method of resin mortar Download PDF

Info

Publication number
JP3575566B2
JP3575566B2 JP26994495A JP26994495A JP3575566B2 JP 3575566 B2 JP3575566 B2 JP 3575566B2 JP 26994495 A JP26994495 A JP 26994495A JP 26994495 A JP26994495 A JP 26994495A JP 3575566 B2 JP3575566 B2 JP 3575566B2
Authority
JP
Japan
Prior art keywords
resin mortar
resin
weight
parts
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26994495A
Other languages
Japanese (ja)
Other versions
JPH09110499A (en
Inventor
榮一 田澤
研至 河合
武 中原
武男 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP26994495A priority Critical patent/JP3575566B2/en
Publication of JPH09110499A publication Critical patent/JPH09110499A/en
Application granted granted Critical
Publication of JP3575566B2 publication Critical patent/JP3575566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Road Paving Structures (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レジンモルタルの施工方法に関する。
【0002】
【従来の技術】
レジンモルタルは、結合材としてセメントペーストの代わりに合成樹脂のみを用い、フィラー及び細骨材、並びに必要に応じて添加剤を加えて練り混ぜ硬化させたものである。レジンモルタルは、従来のセメントモルタルに比べて強度発現が早い、ひび割れが生じにくい、及び耐薬品性が優れている等の特徴を有している。そこで、現場施工では早強性、接着性、耐摩耗性、水密性を利用した路面補修、ダムのエプロン、水路の補修工事及び耐食ライニング等の床工事等に使用されている。
これらのレジンモルタルの応用例のうち、路面補修には、結合材としてエポキシ樹脂を使用したものが知られている。ところが、エポキシ樹脂系路面補修材は、アスファルトコンクリートと比べて強度は高いが、伸びが比較的小さいため、補修部分周辺のアスファルトコンクリートを破壊してしまうという問題点があった。この問題点を改良するものとして、常温でラジカル重合により硬化する常温硬化型樹脂を結合材として用いることが提案されている(特開平7−118048号公報)。
【0003】
しかし、この方法によれば、強度及び伸びが改善され、変形追随性に優れたレジンモルタルが得られるものの、低温(−10℃)から高温(60℃)にわたる範囲において圧縮強度や弾性係数線が大きく変化するため、特に冬季においてひび割れを生じ、寒冷下での変形追随性に問題点を生じた。
【0004】
【発明が解決しようとする課題】
請求項1記載の発明は、寒冷下でもひび割れ抵抗性及び高変形追随性に優れ、長期の繰り返し荷重に対して破壊が起こりにくいレジンモルタルの施工方法を提供するものである。
請求項2記載の発明は、上記の作用効果に加え、レジンモルタルの密着性をさらに向上させたレジンモルタルの施工方法を提供するものである。
【0005】
【問題点を解決するための手段】
本発明は、常温硬化型結合材生成用材料100重量部に対して、超微粒子充填剤を30〜110重量部および細骨材を50〜350重量部含有してなるレジンモルタル組成物を施工し、レジンモルタル組成物の中間層に網目間隔が5〜15mmのメッシュ織布を埋設することを特徴とするレジンモルタルの施工方法に関する。
また、本発明は、上記のレジンモルタルの施工方法において、その施工前に常温硬化型結合材生成用材料を下塗りする方法に関する。
【0006】
【発明の実施の形態】
本発明において常温硬化型結合材生成用材料は、ラジカル重合により常温硬化が可能な樹脂材料であり、必須成分として、常温硬化型樹脂と硬化剤および促進剤を含有するものである。
また、これらの成分以外に、必要に応じて、着色剤等の添加剤を添加してもよい。
【0007】
常温硬化型樹脂としては、(メタ)アクリル酸エステル系重合体、ビニルエステル樹脂、不飽和ポリエステル樹脂等の樹脂成分と、(メタ)アクリル酸エステル系モノマーの混合物が使用される。この樹脂成分と(メタ)アクリル酸エステル系モノマーの混合比率は、重量比で10/90〜60/40が好ましい。この混合比が小さすぎると、レジンモルタル硬化物の強靱性が劣り好ましくない。またこの混合比が大きすぎると、レジンモルタルの粘度が高くなり、混合作業性や施工性が悪化するので好ましくない。
(メタ)アクリル酸エステル系モノマーとしては、メタクリル酸メチル、ジシクロペンテニルオキシエチルメタクリレート等のメタクリル酸エステル系モノマーまたは、ジシクロペンテニルオキシエチルアクリレート等のアクリル酸エステル系モノマー等が使用される。これらのうち、ジシクロペンテニルオキシエチルメタクリレートは、粘度が低く、低臭気で、しかも空気乾燥性があり、硬化時に酸素による硬化阻害を受けにくいので、特に好ましい。
