JP3574866B2 - Insecticidal composition - Google Patents

Insecticidal composition Download PDF

Info

Publication number
JP3574866B2
JP3574866B2 JP2001331821A JP2001331821A JP3574866B2 JP 3574866 B2 JP3574866 B2 JP 3574866B2 JP 2001331821 A JP2001331821 A JP 2001331821A JP 2001331821 A JP2001331821 A JP 2001331821A JP 3574866 B2 JP3574866 B2 JP 3574866B2
Authority
JP
Japan
Prior art keywords
bean
insecticidal
weevil
beetle
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001331821A
Other languages
Japanese (ja)
Other versions
JP2003137709A (en
Inventor
晃一 柏葉
憲彦 友岡
ダンカン・ヴォーン
秋人 加賀
裕嗣 小野
眞由美 亀山
充 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Agrobiological Sciences
Japan Science and Technology Agency
Original Assignee
National Institute of Agrobiological Sciences
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Agrobiological Sciences, Japan Science and Technology Agency filed Critical National Institute of Agrobiological Sciences
Priority to JP2001331821A priority Critical patent/JP3574866B2/en
Publication of JP2003137709A publication Critical patent/JP2003137709A/en
Application granted granted Critical
Publication of JP3574866B2 publication Critical patent/JP3574866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は殺虫性組成物に関し、詳しくはマメゾウムシ類などの貯穀害虫による食害からアズキ、ササゲ、リョクトウといった食用マメ種子を有効に防除することのできる殺虫性組成物に関する。
【0002】
【従来の技術】
作物を害虫から防除し、収量の安定と収穫物の品質を確保する方法は古来より行われてきた。
このような害虫防除には、20世紀初頭からは、有機塩素系、有機リン系などの合成殺虫剤が使用されてきており、農業生産に多大な貢献を果たしてきた。
【0003】
しかし、近年になると環境保護や安全性への意識が高まり、このような合成殺虫剤の使用が制限されるようになってきている。
また、合成殺虫剤の使用量の増加と共に、薬剤に対して抵抗性を獲得した害虫の出現が報告され、合成殺虫剤の使用による従来の防除に代わる新たな技術開発が求められている。
【0004】
一般に天然物由来の殺虫剤は、環境への負荷が少ないと考えられている。
特に植物由来の天然化合物は多種にわたり、ピレスロイドなどをはじめする化合物が利用されてきた。フラボノイド配糖体は、植物の生産する化合物のひとつである。フラボノイドの機能については不明な点も多いが、抗菌活性、酵素阻害、昆虫による食害の防衛、ホルモン作用などに寄与すると考えられている。
殺虫性を示すフラボノイドとしては、これまでにオオタバコガの幼虫に殺虫性を示す6−C−β−D−グルコシル−ルテオリンが報告されているが、マメゾウムシ類などの貯穀害虫に対する殺虫性については全く記載がない。
【0005】
マメゾウムシ類は、熱帯地域から亜熱帯地域にかけて生息する小さな甲虫である。マメゾウムシ類としては、アズキゾウムシ、ヨツモンマメゾウムシなどが知られ、いずれもアズキ、ツルアズキ、ササゲ、リョクトウ種子に甚大な食害をもたらす。そのうちヨツモンマメゾウムシは、アフリカ及び東南アジアを原産とするが、今後、温暖化と共に日本に侵入し定着する恐れのある貯穀害虫である。
【0006】
マメゾウムシ類の成虫は、マメの栽培圃場に飛来し、若莢に産卵する。孵化した幼虫は種子に侵入し、食害し、収穫後に羽化する。羽化した成虫は、貯蔵中のマメに産卵し、世代を繰り返す。
このようなマメゾウムシ類は、生育可能な環境条件さえ整えば加速度的に増殖し、食害による被害が深刻であるため、これまでマメの栽培圃場における農薬散布、収穫後における薬剤処理を中心とした防除方法が展開されてきた。
【0007】
しかし、成虫の移動能力が高いこと、マメ類種子に侵入した幼虫の駆除は難しいこと、食餌となる植物が野生植物にもあること、などから、マメ類種子に侵入したマメゾウムシ類の幼虫の駆除は難しく、充分な防除効果を上げていないのが現状である。
従って、新たな防除方法の確立が世界各国で切望されている。
【0008】
【発明が解決しようとする課題】
本発明は、上記従来の問題点を解消し、登熟中及び貯蔵中の食用マメ種子を食害するマメゾウムシ類を有効に防除することのできる、虫害抵抗性を有する、天然(植物)由来の殺虫性組成物を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
虫害抵抗性の開発には、害虫に対して高い殺虫性を有する化学物質の利用が有効である。
本発明者らは、上記従来の問題点を解消するため鋭意検討を重ねた結果、農業生物資源研究所が収集した500系統のマメ科植物種子の中から、日本在来の食用ツルアズキ( Vigna umbellata )が、アズキゾウムシ、ヨツモンマメゾウムシなどのマメゾウムシ類に対して高い殺虫性(虫害抵抗性)を有することを見出した。
【0010】
このためツルアズキ種子には、マメゾウムシ類に対して殺虫性(虫害抵抗性)を示す有効成分が含まれていると考えられた。しかも、ツルアズキ種子は食用であるため、その種子中に含まれる有効成分も安全性が高いと考えられた。
【0011】
本発明者らは、このようなツルアズキが示すマメゾウムシ類抵抗性の要因を明らかにするために、様々な抽出方法と抽出液とを検討し、ツルアズキ種子粉から殺虫活性物質の分離を進めた結果、8−C−β−D−グルコシル−(S)−ナリンゲニンにアズキゾウムシに対する高い殺虫活性を認めた。また、8−C−β−D−グルコシル−(S)−ナリンゲニンとは別に6−C−β−D−グルコシル−(S)−ナリンゲニンの既知化合物にアズキゾウムシ、ヨツモンマメゾウムシに対する高い殺虫活性を認め、これらの知見に基いて本発明を完成するに至った。
なお、これら2つの物質はいずれも既知の化合物ではあるが、マメゾウムシ類に対して殺虫性(虫害抵抗性)があることは、これまで全く知られていない。
【0012】
すなわち、請求項1に係る本発明は、8−C−β−D−グルコシル−(S)−ナリンゲニン及び/又は 6 C −β− D −グルコシル−(S)−ナリンゲニンを有効成分として含有する殺虫性組成物を提供するものである。
【0013】
次に、請求項2に係る本発明は、殺虫性組成物が、貯穀害虫用殺虫性組成物である請求項1記載の殺虫性組成物を提供するものである。
【0014】
また、請求項3に係る本発明は、貯穀害虫が、マメゾウムシ類である請求項2記載の殺虫性組成物を提供するものである。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を示す。
請求項1に係る本発明は、殺虫性組成物に関し、8−C−β−D−グルコシル−(S)−ナリンゲニン及び/又は 6 C −β− D −グルコシル−(S)−ナリンゲニンを有効成分として含有するものである。
【0016】
ここで8−C−β−D−グルコシル−(S)−ナリンゲニンは、式〔I〕
【化1】