【0008】
また、上記の(メタ)アクリル酸エステル系モノマーの一部を、比較的分子量が大きく、軟化剤としての機能を有する化合物、例えばメトキシポリエチレングリコールメタクリレート、メトキシポリエチレングリコールアクリレート、ポリエチレングリコールジメタクリレート、またはポリエチレングリコールジアクリレート等と置き換えてもよい。これらの化合物は、分子量が188〜1068までのものが市販されており、例えばNKエステルM−20G、M−40G、M−90G、M−230G、AM−90G、9G、14G、23G、A−200、A−400、A−600(いずれも新中村化学工業(株)商品名)等がある。
軟化剤としての機能を有する上記化合物の配合量は、(メタ)アクリル酸エステル系モノマー全体に対して、0〜30重量%が好ましい。配合量が30重量%を越えると、レジンモルタル硬化物の熱軟化温度が低下し、機械強度も低下する傾向がある。
上記常温硬化型樹脂の市販品としては、例えば、リビルト300及び320M(日立化成工業(株)商品名)等がある。
【0009】
常温硬化型結合材生成用材料を構成する、必須成分としての硬化剤としては、有機過酸化物が使用される。有機過酸化物としては、常温硬化型樹脂に溶解しやすい、例えば3〜18ヶの炭素原子を有する炭化水素から誘導された過酸化物、ヒドロペルオキシド等が好ましい。具体的には、t−ブチヒドロペルオキシド、クメンヒドロペルオキシド、メチルエチルケトンヒドロペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、過酸化ベンゾイル、t−ブチルペルベンゾエート、2、2−(t−ブチルペルオキシ)−ブタン、ビス−(1−ヒドロキシ−シクロヘキシル)−ペルオキシド、t−ブチルペルオキシイソプロピルカーボネート等が挙げられる。
硬化剤は、常温硬化型樹脂に対して好ましくは0.1〜10重量%、より好ましくは0.5〜5重量%の範囲で用いられる。硬化剤が少なすぎると硬化作用が不十分であり、多すぎると硬化物が軟質になる傾向がある。
【0010】
常温硬化型結合材生成用材料を構成する、必須成分としての促進剤としては、多価金属塩及び/または多価金属錯体が用いられる。一般に高級脂肪酸の金属塩がよく知られており、例えばナフテン酸、オクテン酸等の多価金属塩がある。多価金属としてはカルシウム、銅、ジルコニウム、マンガン、コバルト、鉛、鉄、バナジウム等が用いられ、好ましい多価金属塩の例としては、オクテン酸コバルト、ナフテン酸コバルト等がある。
多価金属錯体の例としては、アセチルアセトンの錯体がよく知られており、コバルトアセチルアセトネート、マンガンアセチルアセトネート等がある。
これらは、常温硬化型樹脂に対して0.01〜5重量%の範囲で用いられることが好ましく、有機過酸化物の作用を促進する働きを示す。
さらに硬化を促進するため、アニリン、N,N−ジメチルアニリン、N,N−ジエチルアニリン、トルイジン、N,N−ジメチル−p−トルイジン、N,N−ジ(ヒドロキシエチル)トルイジン等のアミン類を必要に応じて添加してもよい。その使用量は、常温硬化型樹脂に対して10重量%以下が好ましく、4重量%以下の使用がより好ましい。その使用量が、多すぎると可塑効果が働き、硬化物の強度の低下を招くので好ましくない。
【0011】
着色剤としては、チタン白、カーボンブラック、べんがら、黄鉛、群青、等が単独でまたは組み合わせて用いられる。着色剤の使用量は、任意の色相を出すのに十分な量を添加できるが、多すぎると硬化物の強度の低下を招くので、常温硬化型樹脂に対して10重量%以下の範囲で添加することが好ましい。
【0012】
超微粒子充填剤は、レジンモルタル中の常温硬化型結合材生成材料と細骨材との分離を防ぎ、かつ細骨材を細密充填し、レジンモルタル硬化物の強度を向上させることを目的として配合される。
超微粒子充填剤は、粒径が細かくなるほど細骨材の細密充填ができるので、ブレーン法で測定した比表面積が、10,000cm/g以上のものを使用することが好ましい。このようなものとしてシリカフュームがある。
シリカフュームは真球に近い非晶性シリカ粒子であり、粒径が0.2μm程度のものが代表的である。
超微粒子充填剤の配合量は、常温硬化型結合材生成用材料100重量部に対して30〜110重量部の範囲であり、35〜90重量部の範囲がより好ましい。30重量部未満では細骨材との分散が悪く分離し、110重量部を越えると、常温硬化型結合材生成用材料が十分にぬれないため、混合できない部分が発生する。
好ましいシリカフュームの市販品の一例を挙げると、ユニオン化成社製エファコシリカ(比重2.20、ブレーン比表面積200,000cm/g)及びエルケム社製エルケムマイクロシリカ940U(比重2.20、ブレーン比表面積200,000cm/g)等がある。
【0013】
細骨材は、直径が5mm以下の骨材を主成分とし、岩質はセメントモルタル用の骨材として用いうる岩石であれば特に制限はない。細骨材を用いてレジンモルタルとする場合に、アルカリ骨材反応を考慮して細骨材を選定する必要はない。
細骨材としては、天然砂、砕砂いずれでもよく、例えば風化花崗岩系山砂(絶乾比重2.56、)、珪砂(絶乾比重2.64)等が使用される。
細骨材の配合量は、常温硬化型結合材生成用材料100重量部に対して50〜350重量部の範囲であり、60〜280重量部の範囲がより好ましい。50重量部未満では、樹脂量が多くなりクラックを生じやすく、350重量部を越えるとレジンモルタルの施工性が劣るので好ましくない。
【0014】
レジンモルタル組成物の中間層に埋設するメッシュ織布は、網目間隔が5〜15mmの天然繊維又は合成繊維を網状に織ったものである。材質としてはセルロース系繊維、ビニロン、ナイロン、ポリエステル、カーボン繊維等が使用できるが、レジンモルタルとの密着性や強度の点でカーボン繊維やビニロンが特に好ましい。
メッシュ織布の厚さや使用枚数は、レジンモルタルの施工厚さやひび割れ抵抗性の要求度により適宜変えることができるが、網目間隔が5〜15mmであることが最も重要である。網目間隔が5mm未満の場合、上下のレジンモルタルの付着が不完全となりレジンモルタルとメッシュ織布が一体化しないため、寒冷下でのひび割れ抵抗性が低下するので好ましくない。網目間隔が15mmを越えると、メッシュ織布による補強効果が低下し、寒冷下でのひび割れ抵抗性も低下するので好ましくない。
メッシュ織布の埋設位置は、レジンモルタル組成物を充填する全体の深さに対して、下から1/2〜2/3になるような位置に埋設することが好ましい。
【0015】
本発明に使用するレジンモルタル組成物は、例えば、次のようにして調製することが好ましい。すなわち、常温硬化型樹脂に所定量の促進剤を入れ攪拌混合した後、所定量の硬化剤を混合する。別に超微粒子充填剤と細骨材を計量混合しておき、上記の混合物に投入して、ハンドミキサー等を用いて均一になるまで練り混ぜる。
【0016】
本発明によるレジンモルタルの施工方法は、道路舗装、マンホール等の金属周辺部の保護、アスファルトコンクリート舗装、セメントコンクリート舗装等の補修等に好適であり、例えばアスファルト剥離部の充填、マンホール周辺の段差修正、ひび割れ補修等に適用される。
【0017】
道路舗装の補修(特に、アスファルトコンクリート舗装の剥離部の充填)に本発明を適用する場合、次のような手順によって施工されることが好ましい。
(1)路面等の施工箇所を乾燥させる。路面温度が低い場合には樹脂の硬化が遅くなるので、ガスバーナー等で路面を加熱しておくことが好ましい。乾燥手段としては、トーチランプ、ガスバーナー等が使用できる。
(2)路面の粉塵を除去する。手段としては、バキューム、ほうき等が使用できる。
(3)施工箇所とレジンモルタルとの密着性を向上させるため、予め下塗り剤を塗布することが好ましい。下塗り剤として、常温硬化型結合材生成用材料が好ましい。下塗り剤はゴム製のヘラを使用して塗布する。
(4)レジンモルタル組成物の一部(全体の深さに対して、下から1/2〜2/3が充填される程度の量が好ましい。)を打設し、その上にメッシュ織布を載置し、さらにその上からレジンモルタル組成物の残部を打設する。メッシュ織布は、レジンモルタルの中に埋設する。
(5)表面を均一に仕上げる。コテ、ヘラ等の用具を用いることができる。
(6)路面の滑り止めが必要な場合は、レジンモルタルが硬化する直前に、仕上がり面に細骨材を散布する。
(7)硬化は、常温下に1〜2時間以内で完了する。
【0018】
【実施例】
本発明の実施例を説明する。
【0019】
1.使用材料
(1)常温硬化型結合材生成用材料の調製
常温硬化型樹脂として、エピコート828(油化シェルエポキシ(株)製エポキシ樹脂の商品名)とメタクリル酸から合成したビニルエステル樹脂17重量%、ジシクロペンテニルオキシエチルメタクリレート63重量%と、メトキシポリエチレングリコール#400メタクリレート20重量%の混合物(比重1.08)を使用した。
常温硬化型樹脂100重量部に対して、硬化剤としてキュメンハイドロパーオキサイド4重量部および促進剤としてナフテン酸コバルト2重量部を配合して常温硬化型結合材生成用材料を調製した。ただし、硬化剤と促進剤を直接混合すると激しく反応して有毒なガスを発生するので、あらかじめ常温硬化型樹脂と促進剤を混合後、最後に硬化剤を混合した。
【0020】
(2)シリカフューム
エファコシリカ(ユニオン化成(株)商品名、比重2.20、ブレーン比表面積200,000cm/g)を使用した。
(3)細骨材
3・4・5・6号珪砂を等量混合したもの(比重2.64、含水率0%)を使用した。
(4)メッシュ織布
網目の間隔が10mmのカーボン繊維製メッシュ及びビニロン製メッシュを使用した。カーボン繊維製メッシュの引張強度は、372kgf/mm(縦)及び355kgf/mm(横)であり、弾性係数は22.4tonf/mm(縦)及び23.8tonf/mm(横)であった。また、ビニロン製メッシュの引張強度は、22.7kgf/本(縦)及び21.5kgf/本(斜)であった。
【0021】
2.レジンモルタル組成物の調製
エファコシリカ67重量部と珪砂67重量部をあらかじめ混合しておき、この混合物134重量部を上記常温硬化型結合材生成用材料100重量部に投入し、ハンドミキサーで2分間練り混ぜて、レジンモルタル組成物を得た。調製したレジンモルタル組成物の比重は、約1.55であった。
【0022】
3.施工
広島大学西条キャンパスの構内の車道において、下水マンホール周辺の段差修正とひび割れ補修、及びアスファルト剥離部の充填を目的として、レジンモルタルを施工した。施工場所の交通量は、約20〜30台/時(昼間)であり、通行車両は主に乗用車とバイクであった。施工場所の冬季寒冷期における状態変化を観察するため、10月24日に施工した。
【0023】
実施例1
施工場所は、マンホールの周辺部のアスファルト舗装部分が約半周にわたってひび割れ、沈下及び剥離していた。気温は18℃、路面温度は13℃であった。この部分の段差修正を行うため、路面の粉塵を除去後、下塗りとして常温硬化型結合材生成用材料を750g塗布した。次にレジンモルタル組成物2.5リットルを打設後、カーボン繊維製メッシュを配置し、さらにその上からレジンモルタル組成物2.5リットルを打設してカーボン繊維製メッシュを埋設した。ゴム製のヘラで表面を均一にならした後、滑り抵抗性を向上させるため、硬化直前に珪砂2kgを表面に散布した。レジンモルタルは、施工後1時間以内に硬化した。施工後、寒冷期で6ヶ月経過しても、ひび割れ等の変化は認められなかった。