Figure 0003574866
で表されるものである。
【0017】
また、6−C−β−D−グルコシル−(S)−ナリンゲニンは、式〔II〕
【化2】
Figure 0003574866
で表されるものである。
【0018】
前記したように、これら2つの物質はいずれも既知の物質ではあるが、マメゾウムシ類に対して殺虫性(虫害抵抗性)があることは、これまで全く知られていない。
【0019】
これら2つの物質は、様々な方法により得ることができるが、例えば、いずれも食用のツルアズキ種子粉をメタノール水溶液で抽出することにより得ることができる。
例えば、上記式〔I〕で表される8−C−β−D−グルコシル−(S)−ナリンゲニンを得るには、まずツルアズキ種子粉を85%メタノール水溶液で抽出する。得られた抽出液を濃縮した後、水飽和ヘキサン、酢酸エチル、水飽和ブタノールで分配し、マメゾウムシ類に対する殺虫活性を認めたブタノール層を濃縮しシリカゲルに吸着させた後、酢酸エチル/メタノールの混合溶媒で溶出する。アズキゾウムシに殺虫活性を認めた酢酸エチル:メタノール(8:2)の濃縮画分を低圧液体クロマトグラフィーで精製する。その後、最も活性の強い濃縮画分を高速液体クロマトグラフィー(HPLC)で精製することにより、上記式〔I〕で表される8−C−β−D−グルコシル−(S)−ナリンゲニンが得られる。
【0020】
次に、上記式〔II〕で表される6−C−β−D−グルコシル−(S)−ナリンゲニンを得るには、まずツルアズキ種子粉を85%メタノール水溶液で抽出する。得られた抽出液を濃縮した後、水飽和ヘキサン、水飽和ブタノールで分配する。マメゾウムシ類に対する殺虫活性を認めたブタノール層を濃縮し、耐有機溶媒親水性ビーニルポリマーを充填させたゲルクロマトグラフィーで精製する。そして活性の強い2つの濃縮画分をHPLCで精製する。アズキゾウムシ、ヨツモンマメゾウムシに殺虫活性を示すピーク画分を精製することにより、上記式〔II〕で表される6−C−β−D−グルコシル−(S)−ナリンゲニンが得られる。
【0021】
以上のように、これら2つの物質はいずれも食用のツルアズキ種子中に含まれる成分であることから、安全性が高いと考えられる。
【0022】
請求項1に係る本発明の殺虫性組成物は、上記した如き8−C−β−D−グルコシル−(S)−ナリンゲニン及び/又は 6 C −β− D −グルコシル−(S)−ナリンゲニンを有効成分として含有するものであり、8− C −β− D −グルコシル−(S)−ナリンゲニンと 6 C −β− D −グルコシル−(S)−ナリンゲニンをそれぞれ単独で用いてもよいし、或いは両者を併用してもよい。
【0023】
また、請求項1に係る本発明の殺虫性組成物は、上記した如き8−C−β−D−グルコシル−(S)−ナリンゲニン及び/又は 6 C −β− D −グルコシル−(S)−ナリンゲニンを有効成分として含有するものであればよく、本発明の目的を損なわない範囲において、既知の殺虫性物質を併用することもできる。
【0024】
このような請求項1に係る本発明の殺虫性組成物は、請求項2に記載したように、特に貯穀害虫用殺虫性組成物として有用である。
ここで貯穀害虫としては、請求項3に記載されているように、マメゾウムシ類が挙げられる。
請求項1に係る本発明の殺虫性組成物は、貯穀害虫の中でも、アズキゾウムシ、ヨツモンマメゾウムシなどのマメゾウムシ類に対して特異的、選択的に虫害抵抗性がある。
請求項1に係る本発明の殺虫性組成物は、このようなマメゾウムシ類などの貯穀害虫による食害から、アズキ、ササゲ、リョクトウといった食用マメ種子を有効に防除することができる。
【0025】
請求項1に係る本発明の殺虫性組成物は、害虫体内への薬剤の侵入経路からみると、基本的には殺虫剤の内の消化中毒剤の範疇に属するものであって、これを食した害虫を中毒に陥らせ死に至らしめて防除するものである。請求項1に係る本発明の殺虫性組成物において、殺虫剤としての使用の態様は特に制限されないが、害虫によく食せしめるために、これを例えばマメを模した人工マメの形態に練り上げたものとしておくとよい。
【0026】
【実施例】
次に本発明の実施例を示すが、本発明はこれらによって限定されるものではない。
【0027】
試験例1〔ツルアズキ種子粉の殺虫活性試験〕
マメゾウムシ類の幼虫は、食用ツルアズキ種子内部を食することによって死亡することが確認されたことから、マメゾウムシ類の幼虫にツルアズキ種子粉を含む人工マメを食べさせることにより、ツルアズキ種子(子葉)のマメゾウムシ類に対する殺虫活性を確認すべく、以下の試験を行った。
【0028】
(1)ツルアズキ
材料は、日本在来の栽培ツルアズキ( Vigna umbellata )を用いた。
【0029】
(2)マメゾウムシ類
マメゾウムシ類としては、日本産アズキソウムシ( Callosobruchus chinensis )とタイ産ヨツモンマメゾウムシ( C. maculatus )の2種を使用した。ヨツモンマメゾウムシは、植物防疫所より輸入禁止許可申請を受け、タイ国カセサート大学より導入し継代飼育した。
これらの2種のマメゾウムシは、同一の方法で飼育した。すなわち、リョクトウ種子300粒を用意した9cmシャーレに十数頭のマメゾウムシ成虫を放ち産卵させた。産卵後、成虫を除去し、30℃、湿度60%の恒温器内で飼育した。産卵後25−30日を経過すると成虫が羽化する。羽化した成虫を殺虫活性試験に供試した。
【0030】
(3)人工マメ(リョクトウ100%)の作成
殺虫活性物質の同定を行うためには、人工飼料によるマメゾウムシの飼育が必要である。そこで、マメゾウムシ類に感受性であるリョクトウ子葉粉から、人工マメ(人工飼料)を作成し、マメゾウムシ類の生育を調査した。リョクトウ子葉粉1gに少量の蒸留水を添加し、マメ状の固形物(約0.25g)を作成し、凍結乾燥した。この固形物を人工マメ(リョクトウ100%)と呼び、実験に供試した。
人工マメ(リョクトウ100%)を9cmシャーレに置き、羽化後間もない成虫を放ち、産卵をさせた。飼育環境は30℃、湿度60%に設定した。産卵後25-30日を経過すると人工マメ(リョクトウ100%)より成虫が正常に羽化した。このように、マメゾウムシ類は人工マメを利用して産卵、羽化を行うことが明らかとなり、人工マメはマメゾウムシ類の殺虫活性試験に有用であることが確認された。
【0031】
(4)ツルアズキ種子粉を含む人工マメの作成及び殺虫活性の測定
この試験区の人工マメを一粒ずつ9cmシャーレに置き、羽化後間もないアズキゾウムシおよびヨツモンマメゾウムシの成虫を放ち、産卵をさせた。産卵後は30度、湿度60%に設定した恒温器に入れて飼育した。人工マメへの産卵数を記録し、そして人工マメから羽化する成虫数を産卵後50日まで記録しつづけ、羽化率をもとめた。産卵50日目に羽化が認められない人工マメは、ピンセットで分割し成虫の有無を調査した。なお、人工マメによる殺虫性試験は4反復した。
ツルアズキ種子粉を各割合で混合した人工マメから羽化した成虫数を図1に示す。なお、図1中、散点部分はアズキゾウムシの結果、斜線部分はヨツモンマメゾウムシの結果である。
【0032】
図1より、ツルアズキ種子粉の割合が100%の人工マメ、及びツルアズキ種子粉80%+リョクトウ種子(子葉)粉20%の人工マメは、いずれも2種類のマメゾウムシ類の羽化を完全に阻害したことが明らかである。
この結果に基づいて、ツルアズキ種子粉の全活性(units)と比活性を算出した。
すなわち、まず上記人工マメについて殺虫活性(羽化率0%)を示すのに必要なツルアズキ種子粉の濃度を検討し、これを最小致死濃度とした。この最小致死濃度によって、ツルアズキ種子粉の総重量から作成することのできる人工マメの重量(g)で表わしたもの(ツルアズキ種子粉の総重量を、最小致死濃度で割ったもの)を、ツルアズキ種子粉の全活性とした。
さらに、ツルアズキ種子粉1g当たりの全活性を、比活性(units/g)として算出した。
【0033】
本試験例の場合、ツルアズキ種子粉の割合が100%の人工マメ、及びツルアズキ種子粉80%+リョクトウ種子(子葉)粉20%の人工マメが、いずれもマメゾウムシ羽化を完全に阻害したことから(図1参照)、最小致死濃度は80%であることが分かる。
この結果を基準としてツルアズキ種子粉の全活性を求めると、1000.0gのツルアズキ種子粉から、マメゾウムシを殺虫可能な1250.0gの人工マメを作れることから、全活性は1250.0unitsであることが明らかである。また、比活性は、1.3units/gであった。結果を第1表に示す。
【0034】
このように、マメゾウムシ類の幼虫はツルアズキ種子を混合した人工マメを食べることによって死亡することから、ツルアズキ種子はマメゾウムシ類に対し殺虫活性を有することが明らかとなった。
この結果から、ツルアズキにはマメゾウムシ類に対し殺虫性を示す有効成分が含まれていると考えられたので、以下の実施例1及び2により、ツルアズキ種子から殺虫活性物質の分離を進めることとした。
【0035】
実施例1〔8−C−β−D−グルコシル−(S)−ナリンゲニンの製造〕
ツルアズキ種子から、マメゾウムシ類に対する殺虫活性を有する物質を、マメゾウムシ類に対する殺虫活性に基づいて分離精製した。分離精製の手順を図2に示す。
なお、殺虫活性については、各精製段階で得られる抽出物をツルアズキ種子粉の代わりに用いる他は、試験例1の条件及び手順と同様にして全活性、比活性を算出することにより観察した。
また、試験例1で得られるツルアズキ種子粉の全活性に対する、各精製段階で得られる抽出物の全活性の比率を百分率で示したものを、収率として算出した。
【0036】
(1)メタノール抽出
ツルアズキ種子粉に85%メタノール(メタノール:水=85:15)10Lを加え48時間連続抽出した(4℃)。抽出液を濾過し、上澄9.5Lを得た。この工程を3回行い、合計3000gの種子粉から約28Lのメタノール抽出液を得た。
メタノール抽出物について、試験例1と同様にして全活性、比活性及び収率を算出した。これらの結果を第1表に示す。
第1表から、メタノール抽出によりツルアズキ種子粉100%の場合に比べ、殺虫活性が向上していることが明らかとなった。
【0037】
(2)各種溶媒への分配
メタノール抽出液を濃縮し、水飽和ヘキサン、酢酸エチル、水飽和ブタノール分配した。
得られる水飽和ヘキサン分配層、酢酸エチル分配層、水飽和ブタノール分配層及び水層残さのそれぞれについて、殺虫活性試験を行った。
すなわち、試験例1において、ツルアズキ種子粉の代わりにヘキサン分配層を3%、酢酸エチル分配層を3%、ブタノール分配層を1%、2%及び3%、水層残さを3%の各割合で混合した人工マメを用いた他は同様にして、羽化率を確認した。各分配層を混合した人工マメの羽化率の結果を図3に示す。図3中、白色部分はアズキゾウムシの結果を、黒色部分はヨツモンマメゾウムシの結果を示す。
【0038】
図3から明らかなとおり、ヘキサン分配層、酢酸エチル分配層、水層残さを混合した人工マメの羽化率は高く、リョクトウ種子(子葉)粉100%の人工マメの場合と同様にマメゾウムシ類殺虫活性は認められなかった。一方、ブタノール分配層を混合した人工マメの羽化率は2種類のマメゾウムシ類のいずれについても低かった。ブタノール分配層の抽出物3%を混合した人工マメでは、羽化率が0%であったので、最小致死濃度は3%であることが分かった。
そこで、ブタノール分配層を混合した人工マメについて、試験例1と同様に、全活性及び比活性を算出した。さらに、収率を算出した。これらの結果を第1表に示す。
第1表から明らかなとおり、全活性及び比活性は、メタノール抽出物と比較して高いことが分かる。
以上の結果から、ブタノール分配層に2種類のマメゾウムシ類に対する殺虫活性を認め、以下の精製に供した。
【0039】
(3)シリカゲルカラムクロマトグラフィーによる分離
ブタノール分配層を濃縮し、シリカゲルカラムクロマトグラフィーで溶出した。溶出液はヘキサン:酢酸エチル=90:10、ヘキサン:酢酸エチル=60:40、ヘキサン:酢酸エチル=40:60、酢酸エチル、つづいて酢酸エチル:メタノール=80:20、酢酸エチル:メタノール=60:40、酢酸エチル:メタノール=40:60、メタノールとした。
【0040】
溶出した各溶液を濃縮し、アズキゾウムシに対する殺虫活性を確認した。
すなわち、試験例1と同様に殺虫試験を行った。その結果、酢酸エチル:メタノール=80:20により溶出した溶液の濃縮物にアズキゾウムシに対する殺虫活性を認めた。酢酸エチル:メタノール=80:20の濃縮物についてのアズキゾウムシに対する全活性、比活性及び収率の結果を第1表に示す。
【0041】
(4)ゲルクロマトグラフィーによる分離
この酢酸エチル:メタノール=80:20の濃縮物を、少量の10%メタノール(メタノール:水=10:90)に溶解し、LH-20で充填させたゲルクロマトグラフィー(2×120cm)で分離した。
すなわち、10%メタノールを開始溶媒とし、100%メタノールとの間で、1400分間の直線濃度勾配によって分離した(流速2ml/min、カラム温度20℃)。試料添加から10分間ごとに分取した。分取した各フラクションは減圧濃縮し、凍結乾燥した。
【0042】
各フラクションについて、アズキゾウムシに対する殺虫活性を確認した。
すなわち、上記各フラクションを混合した人工マメを作成し、試験例1と同様に殺虫試験を行い、羽化率、全活性、比活性を算出した。その結果、アズキゾウムシに対する殺虫活性の認められるフラクションが得られた。アズキゾウムシに対する殺虫活性の認められたフラクションの全活性、比活性及び収率の結果は、第1表に示す通りである。
【0043】
(5)HPLCによる分離
アズキゾウムシに対する殺虫活性の認められたフラクションを、HPLC(島津)で精製した。カラムはセンシュー科学ODS-C18(20×250mmと10×250mm)、資生堂ODS-UC18(4.6×250mm)を使用した。検出波長は200-400nmの吸光度とした。
すなわち、まずアズキゾウムシに対する殺虫活性の認められたフラクションを、ODS-UC18(4.6×250mm)、流速0.8ml/min、カラム温度40℃、溶離液20%アセトニトリル(アセトニトリル:水=20:80)で分析した。HPLCの結果を図4に示す。図4から明らかなとおり、7本のピーク(No.1〜7)が検出された。
【0044】
各ピークを分取して、殺虫活性を確認した。すなわち、各ピークを混合した人工マメを作成した他は試験例1と同様にして殺虫試験を行い、羽化率、全活性、比活性を算出した。
その結果、アズキゾウムシに殺虫活性を認めたのは溶出時間17−18分のピークであった(No.6と7)。17−18分のピーク(No.6と7)についてのアズキゾウムシに対する全活性、比活性及び収率の結果を第1表に示す。
【0045】
溶出時間17−18分のピーク(No.6と7)を、ODS-C18(20×250mmと10×250mm)で集めた。このピークは2本のピークからなるため、更に集めたピークの凍結乾燥物を資生堂ODS-C18(4.6×250mm)により分離した。
No. 6のピークについて、殺虫活性を確認した。すなわち、No. 6のピーク0.05%、0.1%、0.2%をそれぞれ混合した人工マメを作成した他は、試験例1と同様にして殺虫試験を行い、羽化率を算出した。No. 6のピークを混合した人工マメの羽化率の結果を図5に示す。図5中、白色部分はアズキゾウムシの結果を、黒色部分はヨツモンマメゾウムシの結果を示す。
【0046】
図5から明らかなとおり、No. 6のピークの抽出物を混合した人工マメの羽化率は、アズキゾウムシについて低かった。No. 6のピークを0.1%、0.2%の各割合で混合した人工マメでは、アズキゾウムシに対する羽化率が0%であったので、最小致死濃度は0.1%であることが分かった。
そこで、No. 6のピークの抽出物を混合した人工マメについて、試験例1と同様に、全活性及び比活性を算出した。さらに、収率を算出した。結果を第1表に示す。
【0047】
【表1】
第1表〔各精製段階における抽出物の殺虫活性〕
Figure 0003574866
【0048】
第1表から明らかなとおり、No. 6のピークは、全活性が低く、比活性が高いことがわかる。
以上の結果から、No. 6のピークにアズキゾウムシ殺虫活性を認め、以下の分析に供した。
【0049】
フーリエ変換イオンサイクロトン共鳴質量分析計(FTICR−MS)により、No.6のピークの凍結乾燥物に含まれる化合物を高分解能質量分析した。その結果、[M+H]がm/z 435.12854、[M−H]がm/z 433.11418に観測された。なお、M=C212310としたときの計算値は、[M+H]がm/z 435.12857、[M−H]がm/z 433.11402である。
さらに、一次元及び二次元NMR,UV,円二色性スペクトル(CD)により、No. 6のピークの凍結乾燥物を分析した結果、No. 6のピークは、上記式〔I〕で表される化合物8−C−β−D−グルコシル−(S)−ナリンゲニンであることが判明した。
【0050】