【0024】
実施例2
施工場所は、アスファルト舗装部分が長さ約170cm、幅約30cm、深さ約2〜3cmにわたって剥離している箇所であった。気温は18℃、路面温度は29℃であった。このアスファルト欠損部の段差修正を行うため、路面の粉塵を除去後、下塗りとして常温硬化型結合材生成用材料を750g塗布した。次にレジンモルタル組成物4.5リットルを打設後、カーボン繊維製メッシュを配置し、さらにその上からレジンモルタル組成物4.5リットルを打設してカーボン繊維製メッシュを埋設した。ゴム製ヘラで表面を均一にならした後、硬化直前に珪砂3kgを表面に散布した。レジンモルタルは、施工後1時間以内に硬化した。
施工後、寒冷期で6ヶ月経過しても、ひび割れ等の変化は認められなかった。
【0025】
実施例3
施工場所は、アスファルト舗装部分が長さ約90cm、幅約30cm、深さ約1cmにわたって剥離している箇所であった。気温は22℃、路面温度は32℃であった。この部分の段差修正を行うため、路面の粉塵を除去後、下塗りとして常温硬化型結合材生成用材料を750g塗布した。次にレジンモルタル組成物4リットルを打設後、ビニロン製メッシュを剥離部全面に配置し、さらにその上からレジンモルタル組成物3.5リットルを打設してビニロン製メッシュを埋設した。ゴム製のヘラで表面を均一にならした後、硬化直前に珪砂2kgを表面に散布した。レジンモルタルは、施工後1時間以内に硬化した。
施工後、寒冷期で6ヶ月経過しても、ひび割れ等の変化は認められなかった。
【0026】
比較例1
施工場所は、アスファルト舗装部分が広範囲にわたってひび割れている箇所であった。気温は19.5℃で、路面温度は30℃であった。この部分のひび割れ補修と段差修正を行うため、路面の粉塵を除去後、下塗りとして常温硬化型結合材生成用材料を500g塗布した。次にレジンモルタル組成物5リットルを打設した。ゴム製のヘラで表面を均一にならした後、硬化直前に珪砂2kgを表面に散布した。レジンモルタルは、施工後1時間以内に硬化した。
施工後2週間経過後、硬化収縮の影響と思われるひび割れが発生した。このひび割れは材齢とともに進展し、施工後3ヶ月経過時には広範囲に及んでいた。
【0027】
【発明の効果】
請求項1におけるレジンモルタルの施工方法によれば、低温から高温までの温度変化に対する変形追随性があり、冬季においてもひび割れを発生しにくい。また、メッシュ織布を埋設することにより、圧縮、曲げ、引張強度が改善され、長期の繰り返し荷重に対して破壊が起こりにくい。
請求項2におけるレジンモルタルの施工方法によれば、上記の効果に加え、レジンモルタルの密着性をさらに向上させることができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for applying resin mortar.
[0002]
[Prior art]
The resin mortar is obtained by using only a synthetic resin instead of a cement paste as a binder, adding fillers and fine aggregates, and if necessary, adding additives, kneading and curing. Resin mortar has features such as faster strength development, less susceptibility to cracking, and excellent chemical resistance as compared to conventional cement mortar. Therefore, it is used for on-site construction such as road surface repair utilizing early strength, adhesion, abrasion resistance, and water tightness, dam apron, waterway repair, and floor construction such as corrosion resistant lining.
Among the application examples of these resin mortars, those using an epoxy resin as a binder are known for road surface repair. However, although the epoxy resin-based road surface repair material has a higher strength than asphalt concrete, it has a relatively small elongation, and thus has a problem that the asphalt concrete around the repaired portion is broken. As a solution to this problem, it has been proposed to use a room temperature curable resin which is cured by radical polymerization at room temperature as a binder (Japanese Patent Application Laid-Open No. Hei 7-118048).
[0003]
However, according to this method, although the strength and elongation are improved and a resin mortar excellent in deformation followability is obtained, the compression strength and the elastic modulus line in a range from low temperature (−10 ° C.) to high temperature (60 ° C.) are obtained. Due to the large change, cracks were generated particularly in winter, which caused a problem in the ability to follow deformation under cold conditions.
[0004]
[Problems to be solved by the invention]
The invention described in claim 1 is to provide a method for applying a resin mortar which is excellent in crack resistance and high deformation followability even under cold conditions and hardly breaks under a long-term repeated load.
The invention according to claim 2 provides a resin mortar application method in which the adhesion of the resin mortar is further improved in addition to the above-mentioned functions and effects.
[0005]
[Means for solving the problem]
In the present invention, a resin mortar composition containing 30 to 110 parts by weight of an ultrafine particle filler and 50 to 350 parts by weight of fine aggregate is applied to 100 parts by weight of a cold-curable binder producing material. And a method for laying a resin mortar, wherein a mesh woven fabric having a mesh interval of 5 to 15 mm is embedded in an intermediate layer of the resin mortar composition.
In addition, the present invention relates to a method for applying a resin for forming a room-temperature-curable binder before applying the resin mortar in the above-described method for applying a resin mortar.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the room-temperature-curable binder-forming material is a resin material that can be room-temperature cured by radical polymerization, and contains a room-temperature-curable resin, a curing agent, and an accelerator as essential components.
In addition to these components, an additive such as a coloring agent may be added as necessary.
[0007]
As the cold-setting resin, a mixture of a resin component such as a (meth) acrylate polymer, a vinyl ester resin, an unsaturated polyester resin, and a (meth) acrylate monomer is used. The mixing ratio of the resin component and the (meth) acrylate monomer is preferably from 10/90 to 60/40 by weight. If the mixing ratio is too small, the toughness of the cured resin mortar is poor, which is not preferable. On the other hand, if the mixing ratio is too large, the viscosity of the resin mortar increases, and the mixing workability and workability deteriorate, which is not preferable.
As the (meth) acrylate monomer, a methacrylate monomer such as methyl methacrylate or dicyclopentenyloxyethyl methacrylate, or an acrylate monomer such as dicyclopentenyloxyethyl acrylate is used. Of these, dicyclopentenyloxyethyl methacrylate is particularly preferred because it has a low viscosity, has a low odor, has air drying properties, and is hardly inhibited by oxygen during curing.
[0008]
In addition, a part of the above (meth) acrylic ester-based monomer is a compound having a relatively large molecular weight and functioning as a softener, for example, methoxypolyethylene glycol methacrylate, methoxypolyethylene glycol acrylate, polyethylene glycol dimethacrylate, or polyethylene. It may be replaced with glycol diacrylate or the like. These compounds have a molecular weight of 188 to 1068 and are commercially available. For example, NK esters M-20G, M-40G, M-90G, M-230G, AM-90G, 9G, 14G, 23G, A- 200, A-400, and A-600 (all are trade names of Shin-Nakamura Chemical Co., Ltd.).
The compounding amount of the compound having a function as a softening agent is preferably from 0 to 30% by weight based on the whole of the (meth) acrylate-based monomer. If the amount exceeds 30% by weight, the heat softening temperature of the cured resin mortar decreases, and the mechanical strength tends to decrease.
Commercial products of the above-mentioned cold-setting resin include, for example, Rebuilt 300 and 320M (trade names of Hitachi Chemical Co., Ltd.).
[0009]
An organic peroxide is used as a curing agent as an essential component, which constitutes the material for forming a room temperature-curable binder. As the organic peroxide, for example, a peroxide or a hydroperoxide derived from a hydrocarbon having 3 to 18 carbon atoms, which is easily dissolved in a room temperature curable resin, is preferable. Specifically, t-butyhydroperoxide, cumene hydroperoxide, methyl ethyl ketone hydroperoxide, diisopropylbenzene hydroperoxide, benzoyl peroxide, t-butyl perbenzoate, 2,2- (t-butylperoxy) -butane, bis- ( 1-hydroxy-cyclohexyl) -peroxide, t-butylperoxyisopropyl carbonate and the like.
The curing agent is used in an amount of preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight, based on the temperature-curable resin. If the amount of the curing agent is too small, the curing action is insufficient, and if it is too large, the cured product tends to be soft.
[0010]
A polyvalent metal salt and / or a polyvalent metal complex is used as an accelerator as an essential component constituting the material for forming a cold-setting binder. Generally, metal salts of higher fatty acids are well known, for example, polyvalent metal salts such as naphthenic acid and octenoic acid. As the polyvalent metal, calcium, copper, zirconium, manganese, cobalt, lead, iron, vanadium and the like are used. Preferred examples of the polyvalent metal salt include cobalt octenoate and cobalt naphthenate.
As an example of the polyvalent metal complex, a complex of acetylacetone is well known, and examples thereof include cobalt acetylacetonate and manganese acetylacetonate.
These are preferably used in the range of 0.01 to 5% by weight based on the temperature-curable resin, and exhibit a function of promoting the action of the organic peroxide.