以上の結果から、ツルアズキ種子に含まれるアズキゾウムシ殺虫性物質は、既知の化合物である8−C−β−D−グルコシル−(S)−ナリンゲニンであることが判明したものの、該化合物がマメゾウムシ類に対して殺虫性(虫害抵抗性)を有していることは、これまで全く知られていない。
【0051】
実施例2〔6−C−β−D−グルコシル−(S)−ナリンゲニンの製造〕
実施例1において、ツルアズキから、アズキゾウムシ殺虫性物質8−C−β−D−グルコシル−(S)−ナリンゲニンを分離した。
しかしながら、図1に示すように、ツルアズキ種子はヨツモンマメゾウムシにも抵抗性を示すため、8−C−β−D−グルコシル−(S)−ナリンゲニン以外の殺虫性物質を含むと推定される。
実施例1において、ヨツモンマメゾウムシに対する殺虫活性は、シリカゲルカラムクロマトグラフィーで溶出すると失活することから、シリカゲルの使用を避け、アズキゾウムシとヨツモンマメゾウムシに対して殺虫性を有する物質の分離を試みた。分離精製の手順を図6に示す。
【0052】
(1)メタノール抽出
ツルアズキ種子(1000g)を高速粉砕器で粉砕した。粉砕した種子粉に85%メタノール(メタノール:水=85:15)10Lを加え48時間連続抽出した(4℃)。抽出液を濾過し、上澄を9.5L得た。この工程を4回行い、合計4000gの種子粉から約38Lのメタノール抽出液を得た。
このメタノール抽出物について、試験例1と同様にして全活性、比活性、収率を算出した。これらの結果を第2表に示す。
第2表から、メタノール抽出により殺虫活性が向上していることが明らかとなった。
【0053】
(2)各種溶媒への分配
メタノール抽出液を濃縮し、水飽和ヘキサン、酢酸エチル、水飽和ブタノール分配した。ブタノール層を濃縮し、凍結乾燥した。
各分配層の2種のマメゾウムシ類に対する殺虫活性を確認した。
すなわち、上記各分配層をそれぞれ混合した人工マメを作成し、試験例1と同様に殺虫試験を行った。その結果、ブタノール分離層に殺虫活性を認めた。ブタノール分離層の2種のマメゾウムシ類に対する全活性、比活性及び収率の結果を第2表に示す。
【0054】
(3)ゲルクロマトグラフィーによる分離
ブタノール分配層の凍結乾燥物を、少量の10%メタノール(メタノール:水=10:90)に溶解した。溶解した試料をLH-20で充填させたゲルクロマトグラフィー(6×100cm)で分離した。10%メタノールを開始溶媒とし、100%メタノールとの間で、48時間の直線濃度勾配により分離した(流速5ml/min、カラム温度20℃)。試料添加120分後から10分間ごとに分取した。分取した各フラクションを減圧濃縮した。アズキゾウムシとヨツモンマメゾウムシに殺虫性を示すフラクションを特定した。
【0055】
各フラクションについて、アズキゾウムシとヨツモンマメゾウムシとに対する殺虫活性を確認した。
すなわち、上記各フラクションを混合した人工マメを作成し、試験例1と同様に殺虫試験を行い、羽化率、全活性、比活性を算出した。その結果、2種のマメゾウムシ類に対する殺虫活性の認められるフラクションが得られた。殺虫活性の認められたフラクションの全活性、比活性及び収率の結果は、第2表に示す通りである。
【0056】
(4)HPLCによる分離
殺虫活性を認めたフラクションをHPLC(島津)で精製した。カラムはセンシュー科学ODS-C18(20×250mmと10×250mm)、資生堂ODS-UC18(4.6×250mm)を使用した。検出波長は200-400nmの吸光度とした。
すなわち、アズキゾウムシとヨツモンマメゾウムシとに殺虫活性を認めたフラクションをODS-UC18(4.6×250mm)、流速0.8ml/min、カラム温度30℃、溶離液15%アセトニトリル+0.1%ギ酸(アセトニトリル:水=15:75)で分析した結果、図7に示すように5本のピークが検出された(No. 1〜5)。各ピークを分取し濃縮した。
【0057】
各ピークの殺虫活性を確認した。すなわち、上記各ピークを混合した人工マメを作成し、試験例1と同様にして殺虫試験を行った結果、アズキゾウムシとヨツモンマメゾウムシとに殺虫活性を認めたのは、溶出時間16−17分のピークであった(No. 4)。
【0058】
この16−17分のピーク(No. 4)を、ODS-C18(20×250mmと10×250mm)により分離した。
No. 4のピークについて、殺虫活性を確認した。すなわち、No. 4のピーク0.1%、0.2%、0.3%をそれぞれ混合した人工マメを作成した他は試験例1と同様にして殺虫試験を行い、羽化率を算出した。
No. 4のピークを混合した人工マメの羽化率の結果を図8に示す。図8中、白色部分はアズキゾウムシの結果を、黒色部分はヨツモンマメゾウムシの結果を示す。
【0059】
図8から明らかなとおり、No. 4のピークの抽出物を混合した人工マメの羽化率は、2種類のマメゾウムシ類のいずれについても低かった。No. 4のピーク0.1%と0.2%をそれぞれ混合した人工マメでは、アズキゾウムシに対する羽化率が0%であったので、最小致死濃度は0.1%であることが分かった。
そこで、No. 4のピークの抽出物を混合した人工マメについて、試験例1と同様に、全活性及び比活性を算出した。さらに、収率を算出した。結果を第2表に示す。
【0060】
【表2】
第2表〔各精製段階における抽出物の殺虫活性〕
Figure 0003574866
【0061】
第2表から明らかなとおり、No. 4のピークは、全活性が低く、比活性が高いことが分かる。
以上の結果から、No. 4のピークにアズキゾウムシ及びヨツモンマメゾウムシに対する殺虫活性を認め、以下の分析に供した。
【0062】
フーリエ変換イオンサイクロトン共鳴質量分析計(FTICR−MS)により、No.4のピークの凍結乾燥物に含まれる化合物を高分解能質量分析した。その結果、[M+H]がm/z 435.12854、[M−H]がm/z 433.11405に観測された。なお、M=C212310としたときの計算値は、[M+H]がm/z 435.12857、[M−H]がm/z 433.11402である。
さらに、一次元及び二次元NMR,UV,円二色性スペクトル(CD)により、No. 4のピークの凍結乾燥物を分析した結果、No. 4のピークは、上記式〔II〕で表される化合物6−C−β−D−グルコシル−(S)−ナリンゲニンであることが判明した。
【0063】
以上の結果から、ツルアズキ種子に含まれるアズキゾウムシ殺虫性物質の一つは、既知の化合物である6−C−β−D−グルコシル−(S)−ナリンゲニンであることが判明したものの、該化合物がマメゾウムシ類に対して殺虫性(虫害抵抗性)を有していることは、これまで全く知られていない。
【0064】
【発明の効果】
請求項1に係る本発明の殺虫性組成物は、虫害抵抗性を有しており、登熟中及び貯蔵中のマメ類種子(アズキ、ササゲ、リョクトウといった食用マメ種子)を食害するマメゾウムシ類を有効に防除することができる。
しかも、請求項1に係る本発明の殺虫性組成物における有効成分は、有機合成を用いて製造されたものではなく、天然(植物)由来のものである。すなわち、有効成分はいずれも食用のツルアズキ種子中に含まれる成分であることから、安全性が高いと考えられる。
請求項1に係る本発明の殺虫性組成物は、貯穀害虫の中でも、アズキゾウムシ、ヨツモンマメゾウムシなどのマメゾウムシ類に対して特異的、選択的に虫害抵抗性がある。
【図面の簡単な説明】
【図1】ツルアズキ種子粉を混合した人工マメから羽化した成虫数を示す図である。
【図2】ツルアズキ種子から8−C−β−D−グルコシル−(S)−ナリンゲニンを分離精製するまでの手順である。
【図3】各溶媒分配層を混合した人工マメの羽化率を示す図である。
【図4】HPLCの結果を示す図である。
【図5】No. 6のピークを混合した人工マメの羽化率を示す図である。
【図6】ツルアズキ種子から6− C −β− D −グルコシル−(S)−ナリンゲニンを分離精製するまでの手順である。
【図7】HPLCの結果を示す図である。
【図8】No. 4のピークを混合した人工マメの羽化率を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insecticidal composition, and more particularly, to an insecticidal composition capable of effectively controlling edible bean seeds such as adzuki beans, cowpea and mungbean from damage caused by stored pests such as weevil.
[0002]
[Prior art]
Methods of controlling crops from pests and ensuring yield stability and crop quality have been practiced since ancient times.
Since the early 20th century, organic insecticides such as organochlorine and organophosphorus have been used for such pest control, and have greatly contributed to agricultural production.
[0003]
However, in recent years, awareness of environmental protection and safety has increased, and the use of such synthetic insecticides has been restricted.
In addition, with the increase in the amount of synthetic insecticide used, the emergence of pests that have acquired resistance to the drug has been reported, and there has been a demand for the development of new technologies that can replace conventional control using synthetic insecticides.
[0004]
Generally, it is considered that pesticides derived from natural products have a small impact on the environment.
In particular, a wide variety of natural compounds derived from plants have been used, including compounds such as pyrethroids. Flavonoid glycosides are one of the compounds produced by plants. Although there are many unclear points about the function of flavonoids, they are thought to contribute to antibacterial activity, enzyme inhibition, defense against insect damage, and hormonal action.
As a flavonoid exhibiting insecticidal properties, 6-C-β-D-glucosyl-luteolin, which exhibits insecticidal effects on the larvae of Helicoverpa armigera, has been reported. There is no.
[0005]
Bean beetles are small beetles that live in tropical and subtropical regions. As the bean weevil, adzuki beetle, beetle beetle and the like are known, all of which cause enormous damage to adzuki bean, vine adzuki bean, cowpea and mung bean seeds. Among them, the beetle weevil is native to Africa and Southeast Asia, but is a stored pest that may invade and settle in Japan with warming in the future.
[0006]
Adult bean weevils fly to bean cultivation fields and lay eggs in young pods. The hatched larva invades the seeds, eats them, and emerges after harvest. Emerged adults lay eggs on beans during storage and repeat generations.
Such bean weevils proliferate at an accelerated rate under conditions that allow them to grow, and are severely damaged by food damage. So far, pesticides have been sprayed on bean cultivation fields, and control has been focused on chemical treatment after harvest. The method has evolved.
[0007]
However, due to the high migration ability of adults, the difficulty in controlling larvae that invaded legume seeds, and the fact that wild plants also feed on the seeds, the control of beetle larvae that invaded legume seeds Is difficult, and the control effect is not sufficient at present.
Therefore, establishment of a new control method is eagerly desired in countries around the world.
[0008]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems and is an insect-resistant insecticide derived from natural (plant), which can effectively control weevil that damages edible bean seeds during ripening and storage and has insect damage resistance. It is intended to provide a neutral composition.
[0009]
[Means for Solving the Problems]
In order to develop insect resistance, it is effective to use a chemical substance having high insecticidal properties against insect pests.
The present inventors have conducted intensive studies to solve the above-mentioned conventional problems, and as a result, from among the 500 legume seeds collected by the National Institute for Agrobiological Resources, Japanese edible vines (Vigna umbellata) ) Has high insecticidal properties (insect resistance) against weevil such as adzuki beetle and beetle beetle.
[0010]