To further promote curing, amines such as aniline, N, N-dimethylaniline, N, N-diethylaniline, toluidine, N, N-dimethyl-p-toluidine, N, N-di (hydroxyethyl) toluidine and the like are used. You may add as needed. The amount used is preferably 10% by weight or less, more preferably 4% by weight or less, based on the temperature-curable resin. If the amount is too large, a plasticizing effect is exerted and the strength of the cured product is reduced, which is not preferable.
[0011]
As the colorant, titanium white, carbon black, red iron, graphite, ultramarine, or the like is used alone or in combination. The colorant can be used in an amount sufficient to produce an optional hue, but if it is too large, the strength of the cured product is reduced. Is preferred.
[0012]
Ultra-fine particle filler is compounded for the purpose of preventing the separation between the cold-curable binder-forming material and fine aggregate in the resin mortar, finely filling the fine aggregate, and improving the strength of the cured resin mortar. Is done.
As the ultrafine particle filler has a smaller particle size, fine aggregate can be more densely packed. Therefore, it is preferable to use a filler having a specific surface area of 10,000 cm 2 / g or more measured by the Blaine method. One such material is silica fume.
Silica fume is amorphous silica particles having a shape close to a true sphere, and those having a particle size of about 0.2 μm are typical.
The compounding amount of the ultrafine particle filler is in the range of 30 to 110 parts by weight, more preferably in the range of 35 to 90 parts by weight, based on 100 parts by weight of the cold-curable binder-forming material. If the amount is less than 30 parts by weight, the dispersion from the fine aggregate is poor, and if it exceeds 110 parts by weight, the cold-curable binder-forming material is not sufficiently wetted, so that a portion that cannot be mixed occurs.
Examples of preferred commercial products of silica fume include Union Chemical Co., Ltd. ephacosilica (specific gravity: 2.20, Blaine specific surface area: 200,000 cm 2 / g) and Elchem micro silica 940U (specific gravity: 2.20, Blaine specific surface area: 200). 2,000 cm 2 / g).
[0013]
The fine aggregate is mainly composed of an aggregate having a diameter of 5 mm or less, and the rock quality is not particularly limited as long as it can be used as an aggregate for cement mortar. When a resin mortar is formed using fine aggregate, it is not necessary to select a fine aggregate in consideration of an alkali aggregate reaction.
As the fine aggregate, either natural sand or crushed sand may be used. For example, weathered granite mountain sand (absolute dry specific gravity 2.56), silica sand (absolute dry specific gravity 2.64) and the like are used.
The compounding amount of the fine aggregate is in the range of 50 to 350 parts by weight, more preferably in the range of 60 to 280 parts by weight, based on 100 parts by weight of the cold-curable binder producing material. If the amount is less than 50 parts by weight, the amount of resin increases and cracks easily occur. If the amount exceeds 350 parts by weight, the workability of the resin mortar is inferior.
[0014]
The mesh woven fabric embedded in the intermediate layer of the resin mortar composition is formed by weaving natural fibers or synthetic fibers having a mesh interval of 5 to 15 mm in a net-like manner. As the material, cellulosic fiber, vinylon, nylon, polyester, carbon fiber and the like can be used, and carbon fiber and vinylon are particularly preferable in terms of adhesion to resin mortar and strength.
The thickness of the mesh woven fabric and the number of mesh woven fabrics can be appropriately changed according to the required thickness of the resin mortar and the required degree of crack resistance, but it is most important that the mesh interval is 5 to 15 mm. If the mesh interval is less than 5 mm, the adhesion of the resin mortar on the upper and lower sides is incomplete, and the resin mortar and the mesh woven fabric are not integrated, so that the resistance to cracking under cold conditions is not preferable. If the mesh spacing exceeds 15 mm, the reinforcing effect of the mesh woven fabric is reduced, and the crack resistance under cold conditions is also undesirably reduced.
The embedment position of the mesh woven fabric is preferably embedded at a position that is に な る to / from the bottom with respect to the entire depth of filling the resin mortar composition.
[0015]
The resin mortar composition used in the present invention is preferably prepared, for example, as follows. That is, a predetermined amount of an accelerator is added to a room temperature-curable resin, and the mixture is stirred and mixed, and then a predetermined amount of a curing agent is mixed. Separately, the ultrafine particle filler and the fine aggregate are weighed and mixed, then put into the above mixture, and kneaded using a hand mixer or the like until uniform.
[0016]
The method for applying resin mortar according to the present invention is suitable for road pavement, protection of metal peripheral parts such as manholes, asphalt concrete pavement, repair of cement concrete pavement, etc., for example, filling of asphalt exfoliated parts, correction of steps around manholes. It is applied to crack repair.
[0017]
When the present invention is applied to repair of road pavement (particularly, filling of a stripped portion of asphalt concrete pavement), it is preferable to perform the following procedure.
(1) Dry construction sites such as road surfaces. When the road surface temperature is low, the curing of the resin becomes slow, so it is preferable to heat the road surface with a gas burner or the like. As a drying means, a torch lamp, a gas burner or the like can be used.
(2) Remove dust on the road surface. As a means, a vacuum, a broom or the like can be used.
(3) It is preferable to apply an undercoating agent in advance in order to improve the adhesion between the work site and the resin mortar. As the undercoating agent, a cold-curable binder-forming material is preferable. The primer is applied using a rubber spatula.
(4) A part of the resin mortar composition (preferably in an amount of 1/2 to 2/3 filled from the bottom with respect to the entire depth) is cast, and a mesh woven fabric is placed thereon. Is placed, and the rest of the resin mortar composition is poured thereon. The mesh fabric is embedded in the resin mortar.
(5) Finish the surface uniformly. Tools such as a trowel and a spatula can be used.
(6) If it is necessary to prevent the road surface from slipping, fine aggregate is sprayed on the finished surface immediately before the resin mortar hardens.
(7) Curing is completed at room temperature within 1-2 hours.
[0018]
【Example】
An embodiment of the present invention will be described.
[0019]
1. Materials used (1) Preparation of cold-curable binder-forming material As a cold-curable resin, 17% by weight of a vinyl ester resin synthesized from Epicoat 828 (trade name of epoxy resin manufactured by Yuka Shell Epoxy Co., Ltd.) and methacrylic acid A mixture (specific gravity: 1.08) of 63% by weight of dicyclopentenyloxyethyl methacrylate and 20% by weight of methoxypolyethylene glycol # 400 methacrylate was used.
A cold-curable binder-forming material was prepared by mixing 4 parts by weight of cumene hydroperoxide as a curing agent and 2 parts by weight of cobalt naphthenate as an accelerator with respect to 100 parts by weight of a cold-setting resin. However, if the curing agent and the accelerator are directly mixed, they react violently to generate toxic gas. Therefore, after the room temperature-curable resin and the accelerator are mixed in advance, the curing agent is finally mixed.
[0020]
(2) Silica fume ephaco silica (trade name, Union Kasei Co., Ltd., specific gravity 2.20, specific surface area of brane: 200,000 cm 2 / g) was used.
(3) Fine aggregate No. 3.4.5.6 mixed with an equal amount of silica sand (specific gravity 2.64, water content 0%) was used.
(4) A mesh made of carbon fiber and a mesh made of vinylon having a mesh woven mesh spacing of 10 mm were used. The tensile strength of the carbon fiber mesh is 372 kgf / mm 2 (vertical) and 355 kgf / mm 2 (horizontal), and the elastic modulus is 22.4 tonf / mm 2 (vertical) and 23.8 tonf / mm 2 (horizontal). there were. The tensile strength of the mesh made of vinylon was 22.7 kgf / line (vertical) and 21.5 kgf / line (oblique).
[0021]
2. Preparation of resin mortar composition 67 parts by weight of efacosilica and 67 parts by weight of silica sand are mixed in advance, and 134 parts by weight of this mixture are put into 100 parts by weight of the above-mentioned cold-curable binder-forming material, and kneaded with a hand mixer for 2 minutes. By mixing, a resin mortar composition was obtained. The specific gravity of the prepared resin mortar composition was about 1.55.
[0022]
3. Construction Resin mortar was constructed on the road on the premises of the Hiroshima University Saijo Campus for the purpose of correcting steps and repairing cracks around the sewage manhole and filling the asphalt peeling part. The traffic volume at the construction site was about 20 to 30 vehicles / hour (daytime), and the passing vehicles were mainly passenger cars and motorcycles. The construction was carried out on October 24 to observe the state change of the construction place during the cold winter season.
[0023]
Example 1
At the construction site, the asphalt pavement around the manhole was cracked, settled, and separated over about half a circumference. The air temperature was 18 ° C and the road surface temperature was 13 ° C. In order to correct the level difference in this portion, 750 g of a cold-curable binder-forming material was applied as an undercoat after removing dust on the road surface. Next, after 2.5 liters of the resin mortar composition was cast, a carbon fiber mesh was arranged, and 2.5 liters of the resin mortar composition was further cast thereon to bury the carbon fiber mesh. After the surface was made uniform with a rubber spatula, 2 kg of silica sand was sprayed on the surface immediately before curing to improve the slip resistance. The resin mortar hardened within one hour after application. Even after 6 months in the cold season after the construction, no changes such as cracks were observed.
[0024]
Example 2
The construction site was a place where the asphalt pavement was peeled over a length of about 170 cm, a width of about 30 cm, and a depth of about 2 to 3 cm. The air temperature was 18 ° C and the road surface temperature was 29 ° C. In order to correct the level difference in the asphalt-defected portion, 750 g of a cold-curable binder-forming material was applied as an undercoat after removing dust on the road surface. Next, after 4.5 liters of the resin mortar composition was cast, a carbon fiber mesh was arranged, and 4.5 liters of the resin mortar composition was further cast thereon to bury the carbon fiber mesh. After the surface was made uniform with a rubber spatula, 3 kg of silica sand was sprayed on the surface immediately before curing. The resin mortar hardened within one hour after application.
Even after 6 months in the cold season after the construction, no changes such as cracks were observed.
[0025]
Example 3
The construction site was a place where the asphalt pavement was peeled over a length of about 90 cm, a width of about 30 cm, and a depth of about 1 cm. The air temperature was 22 ° C and the road surface temperature was 32 ° C. In order to correct the level difference in this portion, 750 g of a cold-curable binder-forming material was applied as an undercoat after removing dust on the road surface. Next, after 4 liters of the resin mortar composition was cast, a vinylon mesh was placed on the entire surface of the peeled portion, and 3.5 liters of the resin mortar composition was further cast thereon to bury the vinylon mesh. After the surface was made uniform with a rubber spatula, 2 kg of silica sand was sprayed on the surface immediately before curing. The resin mortar hardened within one hour after application.