For this reason, it was considered that the active ingredient showing insecticidal properties (insect resistance) to bean weevil was contained in the beetle seeds. Moreover, since the vine adzuki bean seeds are edible, the active ingredients contained in the seeds were considered to have high safety.
[0011]
The present inventors have studied various extraction methods and extracts to clarify the causes of resistance to bean weevil, which is shown by such a beetle, and as a result of promoting the separation of an insecticidal active substance from the bean seed powder. And 8-C-β-D-glucosyl- (S) -naringenin showed high insecticidal activity against Azuki weevil. In addition to 8-C-β-D-glucosyl- (S) -naringenin, a known compound of 6-C-β-D-glucosyl- (S) -naringenin has a high insecticidal activity against azuki beetles and weevil beetles.Admit,The present invention has been completed based on these findings.
Note that theseTwoIs a known compound, but it has never been known that it has insecticidal properties (insect resistance) against beetles.
[0012]
That is, the present invention according to claim 1 provides 8-C-β-D-glucosyl- (S) -naringenin.And / or 6 C -Β- D -Glucosyl- (S) -naringeninThe present invention provides an insecticidal composition containing as an active ingredient.
[0013]
Next, a second aspect of the present invention provides the insecticidal composition according to the first aspect, wherein the insecticidal composition is a pesticidal composition for stored pests.
[0014]
The present invention according to claim 3 provides the insecticidal composition according to claim 2, wherein the stored grain pest is a weevil.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The present invention according to claim 1 relates to an insecticidal composition and relates to 8-C-β-D-glucosyl- (S) -naringenin.And / or 6 C -Β- D -Glucosyl- (S) -naringeninIs contained as an active ingredient.
[0016]
Here, 8-C-β-D-glucosyl- (S) -naringenin has the formula [I]
Embedded image
Figure 0003574866
It is represented by
[0017]
6-C-β-D-glucosyl- (S) -naringenin is represented by the formula [II]
Embedded image
Figure 0003574866
It is represented by
[0018]
As mentioned above, theseTwoAre known substances, but it has never been known that they have insecticidal properties (insect resistance) against beetles.
[0019]
theseTwoCan be obtained by various methods. For example, any of them can be obtained by extracting edible bean seed powder with an aqueous methanol solution.
For example, in order to obtain 8-C-β-D-glucosyl- (S) -naringenin represented by the above formula [I], first, the seed bean seed powder is extracted with an 85% aqueous methanol solution. After concentrating the obtained extract, it was partitioned with water-saturated hexane, ethyl acetate and water-saturated butanol. The butanol layer, which showed insecticidal activity against beetles, was concentrated and adsorbed on silica gel, and then mixed with ethyl acetate / methanol. Elute with solvent. The concentrated fraction of ethyl acetate: methanol (8: 2), which showed the insecticidal activity of Azuki weevil, is purified by low pressure liquid chromatography. Thereafter, the concentrated fraction having the highest activity is purified by high performance liquid chromatography (HPLC) to obtain 8-C-β-D-glucosyl- (S) -naringenin represented by the above formula [I]. .
[0020]
Next, in order to obtain 6-C-β-D-glucosyl- (S) -naringenin represented by the above formula [II], first, the seed bean seed powder is extracted with an 85% aqueous methanol solution. After concentrating the obtained extract, it is partitioned between water-saturated hexane and water-saturated butanol. The butanol layer that has confirmed the insecticidal activity against beetles is concentrated and purified by gel chromatography packed with an organic solvent-resistant hydrophilic vinyl polymer. Then, two concentrated fractions having strong activity are purified by HPLC. The 6-C-β-D-glucosyl- (S) -naringenin represented by the above formula [II] is purified by purifying a peak fraction exhibiting an insecticidal activity against azuki beetles and weevil beetles.Is obtained.
[0021]
As mentioned above, theseTwoSince all of the substances are components contained in edible vine adzuki bean seeds, they are considered to be highly safe.
[0022]
The insecticidal composition of the present invention according to claim 1 comprises 8-C-β-D-glucosyl- (S) -naringenin as described above.And / or 6 C -Β- D -Glucosyl- (S) -naringeninContaining as an active ingredient,8- C -Β- D -Glucosyl- (S) -naringenin 6 C -Β- D -Glucosyl- (S) -naringenin may be used alone or in combination.
[0023]
In addition, the insecticidal composition of the present invention according to claim 1 comprises 8-C-β-D-glucosyl- (S) -naringenin as described above.And / or 6 C -Β- D -Glucosyl- (S) -naringeninAny known insecticidal substance can be used in combination as long as the object of the present invention is not impaired.
[0024]
Such an insecticidal composition of the present invention according to claim 1 is particularly useful as an insecticidal composition for stored pests as described in claim 2.
Here, as the storage pest, as described in claim 3, beetles are mentioned.
The insecticidal composition of the present invention according to claim 1 has specific and selective insect resistance to bean weevil such as adzuki beetle and beetle beetle among the stored pests.
The insecticidal composition of the present invention according to claim 1 can effectively control edible bean seeds such as adzuki bean, cowpea and mung bean from the damage caused by such stored pests such as weevil.
[0025]
The insecticidal composition of the present invention according to claim 1 basically belongs to the category of digestive poisons among insecticides when viewed from the route of entry of the drug into the pest body. This is to control the pests that have become poisoned and die. In the insecticidal composition of the present invention according to claim 1, the mode of use as an insecticide is not particularly limited, but in order to be eaten well by pests, this is kneaded into, for example, an artificial bean-like artificial bean. It is good to keep.
[0026]
【Example】
Next, examples of the present invention will be described, but the present invention is not limited to these examples.
[0027]
Test Example 1 [Test for insecticidal activity of vine adzuki bean seed powder]
It was confirmed that the larvae of the beetle larvae died by eating the inside of the edible bean beetle seeds. The following tests were conducted to confirm the insecticidal activity against insects.
[0028]
(1) Tsuruazuki
As the material, Japanese native vine adzuki (Vigna umbellata) was used.
[0029]
(2) Bean weevil
As the beetles, two species of Japanese azuki beetles (Callosobruchus chinensis) and Thai beetles (C. maculatus) were used. The beetle weevil received an application for an import ban from the Plant Protection Station, was introduced from Kasetsart University in Thailand, and was reared for successive generations.
These two weevil species were bred in the same manner. That is, more than ten adult weevil adults were released and spawned in a 9 cm petri dish prepared with 300 mungbean seeds. After spawning, the adults were removed and bred in a thermostat at 30 ° C. and 60% humidity. Adults emerge after 25-30 days after laying eggs. The emerged adults were subjected to an insecticidal activity test.
[0030]
(3) Creation of artificial beans (mung bean 100%)
In order to identify pesticidally active substances, it is necessary to breed weevil on artificial feed. Therefore, an artificial bean (artificial feed) was prepared from mung bean cotyledon powder that is sensitive to weevil, and the growth of the weevil was investigated. A small amount of distilled water was added to 1 g of Mungbean cotyledon powder to produce a bean-like solid (about 0.25 g) and freeze-dried. This solid material was called artificial bean (mung bean 100%) and was used for the experiment.
An artificial bean (mung bean 100%) was placed on a 9-cm petri dish, and an adult was released shortly after eclosion to lay eggs. The breeding environment was set at 30 ° C. and 60% humidity. Adults emerged normally from artificial beans (mung bean 100%) 25 to 30 days after laying eggs. As described above, it was clarified that the bean weevil performs egg laying and emergence using the artificial bean, and it was confirmed that the artificial bean is useful for the insecticidal activity test of the bean weevil.
[0031]
(4) Preparation of artificial beans containing vine adzuki bean seed powder and measurement of insecticidal activity
One artificial bean from this test plot was placed on a 9 cm petri dish at a time, and the adults of the adzuki beetle and the beetle beetle, shortly after emergence, were released and spawned. After spawning, they were bred in a thermostat set at 30 ° C and a humidity of 60%. The number of eggs laid on the artificial beans was recorded, and the number of adults that emerged from the artificial beans was continuously recorded until 50 days after laying the eggs, and the rate of emergence was determined. Artificial beans without emergence on the 50th day of spawning were divided with tweezers and examined for the presence of adults. The insecticidal test using artificial beans was repeated 4 times.
FIG. 1 shows the number of adults that emerged from artificial beans mixed with the bean seed powder in each ratio. In FIG. 1, the dotted portion is the result of Azuki beetle and the hatched portion is the result of A. weevil.
[0032]
As shown in FIG. 1, the artificial bean having 100% of the bean seed powder and the artificial bean having 80% of the bean seed powder and + 20% of the mung bean seed (cotyledon) powder completely inhibited the emergence of two types of weevil. It is clear that.
Based on this result, the total activity (units) and the specific activity of the beetle seed powder were calculated.
That is, first, the concentration of the red bean seed powder required to exhibit the insecticidal activity (eclosion rate: 0%) of the artificial bean was examined, and this was defined as the minimum lethal concentration. The minimum lethal concentration, expressed in terms of the weight (g) of artificial bean that can be prepared from the total weight of the beetle seed powder (the total weight of the beetle seed powder divided by the minimum lethal concentration) was converted to the bean seed. The total activity of the flour was taken.
Furthermore, the total activity per 1 g of vine adzuki bean seed flour was calculated as a specific activity (units / g).
[0033]
In the case of this test example, the artificial bean having a ratio of 100% of the red bean seed powder and the artificial bean of 80% of the red bean seed powder + 20% of the mung bean seed (cotyledon) powder completely inhibited the weevil emergence ( It can be seen that the minimum lethal concentration is 80%.
When the total activity of the red bean seed powder is determined based on this result, from 1000.0 g of the red bean seed powder, 1250.0 g of artificial bean capable of killing the weevil can be made, and it is clear that the total activity is 1250.0 units. . The specific activity was 1.3 units / g. The results are shown in Table 1.
[0034]
As described above, the beetle larvae died by eating artificial beans mixed with the beetle seeds, which revealed that the beetle seeds had insecticidal activity against the beetles.
From these results, it was considered that the active ingredient exhibiting insecticidal properties against bean weevil was included in the beetle, and the separation of the pesticidally active substance from the bean seed was performed according to Examples 1 and 2 below. .
[0035]
Example 1 [Production of 8-C-β-D-glucosyl- (S) -naringenin]
A substance having an insecticidal activity against bean weevil was separated and purified from the beetle seeds based on the insecticidal activity against bean weevil. FIG. 2 shows the procedure for separation and purification.
The insecticidal activity was observed by calculating the total activity and the specific activity in the same manner as in Test Example 1 except that the extract obtained in each purification step was used instead of the bean seed powder.
In addition, the ratio of the total activity of the extract obtained in each purification step to the total activity of the beetle seed powder obtained in Test Example 1 as a percentage was calculated as the yield.
[0036]
(1) Methanol extraction
10 L of 85% methanol (methanol: water = 85: 15) was added to the seed bean seed powder, and the mixture was continuously extracted (4 ° C.) for 48 hours. The extract was filtered to obtain 9.5 L of the supernatant. This step was performed three times to obtain about 28 L of a methanol extract from a total of 3000 g of seed powder.
For the methanol extract, total activity, specific activity and yield were calculated in the same manner as in Test Example 1. Table 1 shows the results.
From Table 1, it was revealed that the insecticidal activity was improved by methanol extraction as compared with the case of the black bean seed powder 100%.
[0037]
(2) Distribution to various solvents
The methanol extract was concentrated and partitioned between water-saturated hexane, ethyl acetate, and water-saturated butanol.
An insecticidal activity test was performed on each of the obtained water-saturated hexane partition layer, ethyl acetate distribution layer, water-saturated butanol distribution layer, and the aqueous layer residue.
That is, in Test Example 1, in place of the bean seed powder, 3% of the hexane distribution layer, 3% of the ethyl acetate distribution layer, 1%, 2% and 3% of the butanol distribution layer, and 3% of the aqueous layer residue were used instead of the seed bean seed powder The eclosion rate was confirmed in the same manner except that artificial beans mixed in the above were used. FIG. 3 shows the results of the rate of emergence of artificial beans mixed with each distribution layer. In FIG. 3, the white part shows the result of the adzuki beetle and the black part shows the result of the weevil beetle.
[0038]
As is clear from FIG. 3, the artificial bean obtained by mixing the hexane distribution layer, the ethyl acetate distribution layer, and the aqueous layer residue has a high eclosion rate, and the insecticidal activity of the bean weevil as in the case of the artificial bean with 100% mungbean seed (cotyledon) powder. Was not found. On the other hand, the rate of emergence of artificial beans mixed with a butanol distribution layer was low for both of the two kinds of weevil. In the artificial bean mixed with 3% of the extract of the butanol partition layer, the minimum lethal concentration was found to be 3% since the emergence rate was 0%.
Thus, the total activity and specific activity of the artificial beans mixed with the butanol distribution layer were calculated in the same manner as in Test Example 1. Further, the yield was calculated. Table 1 shows the results.
As is clear from Table 1, the total activity and the specific activity are higher than those of the methanol extract.
From the above results, the insecticidal activity against two kinds of weevil was observed in the butanol partition layer, and it was subjected to the following purification.
[0039]
(3) Separation by silica gel column chromatography
The butanol partition was concentrated and eluted by silica gel column chromatography. The eluate was hexane: ethyl acetate = 90: 10, hexane: ethyl acetate = 60: 40, hexane: ethyl acetate = 40: 60, ethyl acetate, followed by ethyl acetate: methanol = 80: 20, ethyl acetate: methanol = 60. : 40, ethyl acetate: methanol = 40:60, methanol.
[0040]
Each eluted solution was concentrated, and the insecticidal activity against Azuki weevil was confirmed.
That is, an insecticidal test was performed in the same manner as in Test Example 1. As a result, an insecticidal activity against Azuki weevil was recognized in the concentrate of the solution eluted with ethyl acetate: methanol = 80: 20. Table 1 shows the results of the total activity, specific activity, and yield of the concentrate of ethyl acetate: methanol = 80: 20 against Azuki weevil.
[0041]
(4) Separation by gel chromatography
This concentrate of ethyl acetate: methanol = 80: 20 was dissolved in a small amount of 10% methanol (methanol: water = 10: 90) and separated by gel chromatography (2 × 120 cm) packed with LH-20. .
That is, 10% methanol was used as a starting solvent, and separation was performed with 100% methanol by a linear concentration gradient for 1400 minutes (flow rate: 2 ml / min, column temperature: 20 ° C.). Aliquots were taken every 10 minutes after sample addition. Each fraction collected was concentrated under reduced pressure and freeze-dried.
[0042]
For each fraction, the insecticidal activity against Azuki weevil was confirmed.
That is, artificial beans were prepared by mixing the above fractions, and an insecticidal test was carried out in the same manner as in Test Example 1 to calculate the emergence rate, total activity, and specific activity. As a result, a fraction having an insecticidal activity against Azuki weevil was obtained. Table 1 shows the results of the total activity, specific activity and yield of the fraction having the insecticidal activity against Azuki weevil.
[0043]
(5) Separation by HPLC
Fractions showing insecticidal activity against Azuki weevil were purified by HPLC (Shimadzu). The columns used were Senshu Kagaku ODS-C18 (20 × 250 mm and 10 × 250 mm) and Shiseido ODS-UC18 (4.6 × 250 mm). The detection wavelength was the absorbance of 200 to 400 nm.
That is, first, a fraction in which insecticidal activity against adzuki beetle was recognized was purified using ODS-UC18 (4.6 × 250 mm), a flow rate of 0.8 ml / min, a column temperature of 40 ° C., and an eluent 20% acetonitrile (acetonitrile: water = 20: 80). analyzed. The result of HPLC is shown in FIG. As is clear from FIG. 4, seven peaks (Nos. 1 to 7) were detected.
[0044]
Each peak was collected to confirm the insecticidal activity. That is, an insecticidal test was performed in the same manner as in Test Example 1 except that an artificial bean in which each peak was mixed was calculated, and the emergence rate, total activity, and specific activity were calculated.
As a result, the insecticidal activity of Azuki weevil was observed at a peak at an elution time of 17-18 minutes (Nos. 6 and 7). Table 1 shows the results of the total activity, specific activity, and yield on the adzuki beetle for the peaks (Nos. 6 and 7) at 17-18 minutes.
[0045]
Peaks with elution times of 17-18 minutes (Nos. 6 and 7) were collected on ODS-C18 (20 × 250 mm and 10 × 250 mm). Since this peak consists of two peaks, the freeze-dried product of the further collected peak was separated by Shiseido ODS-C18 (4.6 × 250 mm).
The insecticidal activity of the No. 6 peak was confirmed. That is, an insecticidal test was performed in the same manner as in Test Example 1 except that artificial beans mixed with 0.05%, 0.1%, and 0.2% of No. 6 peak were respectively calculated, and the emergence rate was calculated. FIG. 5 shows the results of the rate of emergence of the artificial beans mixed with the peak of No. 6. In FIG. 5, the white part shows the result of the adzuki beetle, and the black part shows the result of the weevil beetle.
[0046]
As is clear from FIG. 5, the emergence rate of the artificial beans mixed with the extract of the peak of No. 6 was lower for the adzuki bean weevil. In the artificial bean in which the peak of No. 6 was mixed at the ratios of 0.1% and 0.2%, the minimum lethal concentration was found to be 0.1% since the eclosion rate against Azuki weevil was 0%.
Thus, the total activity and the specific activity of the artificial beans mixed with the extract of the No. 6 peak were calculated in the same manner as in Test Example 1. Further, the yield was calculated. The results are shown in Table 1.
[0047]
[Table 1]
Table 1 [Insecticidal activity of the extract in each purification step]
Figure 0003574866
[0048]
As is clear from Table 1, the peak of No. 6 has a low total activity and a high specific activity.
From the above results, the pesticidal weevil insecticidal activity was recognized at the peak of No. 6, and subjected to the following analysis.
[0049]
The compound contained in the lyophilized product of the No. 6 peak was analyzed by high-resolution mass spectrometry using a Fourier transform ion cycloton resonance mass spectrometer (FTICR-MS). As a result, [M + H]+Is m / z 435.12854, [M-H]Was observed at m / z 433.11418. Note that M = C21H23O10Is calculated as [M + H]+Is m / z 435.12857, [M-H]Is m / z 433.11402.
Further, the lyophilized product of the No. 6 peak was analyzed by one-dimensional and two-dimensional NMR, UV, and circular dichroism spectra (CD). As a result, the No. 6 peak was represented by the above formula [I]. Compound 8-C-β-D-glucosyl- (S) -naringenin.
[0050]
From the above results, it was found that the adzuki beetle insecticidal substance contained in the beetle seeds was a known compound, 8-C-β-D-glucosyl- (S) -naringenin, but this compound was a beetle No insecticide (insect resistance) has been known so far.
[0051]
Example 2 [Production of 6-C-β-D-glucosyl- (S) -naringenin]
In Example 1, adzuki bean weevil insecticidal substance 8-C-β-D-glucosyl- (S) -naringenin was separated from red bean vine.
However, as shown in FIG. 1, the beetle seeds also show resistance to the weevil beetle, and are presumed to contain insecticidal substances other than 8-C-β-D-glucosyl- (S) -naringenin.
In Example 1, the insecticidal activity against the weevil beetle was inactivated when eluted by silica gel column chromatography. Therefore, use of silica gel was avoided, and an attempt was made to separate a substance having insecticidal properties against the adzuki beetle and the beetle weevil. Was. FIG. 6 shows the procedure for separation and purification.
[0052]
(1) Methanol extraction
Cranberry seeds (1000 g) were pulverized with a high-speed pulverizer. 10 L of 85% methanol (methanol: water = 85: 15) was added to the pulverized seed powder, and the mixture was continuously extracted for 48 hours (4 ° C.). The extract was filtered to obtain 9.5 L of a supernatant. This step was performed four times to obtain about 38 L of a methanol extract from a total of 4000 g of seed powder.
For this methanol extract, the total activity, specific activity, and yield were calculated in the same manner as in Test Example 1. Table 2 shows the results.
Table 2 shows that the insecticidal activity was improved by methanol extraction.
[0053]
(2) Distribution to various solvents
The methanol extract was concentrated and partitioned between water-saturated hexane, ethyl acetate, and water-saturated butanol. The butanol layer was concentrated and freeze-dried.
The insecticidal activity of each distribution layer against two kinds of weevil was confirmed.
That is, artificial beans were prepared by mixing the respective distribution layers, and an insecticidal test was performed in the same manner as in Test Example 1. As a result, insecticidal activity was observed in the butanol separation layer. Table 2 shows the results of the total activity, specific activity and yield of the butanol separation layer for the two kinds of weevil.
[0054]
(3) Separation by gel chromatography
The lyophilized butanol partition was dissolved in a small amount of 10% methanol (methanol: water = 10: 90). The dissolved sample was separated by gel chromatography (6 × 100 cm) packed with LH-20. Using 10% methanol as a starting solvent, separation was performed by a linear concentration gradient for 48 hours between 100% methanol (flow rate: 5 ml / min, column temperature: 20 ° C.). Samples were taken every 10 minutes from 120 minutes after sample addition. Each fraction collected was concentrated under reduced pressure. Insect-killing fractions were identified for the adzuki beetle and the beetle weevil.
[0055]
The insecticidal activity against the adzuki beetle and the beetle beetle was confirmed for each fraction.
That is, artificial beans were prepared by mixing the above fractions, and an insecticidal test was carried out in the same manner as in Test Example 1 to calculate the emergence rate, total activity, and specific activity. As a result, fractions having insecticidal activity against two kinds of beetles were obtained. Table 2 shows the results of the total activity, specific activity and yield of the fraction in which insecticidal activity was observed.
[0056]
(4) Separation by HPLC
Fractions showing insecticidal activity were purified by HPLC (Shimadzu). The columns used were Senshu Kagaku ODS-C18 (20 × 250 mm and 10 × 250 mm) and Shiseido ODS-UC18 (4.6 × 250 mm). The detection wavelength was the absorbance of 200 to 400 nm.
That is, the fractions that showed insecticidal activity between the adzuki beetle and the beetle weevil were treated with ODS-UC18 (4.6 × 250 mm), flow rate 0.8 ml / min, column temperature 30 ° C., eluent 15% acetonitrile + 0.1% formic acid (acetonitrile: water) = 15: 75), five peaks were detected as shown in FIG. 7 (Nos. 1 to 5). Each peak was separated and concentrated.
[0057]
The insecticidal activity of each peak was confirmed. That is, an artificial bean was prepared by mixing the above peaks, and an insecticidal test was carried out in the same manner as in Test Example 1. As a result, it was found that the insecticidal activity was observed in the adzuki beetle and the beetle beetle by elution time of 16 to 17 minutes. (No. 4).
[0058]
The 16-17 minute peak (No. 4) was separated by ODS-C18 (20 × 250 mm and 10 × 250 mm).
The insecticidal activity of the No. 4 peak was confirmed. That is, an insecticidal test was carried out in the same manner as in Test Example 1 except that artificial beans were prepared by mixing 0.1%, 0.2% and 0.3% of No. 4 peak, respectively, and the emergence ratio was calculated.
FIG. 8 shows the results of the rate of emergence of artificial beans mixed with the peak of No. 4. In FIG. 8, the white part shows the result of the adzuki beetle and the black part shows the result of the weevil beetle.
[0059]
As is clear from FIG. 8, the emergence rate of the artificial beans mixed with the extract of the No. 4 peak was low for both of the two kinds of weevil. In the artificial bean in which 0.1% and 0.2% of the No. 4 peak were mixed respectively, since the emergence rate against the weevil was 0%, the minimum lethal concentration was found to be 0.1%.
Thus, the total activity and the specific activity of the artificial beans mixed with the extract of the No. 4 peak were calculated in the same manner as in Test Example 1. Further, the yield was calculated. The results are shown in Table 2.
[0060]
[Table 2]
Table 2 [Insecticidal activity of the extract in each purification step]
Figure 0003574866
[0061]
As is clear from Table 2, the peak of No. 4 has low total activity and high specific activity.
From the above results, the insecticidal activity against the adzuki beetle and the weevil beetle was recognized in the peak of No. 4 and subjected to the following analysis.
[0062]
The compound contained in the lyophilized product of the No. 4 peak was analyzed by high-resolution mass spectrometry using a Fourier transform ion cycloton resonance mass spectrometer (FTICR-MS). As a result, [M + H]+Is m / z 435.12854, [M-H]Was observed at m / z 433.11405. Note that M = C21H23O10Is calculated as [M + H]+Is m / z 435.12857, [M-H]Is m / z 433.11402.
Further, the lyophilized product of the No. 4 peak was analyzed by one-dimensional and two-dimensional NMR, UV, and circular dichroism spectra (CD). As a result, the No. 4 peak was represented by the above formula [II]. Compound 6-C-β-D-glucosyl- (S) -naringenin.
[0063]
From the above results, it was found that one of the adzuki beetle insecticidal substances contained in the bean seeds seeds was a known compound, 6-C-β-D-glucosyl- (S) -naringenin. Has no insecticidal properties (insect resistance) against beetles.
[0064]
【The invention's effect】
The insecticidal composition of the present invention according to claim 1 is a pesticidal composition that has insect resistance and damages legume weevil that damages legume seeds (edible bean seeds such as adzuki beans, cowpea and mung bean) during ripening and storage. It can be effectively controlled.
Moreover, the active ingredient in the insecticidal composition of the present invention according to claim 1 is not produced using organic synthesis, but is derived from natural (plant). That is, since all the active ingredients are components contained in edible vine adzuki bean seeds, it is considered that the safety is high.
The insecticidal composition of the present invention according to claim 1 has specific and selective insect resistance to bean weevil such as adzuki beetle and beetle beetle among the stored pests.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing the number of adults emerged from artificial beans mixed with vine adzuki bean seed powder.
FIG. 2 shows a procedure up to separation and purification of 8-C-β-D-glucosyl- (S) -naringenin from a red bean seed.
FIG. 3 is a diagram showing the emergence rate of artificial beans mixed with each solvent distribution layer.
FIG. 4 shows the results of HPLC.
FIG. 5 is a diagram showing the emergence rate of artificial beans mixed with No. 6 peaks.
FIG. 6 From a vine adzuki bean seed6- C -Β- D -Glucosyl- (S) -naringeninThis is the procedure up to separation and purification.
FIG. 7 is a view showing a result of HPLC.
FIG. 8 is a diagram showing the emergence rate of artificial beans mixed with No. 4 peaks.

Claims (3)

8−C−β−D−グルコシル−(S)−ナリンゲニン及び/又は 6 C −β− D −グルコシル−(S)−ナリンゲニンを有効成分として含有する殺虫性組成物。8-C-β-D- glucosyl - (S) - naringenin and / or 6 - C -β- D - glucosyl - (S) - insecticidal composition containing as an active ingredient naringenin. 殺虫性組成物が、貯穀害虫用殺虫性組成物である請求項1記載の殺虫性組成物。The insecticidal composition according to claim 1, wherein the insecticidal composition is a pesticidal composition for stored grain pests. 貯穀害虫が、マメゾウムシ類である請求項2記載の殺虫性組成物。The insecticidal composition according to claim 2, wherein the stored grain pest is a weevil.
JP2001331821A 2001-10-30 2001-10-30 Insecticidal composition Expired - Lifetime JP3574866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331821A JP3574866B2 (en) 2001-10-30 2001-10-30 Insecticidal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331821A JP3574866B2 (en) 2001-10-30 2001-10-30 Insecticidal composition

Publications (2)

Publication Number Publication Date
JP2003137709A JP2003137709A (en) 2003-05-14
JP3574866B2 true JP3574866B2 (en) 2004-10-06

Family

ID=19147323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331821A Expired - Lifetime JP3574866B2 (en) 2001-10-30 2001-10-30 Insecticidal composition

Country Status (1)

Country Link
JP (1) JP3574866B2 (en)

Also Published As

Publication number Publication date
JP2003137709A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
Jacobson Focus on phytochemical pesticides
KR100852398B1 (en) Composition for controlling noxious animals in horticultural crops and using method thereof
WO2016073471A1 (en) Compositions and methods to selectively control species
Owusu et al. Bioactivities of Candlewood, Zanthoxylum xanthoxyloides (Lam.) solvent extracts against two stored-product insect pests
JP2014510051A (en) Insect pest control
JP3716975B2 (en) Novel naringenin derivatives and uses thereof
Morehead Efficacy of organic insecticides and repellents against brown marmorated stink bug in vegetables
JP3574866B2 (en) Insecticidal composition
Chiu Effectiveness of Chinese insecticidal plants with reference to the comparative toxicity of botanical and synthetic insecticides
KR101537758B1 (en) Method for Preparing Extract of Aconitum ciliare Decaisne, Melia azedarach Linne var. japonica Makino and Rumex crispus L.
KR20130026742A (en) The preparations method of mosquito and harmful insect eradication such as a natural insecticide extracted from the ginkgo tree ingredient
KR20170140546A (en) Vermin-repelling composition
Passerini et al. Field and laboratory trials using a locally produced neem insecticide against the Sahelian grasshopper, Kraussaria angulifera (Orthoptera: Acrididae), on millet in Mali
Aditama et al. Optimizing of maseration with ethanol and water solvents against the toxicity of extract of wuluh starfruit (Averrhoa bilimbi L.) in controlling larva of Aedes aegypti.
KR102231598B1 (en) An insecticide composition containing trigonella foenum extracts
KR101621037B1 (en) Agrochemical composition for controlling scale insect pest comprising Quisqualis indica extract
Ilesanmı et al. Sesamum indicum and Trichilia heudelotii N-hexane and Ethanol Extracts: Effective Remedy Against Callosobruchus maculates F.(Coleoptera: Chrysomelidae) Infesting Cowpea Grains
Neima et al. Insecticidal effect of some plant extracts on the Alfalfa Weevil Hypera postica (Coleoptera: Curculionidae)
Saradamma Biological activity of different plant extracts with particular reference to their insecticidal, hormonal and antifee ding actions
Sain et al. Greenhouse evaluation of rice cultivars for resistance to gall midge, Orseolia oryzae (Wood-Mason) and studies on mechanism of resistance
KR100865745B1 (en) Composition for controlling meloidogyne spp. comprising extract of qullaja saponaria
KR101957249B1 (en) Larvicide comprising a compound from Sophora flavescens as effective component and uses thereof
KR20100091611A (en) Composition containing brassica napus extracts for controlling noxious insects in horticultural crops and using method thereof
Reda et al. Efficacy of two plant extracts against Pectinophora gossypiella (Saunders) and affected biological aspects under laboratory conditions
JPS59205391A (en) Novel substance

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Ref document number: 3574866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term