Even after 6 months in the cold season after the construction, no changes such as cracks were observed.
[0026]
Comparative Example 1
The construction site was where the asphalt pavement was cracked extensively. The air temperature was 19.5 ° C and the road surface temperature was 30 ° C. In order to repair the cracks and correct the level difference in this portion, after removing dust on the road surface, 500 g of a cold-curable binder-forming material was applied as an undercoat. Next, 5 liters of the resin mortar composition was poured. After the surface was made uniform with a rubber spatula, 2 kg of silica sand was sprayed on the surface immediately before curing. The resin mortar hardened within one hour after application.
Two weeks after the application, cracks occurred, which were considered to be due to curing shrinkage. The cracks evolved with the age of the material and were widespread three months after the construction.
[0027]
【The invention's effect】
According to the resin mortar application method of the first aspect, the resin mortar has deformation followability to a temperature change from a low temperature to a high temperature, and cracks are hardly generated even in winter. Further, by embedding the mesh woven fabric, the compression, bending and tensile strengths are improved, and breakage hardly occurs with a long-term repeated load.
According to the resin mortar application method of the second aspect, in addition to the above effects, the adhesion of the resin mortar can be further improved.

Claims (2)

常温硬化型結合材生成用材料100重量部に対して、超微粒子充填剤を30〜110重量部および細骨材を50〜350重量部含有してなるレジンモルタル組成物を施工し、レジンモルタル組成物の中間層に網目間隔が5〜15mmのメッシュ織布を埋設することを特徴とするレジンモルタルの施工方法。A resin mortar composition containing 30 to 110 parts by weight of an ultrafine particle filler and 50 to 350 parts by weight of a fine aggregate with respect to 100 parts by weight of a cold-curable binder producing material is applied, and a resin mortar composition is prepared. A method for constructing a resin mortar, wherein a mesh woven fabric having a mesh interval of 5 to 15 mm is buried in an intermediate layer of a product. レジンモルタル組成物の施工前に常温硬化型結合材生成用材料を下塗りする請求項1記載のレジンモルタルの施工方法。The method for applying a resin mortar according to claim 1, wherein the material for forming a room-temperature-curable binder is primed before applying the resin mortar composition.
JP26994495A 1995-10-18 1995-10-18 Construction method of resin mortar Expired - Fee Related JP3575566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26994495A JP3575566B2 (en) 1995-10-18 1995-10-18 Construction method of resin mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26994495A JP3575566B2 (en) 1995-10-18 1995-10-18 Construction method of resin mortar

Publications (2)

Publication Number Publication Date
JPH09110499A JPH09110499A (en) 1997-04-28
JP3575566B2 true JP3575566B2 (en) 2004-10-13

Family

ID=17479388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26994495A Expired - Fee Related JP3575566B2 (en) 1995-10-18 1995-10-18 Construction method of resin mortar

Country Status (1)

Country Link
JP (1) JP3575566B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107915425B (en) * 2017-11-23 2020-05-22 江苏中路交通科学技术有限公司 Compression-resistant modified rubber aggregate macadam paving material and preparation method thereof

Also Published As

Publication number Publication date
JPH09110499A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JP6635612B2 (en) How to repair drains or water pipes
US4299761A (en) Polymer concrete compositions, methods of application thereof, and polymerized products thereof
JP5234789B2 (en) Polymer cement mortar for asphalt pavement of concrete floor slab, and concrete floor slab asphalt pavement structure
CN106634090B (en) Antislip colour thin layer pavement material and its preparation process based on methacrylic resin MMA
JP2003327835A (en) Road-repairing material
JP4813647B2 (en) Low odor resin composition, coating material containing the same, and coating method using the same
CN106495606A (en) A kind of preparation method of polymer-modified cement mending mortar
JP3575566B2 (en) Construction method of resin mortar
JP2008196145A (en) Material and method for repairing surface of pavement
JP3644512B2 (en) Resin mortar construction method
JP3646817B2 (en) Resin mortar composition
KR102408424B1 (en) Concrete Repair Material For Structural Section Repair
JPH0813407A (en) Water permeable pavement structural body and construction method thereof
JPH04255709A (en) Synthetic resin composition for polymer concrete
JPH07292616A (en) Thin paving layer and construction thereof
JP2861054B2 (en) Resin composition, paint, surfacing material and surfacing structure
WO2011130731A2 (en) Soil solidifier and related methods
WO2003091181A1 (en) Mortar composition
JP2021025557A (en) Repair method of drainpipe or water pipe
JPH06329918A (en) Pavement composition
JP2002138220A (en) Lining composition for civil engineering or construction, and structure made by using the same
JPH01256666A (en) Method for repairing concrete structure
JP4892479B2 (en) Paving binder emulsion and construction method of pavement using the same
JP2901693B2 (en) Underwater curing (meth) acrylic resin mortar composition and underwater curing (meth) acrylic resin concrete composition
JP2003105707A (en) Resin composition for road and its constructing method and pavement structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees