JP3574297B2 - Method for producing polystyrene resin foam and polystyrene resin foam produced by the method - Google Patents
Method for producing polystyrene resin foam and polystyrene resin foam produced by the method Download PDFInfo
- Publication number
- JP3574297B2 JP3574297B2 JP18657597A JP18657597A JP3574297B2 JP 3574297 B2 JP3574297 B2 JP 3574297B2 JP 18657597 A JP18657597 A JP 18657597A JP 18657597 A JP18657597 A JP 18657597A JP 3574297 B2 JP3574297 B2 JP 3574297B2
- Authority
- JP
- Japan
- Prior art keywords
- foam
- weight
- polystyrene resin
- foaming
- polystyrene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Molding Of Porous Articles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、主として建築、土木用資材として使用し得るポリスチレン系樹脂発泡体の製造方法および該方法により製造されたポリスチレン系樹脂発泡体に関する。
【0002】
【従来の技術】
建築資材等に多く用いられるポリスチレン系樹脂押出発泡体の製造に当たっては、ポリスチレン系樹脂に、液相ないし固相から気相への体積膨張を利用し樹脂を発泡させる物理型発泡剤を用いる方法が多く用いられている。
【0003】
しかし、物理型発泡剤は、単に体積膨張によりポリスチレン系樹脂が発泡するということだけではなく、発泡体中の気泡サイズ、気泡の成長速度、さらに製造された発泡体の気泡内に発泡剤が含まれることによる断熱性の発現等、発泡体の機械特性等に大きな影響を及ぼすことが明らかになっている。このため、該押出発泡技術の開発に際しては、所望の性能を得るために物理型発泡剤の選択が主な研究課題となってきた。
【0004】
近年、物理型発泡剤としては従来から使用されている塩素原子含有フロンに対して、オゾン層保護の観点から、また、安価であるという点から、さらに塩素原子含有フロンに対して温室効果が小さいこと、しかも安全性の面で問題の無いという点から、二酸化炭素を物理型発泡剤として用いる試みがなされている(特開昭51−7068号公報、特公平6−41161号公報、特開平3−81346号公報など)。
【0005】
しかしながら、二酸化炭素を発泡剤として単独で使用した場合、押し出し温度が比較的高く冷却速度が遅い場合があり、得られる発泡体は、表面性がわるく、独立気泡率が低いものか、倍率の低いものとなる傾向がある(特開平3−81346号公報など)。
【0006】
一方、ポリスチレン系樹脂発泡体の製造においては、塩化メチル、塩化エチルなどの含塩素化合物が、ポリスチレン系樹脂の溶融粘度を低減させ、より低い温度で発泡可能なゲルを形成し、独立気泡率と倍率の向上を期待する物理型発泡剤として広く使用されている(特公昭41−672号公報など)。このように、塩化メチル等を使用すると外観は向上することも知られている。
【0007】
しかしながら、前記塩化メチル、塩化エチル等は、塩素を含有する発泡剤であることから、できれば塩素を含有しない化合物を用いて良好な発泡体が得られることが望まれている。
【0008】
これに関連して、ポリスチレン系樹脂の溶融粘度を下げる試みとして、ポリスチレン系樹脂単独重合体と他の共重合体とを混合すること、ポリスチレン系樹脂の可塑剤を加えること等が検討されてきた(特表平8−510495号公報など)。しかし、樹脂の溶融粘度を予め下げるこれらの試みによって得られた発泡体は、可塑剤などが発泡体のセルを形成する樹脂中に残るため、圧縮強度など物理的特性が低下したり、耐熱性に劣る傾向がある。
【0009】
【発明が解決しようとする課題】
本発明は、前記の点に鑑み、労働衛生上および環境衛生上問題がなく、高発泡倍率および高独立気泡率を有し、しかも外観美麗なポリスチレン系樹脂発泡体の製造方法および該製造方法により製造されたポリスチレン系樹脂発泡体を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者等は、上記課題の解決のため鋭意研究の結果、ポリスチレン系樹脂を押出発泡するに際し、塩素原子を含有しない化合物を発泡剤及び塩素原子を有さない発泡助剤を用い、発泡剤として、発泡剤全重量に対して60重量%を超え80重量%未満である二酸化炭素を含むものを使用し、発泡助剤として、ポリスチレン系樹脂の溶融粘度を一定量低下させ、かつ高い透過性を有し、製造後の発泡体中に残留する量が低量である発泡助剤を使用することで、オゾン層破壊や地球温暖化傾向が小さく環境適合性に優れ、断熱性と機械物性に優れ、さらに外観に優れたポリスチレン系樹脂押出発泡体を得ることが出来ることを見出し、本発明を完成するに至った。
【0011】
即ち、本発明は、(1)ポリスチレン系樹脂を加熱し溶融させ、発泡剤を配合し発泡可能なゲル状物質となし、該ゲル状物質を発泡に適する温度に冷却し、該ゲル状物質をダイを通して、より低圧の領域に押出して、発泡体を形成する各工程を含むポリスチレン系樹脂発泡体の製造方法において、分子中に塩素原子を含まない発泡剤及び分子中に塩素原子を含まない発泡助剤を使用し、
該発泡剤として、発泡剤の全重量に対して60重量%を超え80重量%未満の二酸化炭素を含むものを使用し、
該発泡助剤として、下記(a)〜(c)の性質:
(a)ポリスチレン系樹脂100重量部に対して5重量部添加し、170℃で剪断速度122s−1で測定した溶融粘度が該ポリスチレン系樹脂のみについて同一条件で測定した溶融粘度の2分の1以下となる、
(b)該ポリスチレン系樹脂からつくられた膜に対する25℃での透過速度が同一条件での空気の透過速度よりも大きい、
(c)臨界温度が押し出し時の樹脂温度以上である、
を具備するものを使用することを特徴とするポリスチレン系樹脂発泡体の製造方法に関する。
【0012】
さらに本発明は、(2)発泡助剤が30〜90℃の沸点を有する、エーテル類、ケトン類、エステル類よりなる群から選ばれた少なくとも1種であることを特徴とする前記(1)項記載のポリスチレン系樹脂発泡体の製造方法に関する。
【0013】
さらに本発明は、前記(1)又は(2)項記載の方法により製造され、該発泡体の全重量に対して0.01重量%以上1重量%以下の発泡助剤を発泡体中に含有することを特徴とするポリスチレン系樹脂発泡体に関する。
【0014】
【発明の実施の形態】
本発明に用いられるポリスチレン系樹脂は、発泡可能であればよく、特に限定されない。
【0015】
前記ポリスチレン系樹脂の代表例としては、例えばスチレン;o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、α−メチルスチレン、β−メチルスチレン、ジメチルスチレン、トリメチルスチレンなどのメチルスチレン類;α−クロロスチレン、β−クロロスチレン、o−クロロスチレン、m−クロロスチレン、p−クロロスチレン、ジクロロスチレン、トリクロロスチレンなどのクロロスチレン類;α−ブロモスチレン、β−ブロモスチレン、o−ブロモスチレン、m−ブロモスチレン、p−ブロモスチレン、ジブロモスチレン、トリブロモスチレンなどのブロモスチレン類;α−フルオロスチレン、β−フルオロスチレン、o−フルオロスチレン、m−フルオロスチレン、p−フルオロスチレン、ジフルオロスチレン、トリフルオロスチレンなどのフルオロスチレン類;o−ニトロスチレン、m−ニトロスチレン、p−ニトロスチレン、ジニトロスチレン、トリニトロスチレンなどのニトロスチレン類;o−ヒドロキシスチレン、m−ヒドロキシスチレン、p−ヒドロキシスチレン、ジヒドロキシスチレン、トリヒドロキシスチレンなどのビニルフェノール類;o−ジビニルベンゼン、p−ジビニルベンゼンなどのジビニルベンゼン類;o−ジイソプロペニルベンゼン、m−ジイソプロペニルベンゼンなどのジイソプロペニルベンゼン類などのスチレン系化合物の単独重合体、該スチレン系化合物の2種以上からなる共重合体、該スチレン系化合物とメチルメタクリレート、アクリロニトリル、ブタジエンなどの共重合可能なモノマーとの共重合体などがあげられる。前記ポリスチレン系樹脂は、単独でまたは2種以上を混合して用いられる。
【0016】
本発明において使用される発泡剤は、二酸化炭素を主発泡剤とし、これと他の分子中に塩素原子を含有しない物理型発泡剤の混合物である。
【0017】
前記二酸化炭素以外の物理型発泡剤としては、一般にポリスチレン系樹脂押出発泡に好適に使用される沸点30℃以下の炭化水素類、フッ化炭化水素類、エーテル類等があげられる。該炭化水素類としては、例えば、プロパン(−42.1℃(沸点を示す、以下同様))、n−ブタン(−0.5℃)、i−ブタン(−11.7℃)、i−ペンタン(27.9℃)等、フッ化炭化水素類としては、ジフルオロメタン(HFC−32、−51.7℃)、トリフルオロメタン(HFC−23、−82.0℃)、1,1−ジフルオロエタン(HFC−152a、−24.1℃)、1,1,1−トリフルオロエタン(HFC−143a、−47.3℃)、1,1,1,2−テトラフルオロエタン(HFC−134a、−26.2℃)等、エーテル類としては、ジメチルエーテル(−24.8℃)、メチルエチルエーテル(6.6℃)等があげられる。
【0018】
全発泡剤に占める二酸化炭素の量は労働衛生、環境衛生上の観点から主発泡剤として使用される量である60重量%を超え80重量%未満が好ましい。60重量%以下では環境適合性の高い二酸化炭素を使用する効果が薄れる上、可燃性である前記発泡助剤の燃焼性が発泡体中に現れやすくなり、産業上の利用分野が制約されやすくなる。80重量%以上では二酸化炭素が多すぎて表面性の悪化や独立気泡率の低下を十分に解消することができない。
【0019】
さらに発泡剤の合計重量は、二酸化炭素を主にした発泡剤を用いて高発泡倍率を有する発泡体を製造するために、ポリスチレン系樹脂100重量部に対して2重量部以上、なかんづく5重量部以上であることが好ましく、また気泡径の分布を良好にし、気泡を破壊されにくくして断熱性の向上を図るためには、ポリスチレン系樹脂100重量部に対して20重量部以下、なかんづく15重量部以下であることが望ましい。
【0020】
さらに本発明においては、発泡助剤として、分子構造中に塩素原子を含まないものであって、
(a)ポリスチレン系樹脂100重量部に対して5重量部添加し、170℃で剪断速度122s−1で測定した溶融粘度が該ポリスチレン系樹脂のみについて同一条件で測定した溶融粘度の2分の1以下となる、
(b)該ポリスチレン系樹脂からつくられた膜に対する25℃での透過速度が同一条件での空気の透過速度よりも大きい、
(c)臨界温度が押し出し時の樹脂温度以上である、
との性質を具有する発泡助剤(以下非塩素系発泡助剤と称する)を、前述のようにポリスチレン系樹脂の押し出し発泡において二酸化炭素を含む発泡剤と同時に使用することが、大きな特徴である。
【0021】
ここで、前記のごとき非塩素系発泡助剤の使用は、まず以下に示すような樹脂の溶融剪断粘度に関する本発明者らの検討に基づいている。
【0022】
既に述べたようにポリスチレン系樹脂の押出発泡においては、一般に、物理型発泡剤を溶融したポリスチレン系樹脂中に加圧注入して高圧状態で混合し、押出機のダイより大気中に押出して急激に膨張させて発泡させる方法が採用されている。
【0023】
ダイスより発泡可能なゲルを押し出しするに際しては、その温度が高いと発泡ゲルが固化する、即ち気泡膜が固定するまでの時間が長く、比較的長時間弾性率が低い状態が維持されるため、せっかく生じた気泡が破れてしまう。
【0024】
これに対し塩化メチル等を添加すると、低温で発泡可能なゲルの粘度を達成でき、この現象を回避できる。
【0025】
図1の曲線Aは、ポリスチレン100重量部に添加された塩化メチルの量と該塩化メチルが添加されたポリスチレンの溶融剪断速度(樹脂温度:170℃、剪断速度:122s−1)との関係を表すグラフを、および曲線Bは、ポリスチレン100重量部に添加された塩化エチルの量と該塩化エチルが添加されたポリスチレン100重量部に添加された塩化エチルの量と該塩化エチルが添加されたポリスチレンの溶融剪断粘度(樹脂温度:170℃、剪断速度:122s−1)との関係を表すグラフを示す。なお、前記ポリスチレンは後記実施例で使用したものであり、その溶融剪断速度の測定の詳細は実施例に示す。
【0026】
図1のグラフA、Bから明らかなように、通常ポリスチレン系樹脂押出発泡体の製造の際に用いられている塩化メチルまたは塩化エチルを、たとえばポリスチレン100重量部に対して4重量部以上添加したばあいには、その溶融剪断粘度は、ポリスチレン単体の溶融剪断粘度に比べて半減し、比較的低温において発泡に適する粘度を達成できる。
【0027】
しかし粘度が低すぎると、得られた発泡体が収縮を生じることがあったり、発泡体の耐熱温度が低下したりすることがある。
【0028】
非塩素系発泡助剤の添加量は発泡体となった際の該発泡助剤の残存量、発泡体からの散逸状態ないしは速度との兼ね合いもあるため、非塩素系発泡助剤の粘度低減性能を評価する場合の添加量を一概に決めることは困難であるが、おおむね5重量部添加した場合に170℃、剪断速度122s−1で測定した粘度の低下が該発泡助剤を添加しない場合に比較して1/2程度以下になるものが好ましい。
【0029】
非塩素系発泡助剤についての粘度を低減する性能は、ポリスチレン系樹脂と非塩素系発泡助剤の混練状態、押し出し機出口の状態、押し出し装置での温度低下を想定して評価することにより、最も産業上利用価値の高い評価となる。この点から、押し出しの場合、170℃、剪断速度122s−1という条件が押し出し機ダイス部の状態を評価するのに適しており、キャピログラフ装置等で容易に溶融粘度を測定することができる。
【0030】
さらに粘度低減性能以外についても非塩素系発泡助剤が具有すべき重要な特性についても見出した。
【0031】
気泡が安定的に固定されるには、溶融状態から迅速に固化し、強固な膜を形成しなければならない。迅速な固化を生じるには、押出発泡時に発泡剤ないし発泡助剤が液ないしは固体から気体へと相変化を生じる際の気化熱冷却が有効に作用されるため、これに従うならば気化熱を利用するためには例えば臨界温度が100℃以上、好ましくは押し出し時の樹脂温度以上であることが必要である。
【0032】
また、発泡助剤が多量に発泡体中に含有されると、圧縮強度、曲げ強度といった機械物性が低下する上、通常温度が高くなるにつれて粘度、即ち弾性が低下する傾向が発現するために機械物性低下が顕著になる。このため発泡体中に残留する発泡助剤は速やかに問題を生じない程度にまで低減されるべきである。さらに速やかに発泡体外へ散逸させることで粘度が上昇し発泡体の温度を低下させたのと同等の効果を付与することもできる。ただし、微量の残留は、一般に硬く脆い発泡体に対しては柔軟性の発現などにおいて好ましい。
【0033】
発泡体外への物質の散逸速度は、ポリスチレン系樹脂膜に対する該物質の透過速度と空気の透過速度との大小関係をもって評価される。即ち、空気の透過速度と該物質の透過速度を比較し、該物質の透過速度の方が大であれば、速やかに発泡体外へ排出される。また、該透過速度は、一方に測定物質、他方に不活性ガスを充填した例えば25℃のチャンバーをポリスチレン系樹脂膜をへだてて接合し、不活性ガス側に漏れだした該測定物質の量をガスクロマトグラフ装置等で一定時間毎に定量し、不活性ガス側への漏れだし開始から安定状態に至るまでの時間と量から速度を容易に算出することができる。この際、沸点が25℃より高い物質は1気圧に達しないため、空気との混合ガスでの飽和蒸気を用い、蒸気分圧を基準に空気との速度の大小を評価すればよい。
【0034】
前記気化熱と発泡体外への散逸による冷却効果により、気泡膜が迅速に固化・固定するため、気泡の破壊を防止することができ、安定して高発泡倍率を有する発泡体を得ることができる。
【0035】
以上の検討の結果として、ポリスチレン系樹脂に添加することにより、該ポリスチレン系樹脂に対する粘度低下効果を充分に発現し、発泡体外への散逸が速く、臨界温度が押し出し時の樹脂温度以上で、さらに塩素原子を含有しない化合物である、との要件を具備する発泡助剤として好適に使用しうる物質としては、30〜90℃の沸点を有するエーテル類、ケトン類、エステル類が好ましい。
【0036】
本発明で発泡助剤として用いられる、エーテル類、ケトン類、エステル類としては、例えば、エチルエーテル(34.6℃)、メチラール(42.3℃)、イソプロピルエーテル(68.3℃)、フラン(31.3℃)、2−メチルフラン(62〜64℃)、テトラヒドロフラン(66℃)、テトラヒドロピラン(88℃)などのエーテル類;アセトン(56.2℃)、メチルエチルケトン(79.6℃)などのケトン類;ギ酸エチル(54.3℃)、ギ酸プロピル(81.3℃)、酢酸メチル(57.8℃)、酢酸エチル(77.1℃)、酢酸イソプロピル(89.0℃)、プロピオン酸メチル(79.7℃)などのエステル類などが好ましく例示され、これらは単独でまたは2種以上を混合して用いることができる。
【0037】
これらの中では、ポリスチレン系樹脂100重量部に対して5重量部以下という少量の使用で、通常ポリスチレン系樹脂押出発泡体の製造の際に使用される塩化メチル、塩化エチルの可塑化効果と同等の効果が発現するという点、安全性、価格の点からメチラール、フラン、2−メチルフラン、テトラヒドロフラン、アセトン、メチルエチルケトン、ギ酸エチルがより好ましい。
【0038】
発泡助剤の使用量は、得られる発泡体の耐熱物性に悪影響を及ぼさない量、すなわちポリスチレン系樹脂100重量部に対して5重量部以下、好ましくは3重量部以下が好ましい。さらに下限は本発明の効果が発揮される量であればよく、例えば0.5重量部以上が好ましい。
【0039】
前述のように全発泡剤に占める二酸化炭素の量は前記の通り労働衛生上及び使用制約上の要請より60重量%を超える量である。さらに二酸化炭素は全発泡体中で80重量%未満であることが好ましい。80重量%を超えると該発泡助剤の少量の添加では独立気泡率の向上効果が薄く、従って機械物性の低下が生じる。
【0040】
一方該発泡助剤を増して使用すると独立気泡率は向上するが、同時に発泡体中に残留する発泡助剤の量も増加する。この場合に耐熱性の低下を引き起こすことは前述の通りである。二酸化炭素量を60重量%以下にした場合においても該発泡助剤を使用することも有効ではあるが、二酸化炭素量を減らせば、他の発泡剤が主たる発泡剤となり、価格、可燃性等の点で課題を生じることがある。本発明の他の特徴は価格、労働衛生、環境適合、製造設備・管理コストに優れた二酸化炭素の有する産業上の欠点を克服し高度に利用する点にあるので、本発明の趣旨とも合致しない。
【0041】
特に二酸化炭素の最適量は、使用する発泡助剤の種類と量により影響されるため一概に決めることができないが、65〜75重量%の範囲が特に機械物性の良い良好な発泡体が得られる。
【0042】
このように本発明は、例えば樹脂改質といった本質的な強度、物性に関わる部分に対する改変を行わずとも、ポリスチレン系樹脂に対して粘度低減効果を有し、沸点が30〜90℃の塩素を含まないエーテル類、ケトン類、エステル類の少なくとも一種類を発泡助剤として使用することが、本発明における大きな特徴の一つであり、また、二酸化炭素を主たる発泡剤として用い、発泡助剤として該エーテル類、ケトン類、エステル類の少なくとも一種を併用して使用することも、本発明における大きな特徴の1つである。
【0043】
さらに、本発明においては、必要に応じて、本発明の目的が阻害されない範囲内で、酸化防止剤、金属不活性剤、リン系安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸などの安定剤、造核剤、滑剤、充填剤、強化剤、顔料、難燃剤、帯電防止剤などの一般に用いられている添加剤を適宜添加してもよい。
【0044】
本発明のポリスチレン系樹脂押出発泡体は、発泡操作自体は公知の押出発泡法で製造することができる。例えば、ポリスチレン系樹脂および必要に応じて添加剤を所定量混合し、これらを加熱溶融混練したのち、これに発泡剤および発泡助剤を添加ないし圧入して調製した発泡性樹脂組成物を高温高圧下で混合し、ついで低圧域に押出して発泡させることにより、本発明の発泡体が得られる。
【0045】
前記樹脂混合物を加熱溶融混練する際の加熱温度、溶融混練時間および溶融混練手段については、特に制限がない。加熱温度は、ポリスチレン系樹脂が溶融する温度以上、通常150℃〜250℃程度であればよい。溶融混練時間は単位時間あたりの押出量、溶融混練手段などによって異なるので一概に決定することはできないが、通常ポリスチレン系樹脂と、たとえば添加剤とが均一に分散するのに要する時間が選ばれる。また溶融混練手段としては、例えばスクリュータイプの押出機など、通常の押出発泡の際に用いられているものであれば、特に制限がない。
【0046】
なお、前記発泡剤および発泡助剤は、加熱溶融混練物中に、一括して同時に添加ないし圧入してもよく、また分割して添加ないし圧入してもよい。本発明はかかる発泡剤の添加ないし圧入の方法によって限定されるものではない。
【0047】
また、前記発泡剤および発泡助剤を加熱溶融混練物に圧入するばあいの圧力は、とくに制限がなく、押出機内に圧入するために、押出機の内圧よりも高い圧力であればよい。
【0048】
前記発泡剤および発泡助剤が添加ないし圧入された加熱溶融混練物は、つぎに、スリットダイなどの通常用いられている発泡装置を介して、たとえば大気圧下などの低圧域へ押出し、発泡される。その際、押し出し時の樹脂温度を100〜120℃という低い温度とすることができ、添加する発泡助剤の種類と量により変動はあるが、発泡助剤を添加しない場合に比しおおむね30〜40℃程度押出し温度を下げることが可能となり、工業的に極めて有用である。
【0049】
かくして発泡助剤として、ポリスチレン系樹脂の溶融粘度を下げ、発泡体からの抜けが速く残留しにくい、臨界温度が高い、30〜90℃の沸点を有するエーテル類、ケトン類、エステル類のうち少なくとも1種類を二酸化炭素を主たる成分とする発泡剤と併せて少量使用することにより、塩化メチル、塩化エチル等の含塩素化合物の添加による樹脂の粘度低減効果と同等の効果が得られ、発泡成形が可能となる程度にまで溶融樹脂粘度を下げたうえ、得られた発泡体中に発泡助剤がほとんど残留せず、発泡倍率および独立気泡率が高く、また外観美麗な、労働衛生環境に優れたポリスチレン系樹脂発泡体が得られる。
【0050】
発泡体中における発泡助剤の残存率[発泡体の製造後数日経過後(たとえば3日経過後)に発泡体に含まれる含有量(重量%)をいう]は、0.01重量%以上1重量%以下が好ましい。発泡助剤の残存率が前記範囲を超えると機械的性質が低下する傾向があり、一方前記範囲より少ないと発泡体が脆くなる傾向がある。
【0051】
本発明のポリスチレン系樹脂発泡体の製造方法によれば、各種断熱材、各種緩衝材、各種ディスプレイ板、各種浮板などとして好適に使用しうる、高発泡倍率、高独立気泡率、および外観美麗なポリスチレン系樹脂発泡体が得られる。これら発泡体は前記特性を必要とする任意の用途に使用することができるが、現在においては建築資材、土木資材、家具等がその好適な使用例である。
【0052】
前記本発明のポリスチレン系樹脂発泡体は、労働衛生上および環境衛生上問題のない二酸化炭素を主たる発泡剤として使用し、発泡倍率および独立気泡率が高く、また外観美麗なものであるが、かかるすぐれた特性を有する発泡体がえられたのは、従来技術の課題を解決すべく検討が重ねられたことに基づく。
【0053】
【実施例】
つぎに、本発明のポリスチレン系樹脂発泡体の製造方法およびえられた発泡体を実施例にもとづいてさらに詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。
【0054】
図1のグラフCに、ポリスチレン系樹脂(新日鐵化学(株)製、商品名:エスチレンG−17、メルトインデックス(MI):3.1)100重量部に対して添加したテトラヒドロフラン(THF)の量と、該テトラヒドロフランを添加したポリスチレンの溶融剪断粘度(樹脂温度:170℃、剪断速度:122s−1)との関係を表わすグラフを示す。また図1のグラフDに、前記ポリスチレン系樹脂100重量部に対して添加したアセトンの量と、該アセトンを添加したポリスチレンの溶融剪断粘度(樹脂温度:170℃、剪断速度:122s−1)との関係を表すグラフを示す。溶融剪断粘度は東洋精機(株)製キャピログラフに直径1mm長さ10mmのダイスを装着して測定した。図1のグラフC、Dから明らかなように、アセトン、テトラヒドロフランとも、5重量部以下の添加によって溶融剪断速度は、前記ポリスチレン樹脂単体の溶融剪断速度に比べて半減している。
【0055】
さらにアセトン、テトラヒドロフランについて、前記ポリスチレン系樹脂のフィルム(厚さ:50μm)をガス透過量測定装置((株)LISSY製、GPM−200)に固定し、該フィルムを透過したガス量をガスクロマトグラフ((株)日立製作所製、663−30)を用いて測定し、Fickの第1及び第2法則、ヘンリーの法則を用いて時間に対する透過量から透過速度を算出した結果、該ポリスチレン系樹脂膜に対する透過速度が、空気に対して2倍以上であり、発泡体中から容易に空気中に散逸する。
【0056】
またそれぞれの臨界温度はアセトン235℃、テトラヒドロフラン267℃で、押し出し時の樹脂温度(100℃)以上であり、その気化熱を利用し得る。
【0057】
実施例1〜10
ポリスチレン系樹脂(新日鐵化学(株)製、商品名:エスチレンG−17、メルトインデックス(MI):3.1)100重量部に対して造核剤としてタルク0.1重量部、難燃剤としてヘキサブロモシクロドデカン3.0重量部をリボンブレンダーを用いて15分間混合した。この混合物をタンデム型押出機(第1段押出機:シリンダー直径40mm、第2段押出機:シリンダー直径50mm)に供給し、第1段押出機内にて210℃で溶融したのち、第1段押出機のシリンダーの後半部分に設けられている圧入口より、表1に示した発泡剤および発泡助剤を圧入して混練し、これを第2段押出機内で樹脂温度が100℃となるように冷却し、オリフィスが直径3mm、ランド長25mmの円形ダイより押出して、丸棒状のポリスチレン系樹脂発泡体を得た。
【0058】
えられた発泡体の発泡倍率、独立気泡率、圧縮強度、発泡助剤の残存率をつぎの方法にしたがって測定し、外観を目視で次の評価基準にもとづいて評価した。その評価結果を表1に示す。
【0059】
(1)発泡倍率
ポリスチレン系樹脂と造核剤と難燃剤の混合物のおおよその密度を1.05(g/cm3)として、式:
発泡倍率(倍)=1.05/発泡体の密度(g/cm3)
にもとづいて求める。
【0060】
なお、発泡体の密度は、その発泡体の重量と、水没法によって求めた体積とから算出する。
【0061】
(2)独立気泡率
マルチピクノメーター(製品名、湯浅アイオニクス(株)製)を用い、ASTM D−2856に準じて測定する。
【0062】
(3)圧縮強度
オートグラフ((株)島津製作所製AG−2000)を使用し、JIS A 9511に準じて測定する。
【0063】
(4)外観の評価基準
◎:断面に未発泡樹脂塊およびボイドがなく、かつ表面にシワおよび突起がない外観がきわめて良好な発泡体である。
○:断面に未発泡樹脂塊またはボイドが少し存在するか、表面にシワまたは突起が少し存在するが、外観が良好な発泡体である。
×:断面に未発泡樹脂塊およびボイドが存在し、かつ表面にシワおよび突起が存在する外観が不良な発泡体である。
【0064】
(5)発泡助剤の残存率
発泡助剤の残存率は、発泡体の製造1週間後に発泡体をジメチルホルムアミドに溶解し、抽出溶液をガスクロマトグラフで定量することによって求めた。
【0065】
比較例1〜3
比較例として、二酸化炭素のみを発泡剤として用い、または二酸化炭素を主成分とする発泡剤を用い、発泡助剤を用いないほかは実施例1〜10と同様な条件で押出発泡体を得た。得られた該発泡体の倍率、独立気泡率、圧縮強度、外観、発泡助剤の残存率を表1に示す。
【0066】
【表1】
【0067】
表1に示された結果から、実施例1〜10で得られた発泡体は、主発泡剤として二酸化炭素を用い、樹脂温度100℃という低温で押出発泡させたにも関わらず、いずれも高発泡倍率および高独立気泡率を有し、圧縮強度、表面性の優れ、かつ発泡助剤の残存率の低い発泡体であることがわかる。
【0068】
【発明の効果】
本発明によってえられたポリスチレン系樹脂発泡体は、二酸化炭素を主発泡剤として用いるにもかかわらず、高発泡倍率および高独立気泡率を有し、外観が美麗なものである。
【0069】
したがって、本発明のポリスチレン系樹脂発泡体は、たとえば各種断熱材、各種緩衝剤、各種ディスプレイ板、各種浮板などとして好適に使用しうるものである。
【図面の簡単な説明】
【図1】Aはポリスチレン100重量部に添加された塩化メチルの量と該塩化メチルが添加されたポリスチレンの溶融剪断粘度との関係を表わすグラフ、Bはポリスチレン100重量部に添加された塩化エチルの量と該塩化エチルが添加されたポリスチレンの溶融剪断粘度との関係を表すグラフ、Cはポリスチレン100重量部に添加されたテトラヒドロフランの量と該テトラヒドロフランが添加されたポリスチレンの溶融剪断粘度との関係を表わすグラフ、Dはポリスチレン100重量部に添加されたアセトンの量と該アセトンが添加された溶融剪断粘度との関係を表すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a polystyrene-based resin foam which can be used mainly as a material for building and civil engineering, and a polystyrene-based resin foam produced by the method.
[0002]
[Prior art]
In the production of extruded polystyrene resin foam, which is often used for building materials, a method of using a physical foaming agent for foaming the resin using the volume expansion from the liquid phase or solid phase to the gas phase is used for the polystyrene resin. Many are used.
[0003]
However, the physical foaming agent does not only mean that the polystyrene resin foams due to volume expansion, but also the bubble size in the foam, the growth rate of the foam, and the foaming agent in the foam of the manufactured foam. It has been clarified that the thermal properties of the foam greatly affect the mechanical properties of the foam. For this reason, in developing the extrusion foaming technique, selection of a physical foaming agent has been a main research topic in order to obtain desired performance.
[0004]
In recent years, as a physical type foaming agent, the chlorine atom-containing fluorocarbon used conventionally has a small greenhouse effect with respect to the chlorine atom-containing fluorocarbon from the viewpoint of protection of the ozone layer and from the viewpoint that it is inexpensive. Attempts have been made to use carbon dioxide as a physical foaming agent in view of the fact that there is no problem in terms of safety (JP-A-51-7068, JP-B-6-41161, No. 81346).
[0005]
However, when using carbon dioxide alone as a foaming agent, the extrusion temperature may be relatively high and the cooling rate may be slow, and the resulting foam has poor surface properties and a low closed cell rate or a low magnification. (For example, JP-A-3-81346).
[0006]
On the other hand, in the production of polystyrene resin foam, chlorine-containing compounds such as methyl chloride and ethyl chloride reduce the melt viscosity of the polystyrene resin, form a gel that can be foamed at a lower temperature, and have a closed cell rate and It is widely used as a physical foaming agent which is expected to improve the magnification (Japanese Patent Publication No. 41-672). Thus, it is also known that use of methyl chloride or the like improves the appearance.
[0007]
However, since the above-mentioned methyl chloride, ethyl chloride and the like are chlorine-containing blowing agents, it is desired that a good foam can be obtained by using a chlorine-free compound if possible.
[0008]
In this connection, as an attempt to lower the melt viscosity of the polystyrene resin, it has been studied to mix a polystyrene resin homopolymer with another copolymer, and to add a plasticizer for the polystyrene resin. (Tokuhyo Hei 8-510495, etc.). However, the foam obtained by these attempts to lower the melt viscosity of the resin in advance, the physical properties such as compressive strength are reduced because the plasticizer etc. remains in the resin forming the cells of the foam, and the heat resistance Tend to be inferior.
[0009]
[Problems to be solved by the invention]
In view of the above, the present invention has no problems in terms of occupational health and environmental hygiene, has a high expansion ratio and a high closed cell ratio, and has a method for producing a polystyrene resin foam having a beautiful appearance and a method for producing the same. It is an object to provide a manufactured polystyrene resin foam.
[0010]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies to solve the above-described problems.As a result of extruding and foaming a polystyrene-based resin, a compound containing no chlorine atom is used as a foaming agent and a foaming aid having no chlorine atom. A foaming agent containing carbon dioxide in an amount of more than 60% by weight and less than 80% by weight based on the total weight of the foaming agent. By using a foaming aid that has a low amount remaining in the foam after production, the ozone layer destruction and global warming tend to be small, environmental compatibility is excellent, and heat insulation and mechanical properties are improved. It has been found that an extruded polystyrene resin foam having excellent and excellent appearance can be obtained, and the present invention has been completed.
[0011]
That is, in the present invention, (1) a polystyrene resin is heated and melted, a foaming agent is blended to form a foamable gel substance, and the gel substance is cooled to a temperature suitable for foaming, and the gel substance is cooled. In a method for producing a polystyrene resin foam comprising extruding through a die to a lower pressure region and forming a foam, a foaming agent containing no chlorine atom in the molecule and a foaming containing no chlorine atom in the molecule Use auxiliaries,
As the blowing agent, one containing more than 60% by weight and less than 80% by weight of carbon dioxide based on the total weight of the blowing agent,
As the foaming aid, the following properties (a) to (c):
(A) 5 parts by weight were added to 100 parts by weight of a polystyrene resin, and the shear rate was 122 s at 170 ° C. -1 The melt viscosity measured in the above is less than half the melt viscosity measured under the same conditions for only the polystyrene resin,
(B) a permeation rate at 25 ° C. for a membrane made of the polystyrene resin is higher than an air permeation rate under the same conditions;
(C) the critical temperature is equal to or higher than the resin temperature at the time of extrusion;
The present invention relates to a method for producing a polystyrene-based resin foam, characterized by using a material having:
[0012]
Further, the present invention is characterized in that (2) the foaming auxiliary is at least one selected from the group consisting of ethers, ketones and esters having a boiling point of 30 to 90 ° C. The present invention relates to a method for producing a polystyrene-based resin foam as described in the above item.
[0013]
Further, the present invention provides a foam produced by the method according to the above (1) or (2), wherein the foaming aid contains 0.01% by weight or more and 1% by weight or less based on the total weight of the foam. And a polystyrene resin foam.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The polystyrene resin used in the present invention is not particularly limited as long as it can be foamed.
[0015]
Representative examples of the polystyrene resin include, for example, styrene; methylstyrenes such as o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, β-methylstyrene, dimethylstyrene, trimethylstyrene; Chlorostyrenes such as -chlorostyrene, β-chlorostyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, dichlorostyrene and trichlorostyrene; α-bromostyrene, β-bromostyrene, o-bromostyrene, Bromostyrenes such as m-bromostyrene, p-bromostyrene, dibromostyrene and tribromostyrene; α-fluorostyrene, β-fluorostyrene, o-fluorostyrene, m-fluorostyrene, p-fluorostyrene, difluorostyrene, Trif Fluorostyrenes such as fluorostyrene; nitrostyrenes such as o-nitrostyrene, m-nitrostyrene, p-nitrostyrene, dinitrostyrene and trinitrostyrene; o-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene, dihydroxy Vinylphenols such as styrene and trihydroxystyrene; divinylbenzenes such as o-divinylbenzene and p-divinylbenzene; styrenes such as diisopropenylbenzenes such as o-diisopropenylbenzene and m-diisopropenylbenzene. Homopolymers of the compounds, copolymers of two or more of the styrene compounds, copolymers of the styrene compounds with copolymerizable monomers such as methyl methacrylate, acrylonitrile, butadiene, and the like. The polystyrene resins are used alone or in combination of two or more.
[0016]
The blowing agent used in the present invention is a mixture of carbon dioxide as a main blowing agent and a physical blowing agent containing no chlorine atom in other molecules.
[0017]
Examples of the physical foaming agent other than carbon dioxide include hydrocarbons having a boiling point of 30 ° C. or lower, fluorinated hydrocarbons, ethers, and the like, which are generally suitably used for polystyrene resin extrusion foaming. As the hydrocarbons, for example, propane (-42.1 ° C (indicating the boiling point, the same applies hereinafter)), n-butane (-0.5 ° C), i-butane (-11.7 ° C), i- Examples of fluorinated hydrocarbons such as pentane (27.9 ° C) include difluoromethane (HFC-32, -51.7 ° C), trifluoromethane (HFC-23, -82.0 ° C), 1,1-difluoroethane. (HFC-152a, −24.1 ° C.), 1,1,1-trifluoroethane (HFC-143a, −47.3 ° C.), 1,1,1,2-tetrafluoroethane (HFC-134a, − Ethers such as dimethyl ether (-24.8 ° C.) and methyl ethyl ether (6.6 ° C.).
[0018]
The amount of carbon dioxide in the total foaming agent is preferably more than 60% by weight and less than 80% by weight, which is the amount used as the main foaming agent, from the viewpoint of occupational health and environmental hygiene. When the content is 60% by weight or less, the effect of using carbon dioxide having high environmental compatibility is reduced, and the flammability of the flammable foaming aid tends to appear in the foam, and the industrial application field is likely to be restricted. . If the content is 80% by weight or more, carbon dioxide is too much, so that deterioration in surface properties and decrease in closed cell rate cannot be sufficiently solved.
[0019]
Further, the total weight of the blowing agent is 2 parts by weight or more, especially 5 parts by weight, based on 100 parts by weight of the polystyrene resin in order to produce a foam having a high expansion ratio using a blowing agent mainly composed of carbon dioxide. In order to improve the distribution of cell diameters, improve the heat insulating property by preventing the breakage of the cells and improve the heat insulation, the weight is preferably 20 parts by weight or less, more preferably 15 parts by weight, per 100 parts by weight of the polystyrene resin. Parts or less.
[0020]
Further, in the present invention, as a foaming aid, those containing no chlorine atom in the molecular structure,
(A) 5 parts by weight were added to 100 parts by weight of a polystyrene resin, and the shear rate was 122 s at 170 ° C. -1 The melt viscosity measured in the above is less than half the melt viscosity measured under the same conditions for only the polystyrene resin,
(B) a permeation rate at 25 ° C. for a membrane made of the polystyrene resin is higher than an air permeation rate under the same conditions;
(C) the critical temperature is equal to or higher than the resin temperature at the time of extrusion;
It is a great feature that a foaming aid having the following properties (hereinafter referred to as a non-chlorine foaming aid) is used simultaneously with a foaming agent containing carbon dioxide in extrusion foaming of a polystyrene resin as described above. .
[0021]
Here, the use of the non-chlorine-based foaming aid as described above is based on the present inventors' studies on the melt shear viscosity of the resin as described below.
[0022]
As described above, in extrusion foaming of a polystyrene resin, generally, a physical foaming agent is injected under pressure into a molten polystyrene resin, mixed under high pressure, and extruded from the die of an extruder into the atmosphere and rapidly extruded. And a method of expanding the foam into a foam.
[0023]
When extruding a foamable gel from a die, when the temperature is high, the foamed gel is solidified, that is, the time until the foam film is fixed is long, and the state where the elastic modulus is low for a relatively long time is maintained, The air bubbles that have been generated will be broken.
[0024]
On the other hand, when methyl chloride or the like is added, the viscosity of the foamable gel can be achieved at a low temperature, and this phenomenon can be avoided.
[0025]
Curve A in FIG. 1 shows the amount of methyl chloride added to 100 parts by weight of polystyrene and the melt shear rate of the polystyrene to which the methyl chloride was added (resin temperature: 170 ° C., shear rate: 122 s). -1 And curve B represent the amount of ethyl chloride added to 100 parts by weight of polystyrene, the amount of ethyl chloride added to 100 parts by weight of polystyrene to which the ethyl chloride was added, and the curve B. Shear viscosity of polystyrene to which is added (resin temperature: 170 ° C., shear rate: 122 s) -1 3) shows a graph representing the relationship with (). The polystyrene was used in Examples described later, and details of the measurement of the melt shear rate are shown in Examples.
[0026]
As is clear from graphs A and B in FIG. 1, methyl chloride or ethyl chloride, which is usually used in the production of an extruded polystyrene resin foam, is added in an amount of, for example, 4 parts by weight or more based on 100 parts by weight of polystyrene. In such a case, the melt shear viscosity is halved compared to the melt shear viscosity of polystyrene alone, and a viscosity suitable for foaming can be achieved at a relatively low temperature.
[0027]
However, when the viscosity is too low, the obtained foam may shrink or the heat resistant temperature of the foam may decrease.
[0028]
The amount of the non-chlorine foaming aid depends on the amount of the foaming aid remaining when the foam is formed, the state of dissipation from the foam or the speed, and therefore the viscosity reduction performance of the non-chlorine foaming aid. Although it is difficult to determine the amount of addition in the case of estimating the total, 170 ° C. and a shear rate of 122 s when approximately 5 parts by weight are added -1 It is preferable that the decrease in the viscosity measured in step 1 becomes about 1/2 or less as compared with the case where the foaming aid is not added.
[0029]
The performance of reducing the viscosity of the non-chlorine foaming aid is evaluated by assuming the kneading state of the polystyrene resin and the non-chlorine foaming aid, the state of the extruder outlet, and the temperature decrease in the extruder, This is the evaluation with the highest industrial utility value. From this point, in the case of extrusion, 170 ° C. and a shear rate of 122 s -1 Is suitable for evaluating the state of the die portion of the extruder, and the melt viscosity can be easily measured with a capillograph device or the like.
[0030]
Further, other than the viscosity reducing performance, important characteristics that the non-chlorine foaming auxiliary should have are also found.
[0031]
In order for bubbles to be stably fixed, they must be quickly solidified from a molten state and form a strong film. In order to achieve rapid solidification, the heat of vaporization when the foaming agent or foaming aid undergoes a phase change from liquid or solid to gas during extrusion foaming is effectively applied. To do so, it is necessary that the critical temperature is, for example, 100 ° C. or higher, preferably the resin temperature at the time of extrusion.
[0032]
Also, when a foaming aid is contained in a foam in a large amount, mechanical properties such as compressive strength and bending strength are reduced, and viscosity tends to decrease as the temperature increases. Physical property deterioration becomes remarkable. For this reason, the foaming aid remaining in the foam should be reduced to such an extent that no problem occurs immediately. Further, by rapidly dispersing the foam out of the foam, the viscosity increases, and the same effect as when the temperature of the foam is lowered can be provided. However, a trace amount of residue is generally preferable for a hard and brittle foam in terms of the development of flexibility.
[0033]
The dissipation rate of the substance out of the foam is evaluated based on the magnitude relationship between the permeation rate of the substance through the polystyrene resin membrane and the permeation rate of the air. That is, the permeation rate of the air is compared with the permeation rate of the substance. If the permeation rate of the substance is higher, the substance is quickly discharged out of the foam. The permeation rate is determined by measuring the amount of the measurement substance leaking to the inert gas side by joining a chamber filled with a measurement substance on one side and an inert gas, for example, at 25 ° C. with a polystyrene resin film exposed. It is quantified by a gas chromatograph or the like at regular intervals, and the speed can be easily calculated from the time and amount from the start of leakage to the inert gas side to the stable state. At this time, since a substance having a boiling point higher than 25 ° C. does not reach 1 atm, it is sufficient to use saturated steam in a mixed gas with air and evaluate the magnitude of the speed with air based on the partial pressure of steam.
[0034]
Due to the cooling effect due to the heat of vaporization and dissipation to the outside of the foam, the foam film is rapidly solidified and fixed, so that the destruction of the bubbles can be prevented, and a foam having a high expansion ratio can be obtained stably. .
[0035]
As a result of the above examination, by adding to the polystyrene resin, the effect of lowering the viscosity with respect to the polystyrene resin is sufficiently exhibited, the dissipation to the outside of the foam is fast, and the critical temperature is higher than the resin temperature at the time of extrusion. As a substance which can be suitably used as a foaming auxiliary having the requirement that the compound does not contain a chlorine atom, ethers, ketones and esters having a boiling point of 30 to 90 ° C. are preferable.
[0036]
Examples of the ethers, ketones, and esters used as the foaming aid in the present invention include ethyl ether (34.6 ° C.), methylal (42.3 ° C.), isopropyl ether (68.3 ° C.), and furan. (31.3 ° C.), ethers such as 2-methylfuran (62 to 64 ° C.), tetrahydrofuran (66 ° C.) and tetrahydropyran (88 ° C.); acetone (56.2 ° C.), methyl ethyl ketone (79.6 ° C.) Ketones such as ethyl formate (54.3 ° C.), propyl formate (81.3 ° C.), methyl acetate (57.8 ° C.), ethyl acetate (77.1 ° C.), isopropyl acetate (89.0 ° C.), Esters such as methyl propionate (79.7 ° C.) are preferably exemplified, and these can be used alone or in combination of two or more.
[0037]
Among them, the use of a small amount of 5 parts by weight or less with respect to 100 parts by weight of the polystyrene resin is equivalent to the plasticizing effect of methyl chloride and ethyl chloride usually used in the production of an extruded polystyrene resin foam. Methylal, furan, 2-methylfuran, tetrahydrofuran, acetone, methyl ethyl ketone, and ethyl formate are more preferred from the viewpoint that the effect of (1) is exhibited, safety, and price.
[0038]
The amount of the foaming aid used is such that the heat resistance of the obtained foam is not adversely affected, that is, 5 parts by weight or less, preferably 3 parts by weight or less, per 100 parts by weight of the polystyrene resin. Further, the lower limit may be any amount as long as the effects of the present invention are exhibited, and for example, 0.5 parts by weight or more is preferable.
[0039]
As described above, the amount of carbon dioxide in the total foaming agent is an amount exceeding 60% by weight due to the requirements of occupational health and use restrictions as described above. Further, it is preferable that carbon dioxide is less than 80% by weight in the total foam. If the amount exceeds 80% by weight, the effect of improving the closed cell rate is small even if a small amount of the foaming aid is added, and therefore the mechanical properties are reduced.
[0040]
On the other hand, when the foaming assistant is used in an increased amount, the closed cell ratio is improved, but at the same time, the amount of the foaming assistant remaining in the foam increases. As described above, the heat resistance is lowered in this case. It is effective to use the foaming aid even when the amount of carbon dioxide is reduced to 60% by weight or less, but if the amount of carbon dioxide is reduced, other foaming agents become the main foaming agent, and the cost, flammability, etc. It can be problematic in point. Another feature of the present invention is that it overcomes the industrial disadvantages of carbon dioxide, which is excellent in price, occupational health, environmental compatibility, production equipment and management costs, and has high utilization, and therefore does not conform to the spirit of the present invention. .
[0041]
In particular, the optimum amount of carbon dioxide cannot be determined unconditionally because it is affected by the type and amount of the foaming aid used, but a range of 65 to 75% by weight provides a good foam having particularly good mechanical properties. .
[0042]
As described above, the present invention has a viscosity reducing effect on polystyrene-based resin without modifying a portion related to essential strength and physical properties such as resin modification, and has a boiling point of 30 to 90 ° C. It is one of the great features of the present invention to use at least one of ethers, ketones, and esters not containing as a foaming aid, and also uses carbon dioxide as a main foaming agent, and as a foaming aid. The use of at least one of the ethers, ketones, and esters in combination is also one of the great features of the present invention.
[0043]
Further, in the present invention, if necessary, within a range that does not inhibit the object of the present invention, an antioxidant, a metal deactivator, a phosphorus-based stabilizer, an ultraviolet absorber, an ultraviolet stabilizer, a fluorescent brightener, Commonly used additives such as a stabilizer such as metal soap, a nucleating agent, a lubricant, a filler, a reinforcing agent, a pigment, a flame retardant, and an antistatic agent may be appropriately added.
[0044]
The extruded polystyrene resin foam of the present invention can be produced by a known extrusion foaming method itself in the foaming operation. For example, a predetermined amount of a polystyrene resin and, if necessary, an additive are mixed, heated and melt-kneaded, and then a foaming agent and a foaming aid are added or press-fitted to the foamable resin composition prepared at a high temperature and a high pressure. The foamed product of the present invention is obtained by mixing under the following conditions and then extruding to foam in a low pressure range.
[0045]
There are no particular restrictions on the heating temperature, melt-kneading time and melt-kneading means when the resin mixture is heated and melt-kneaded. The heating temperature may be equal to or higher than the temperature at which the polystyrene-based resin is melted, usually about 150 ° C. to 250 ° C. The melt-kneading time cannot be determined unequivocally because it differs depending on the extrusion amount per unit time, the melt-kneading means, and the like. However, usually, the time required for uniformly dispersing the polystyrene resin and, for example, the additive is selected. The melt-kneading means is not particularly limited as long as it is one used for ordinary extrusion foaming, such as a screw-type extruder.
[0046]
The foaming agent and the foaming assistant may be added or press-fitted into the heat-melt kneaded material at the same time, or may be dividedly added or press-fitted. The present invention is not limited by the method of adding or press-fitting such a foaming agent.
[0047]
The pressure at which the foaming agent and the foaming aid are pressed into the heat-melt kneaded material is not particularly limited, and may be any pressure as long as it is higher than the internal pressure of the extruder in order to press it into the extruder.
[0048]
The heat-melt kneaded product to which the foaming agent and the foaming aid have been added or press-fitted is then extruded through a commonly used foaming device such as a slit die into a low-pressure region such as under atmospheric pressure to be foamed. You. At that time, the resin temperature at the time of extrusion can be as low as 100 to 120 ° C., and varies depending on the type and amount of the foaming aid to be added. The extrusion temperature can be lowered by about 40 ° C., which is extremely useful industrially.
[0049]
Thus, as a foaming aid, it lowers the melt viscosity of the polystyrene-based resin, and easily escapes from the foam, is difficult to remain, has a high critical temperature, and has at least one of ethers, ketones, and esters having a boiling point of 30 to 90 ° C. By using one kind in combination with a foaming agent containing carbon dioxide as a main component, an effect equivalent to the effect of reducing the viscosity of the resin by adding a chlorine-containing compound such as methyl chloride or ethyl chloride can be obtained, and foam molding can be performed. Reduced the viscosity of the molten resin to the extent that it is possible, with little foaming aid remaining in the obtained foam, high foaming ratio and closed cell rate, and excellent appearance, excellent work hygiene environment A polystyrene resin foam is obtained.
[0050]
The residual ratio of the foaming aid in the foam (referred to as the content (% by weight) contained in the foam after several days (for example, three days) after the production of the foam) is 0.01% by weight or more and 1% by weight % Or less is preferable. If the residual ratio of the foaming aid exceeds the above range, the mechanical properties tend to decrease, while if it is less than the above range, the foam tends to become brittle.
[0051]
According to the method for producing a polystyrene resin foam of the present invention, a high expansion ratio, a high closed cell rate, and a beautiful appearance can be suitably used as various heat insulating materials, various cushioning materials, various display plates, various floating plates, and the like. A polystyrene resin foam is obtained. These foams can be used for any application that requires the above properties, but at present, construction materials, civil engineering materials, furniture and the like are preferred examples of their use.
[0052]
The polystyrene-based resin foam of the present invention uses carbon dioxide having no problem on occupational health and environmental hygiene as a main blowing agent, has a high expansion ratio and a high closed cell rate, and has a beautiful appearance. The fact that a foam having excellent properties was obtained is based on repeated studies to solve the problems of the prior art.
[0053]
【Example】
Next, the method for producing a polystyrene resin foam of the present invention and the obtained foam will be described in more detail based on Examples, but the present invention is not limited to only these Examples.
[0054]
In graph C of FIG. 1, tetrahydrofuran (THF) added to 100 parts by weight of a polystyrene resin (trade name: Estyrene G-17, manufactured by Nippon Steel Chemical Co., Ltd., melt index (MI): 3.1) And the melt shear viscosity of polystyrene to which the tetrahydrofuran was added (resin temperature: 170 ° C., shear rate: 122 s) -1 4 shows a graph representing the relationship with ()). The graph D in FIG. 1 shows the amount of acetone added to 100 parts by weight of the polystyrene resin and the melt shear viscosity of the polystyrene to which the acetone was added (resin temperature: 170 ° C., shear rate: 122 s). -1 3) shows a graph representing the relationship with (). The melt shear viscosity was measured by mounting a die having a diameter of 1 mm and a length of 10 mm on a Capillograph manufactured by Toyo Seiki Co., Ltd. As is clear from graphs C and D in FIG. 1, the addition of 5 parts by weight or less of both acetone and tetrahydrofuran reduces the melt shear rate by half compared to the melt shear rate of the polystyrene resin alone.
[0055]
Further, with respect to acetone and tetrahydrofuran, the above-mentioned polystyrene resin film (thickness: 50 μm) was fixed to a gas permeation amount measurement device (manufactured by LISY Corporation, GPM-200), and the amount of gas permeated through the film was measured by gas chromatography ( The permeation rate was calculated from the amount of permeation with respect to time using Fick's first and second laws, and Henry's law, as a result of the measurement using the 663-30 (manufactured by Hitachi, Ltd.). The permeation rate is more than twice as high as air and easily dissipates from the foam into the air.
[0056]
The respective critical temperatures are acetone 235 ° C. and tetrahydrofuran 267 ° C., which are higher than the resin temperature at extrusion (100 ° C.), and the heat of vaporization can be used.
[0057]
Examples 1 to 10
0.1 part by weight of talc as a nucleating agent, flame retardant per 100 parts by weight of a polystyrene resin (trade name: Estyrene G-17, manufactured by Nippon Steel Chemical Co., Ltd., melt index (MI): 3.1) And 3.0 parts by weight of hexabromocyclododecane was mixed for 15 minutes using a ribbon blender. This mixture is supplied to a tandem extruder (first-stage extruder: cylinder diameter 40 mm, second-stage extruder: cylinder diameter 50 mm), melted in the first-stage extruder at 210 ° C., and then subjected to first-stage extrusion. The foaming agent and foaming aid shown in Table 1 are press-fitted and kneaded from the pressure inlet provided in the latter half of the cylinder of the machine so that the resin temperature in the second-stage extruder becomes 100 ° C. After cooling, the orifice was extruded from a circular die having a diameter of 3 mm and a land length of 25 mm to obtain a round bar-shaped polystyrene resin foam.
[0058]
The expansion ratio, closed cell ratio, compressive strength, and residual ratio of the foaming aid of the obtained foam were measured in accordance with the following methods, and the appearance was visually evaluated based on the following evaluation criteria. Table 1 shows the evaluation results.
[0059]
(1) Expansion ratio
The approximate density of the mixture of the polystyrene resin, the nucleating agent and the flame retardant is set to 1.05 (g / cm 3 ) As the formula:
Expansion ratio (times) = 1.05 / density of foam (g / cm 3 )
Ask based on.
[0060]
The density of the foam is calculated from the weight of the foam and the volume obtained by the submersion method.
[0061]
(2) Closed cell rate
Using a multi-pycnometer (product name, manufactured by Yuasa Ionics Co., Ltd.), the measurement is performed according to ASTM D-2856.
[0062]
(3) Compressive strength
It is measured according to JIS A 9511 using an autograph (AG-2000 manufactured by Shimadzu Corporation).
[0063]
(4) Evaluation criteria for appearance
◎: A foam having very good appearance without unfoamed resin lumps and voids in the cross section and without wrinkles and protrusions on the surface.
:: A foam having a good appearance, though a little unfoamed resin mass or void is present in the cross section, or a few wrinkles or protrusions are present on the surface.
X: A foam having a poor appearance in which an unfoamed resin mass and voids are present in the cross section and wrinkles and protrusions are present on the surface.
[0064]
(5) Residual rate of foaming aid
The residual ratio of the foaming aid was determined by dissolving the foam in dimethylformamide one week after the production of the foam, and quantifying the extracted solution by gas chromatography.
[0065]
Comparative Examples 1-3
As a comparative example, an extruded foam was obtained under the same conditions as in Examples 1 to 10, except that only carbon dioxide was used as a foaming agent, or a foaming agent containing carbon dioxide as a main component was used, and no foaming aid was used. . Table 1 shows the magnification, closed cell ratio, compressive strength, appearance, and residual ratio of the foaming aid of the obtained foam.
[0066]
[Table 1]
[0067]
From the results shown in Table 1, all of the foams obtained in Examples 1 to 10 were extruded and foamed at a low temperature of 100 ° C. using carbon dioxide as a main foaming agent, and all were high in foam. It can be seen that the foam has an expansion ratio and a high closed cell ratio, has excellent compressive strength and surface properties, and has a low residual ratio of the foaming aid.
[0068]
【The invention's effect】
The polystyrene-based resin foam obtained according to the present invention has a high expansion ratio and a high closed cell ratio, and has a beautiful appearance, despite using carbon dioxide as the main blowing agent.
[0069]
Therefore, the polystyrene resin foam of the present invention can be suitably used as, for example, various heat insulating materials, various buffers, various display plates, various floating plates, and the like.
[Brief description of the drawings]
FIG. 1A is a graph showing the relationship between the amount of methyl chloride added to 100 parts by weight of polystyrene and the melt shear viscosity of polystyrene to which the methyl chloride is added, and B is the ethyl chloride added to 100 parts by weight of polystyrene. Is a graph showing the relationship between the amount of polystyrene and the melt shear viscosity of the polystyrene to which the ethyl chloride was added, and C is the relationship between the amount of tetrahydrofuran added to 100 parts by weight of the polystyrene and the melt shear viscosity of the polystyrene to which the tetrahydrofuran was added. And D is a graph showing the relationship between the amount of acetone added to 100 parts by weight of polystyrene and the melt shear viscosity to which the acetone was added.
Claims (3)
該発泡剤として、発泡剤の全重量に対して60重量%を超え80重量%未満の二酸化炭素を含むものを使用し、
該発泡助剤として、下記(a)〜(c)の性質:
(a)ポリスチレン系樹脂100重量部に対して5重量部添加し、170℃で剪断速度122s−1で測定した溶融粘度が該ポリスチレン系樹脂のみについて同一条件で測定した溶融粘度の2分の1以下となる、
(b)該ポリスチレン系樹脂からつくられた膜に対する25℃での透過速度が同一条件での空気の透過速度よりも大きい、
(c)臨界温度が押し出し時の樹脂温度以上である、
を具備するものを使用することを特徴とするポリスチレン系樹脂発泡体の製造方法。The polystyrene resin is heated and melted, a foaming agent is blended into a foamable gel material, the gel material is cooled to a temperature suitable for foaming, and the gel material is extruded through a die to a lower pressure region. In a method for producing a polystyrene-based resin foam including the steps of forming a foam, a foaming agent containing no chlorine atom in a molecule and a foaming aid containing no chlorine atom in a molecule are used,
As the blowing agent, one containing more than 60% by weight and less than 80% by weight of carbon dioxide based on the total weight of the blowing agent,
As the foaming aid, the following properties (a) to (c):
(A) 5 parts by weight were added to 100 parts by weight of a polystyrene resin, and the melt viscosity measured at 170 ° C. at a shear rate of 122 s −1 was one half of the melt viscosity of the polystyrene resin alone measured under the same conditions. Becomes
(B) a permeation rate at 25 ° C. for a membrane made of the polystyrene resin is higher than an air permeation rate under the same conditions;
(C) the critical temperature is equal to or higher than the resin temperature at the time of extrusion;
A method for producing a polystyrene-based resin foam, characterized by using one having:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18657597A JP3574297B2 (en) | 1997-07-11 | 1997-07-11 | Method for producing polystyrene resin foam and polystyrene resin foam produced by the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18657597A JP3574297B2 (en) | 1997-07-11 | 1997-07-11 | Method for producing polystyrene resin foam and polystyrene resin foam produced by the method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1129650A JPH1129650A (en) | 1999-02-02 |
JP3574297B2 true JP3574297B2 (en) | 2004-10-06 |
Family
ID=16190948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18657597A Expired - Fee Related JP3574297B2 (en) | 1997-07-11 | 1997-07-11 | Method for producing polystyrene resin foam and polystyrene resin foam produced by the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3574297B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19907824A1 (en) * | 1999-02-24 | 2000-08-31 | Univ Twente Fakultaet Chemisch | Membrane and their use |
KR101046429B1 (en) | 2009-03-12 | 2011-07-04 | (주)폴머 | Composite Molding Using Expandable Polystyrene Gel and Its Manufacturing Method |
WO2015093195A1 (en) * | 2013-12-20 | 2015-06-25 | 株式会社カネカ | Styrene resin extruded foam and method for producing same |
-
1997
- 1997-07-11 JP JP18657597A patent/JP3574297B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1129650A (en) | 1999-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2486159C (en) | To enhance the thermal insulation of polymeric foam by reducing cell anisotropic ratio and the method for production thereof | |
CA2579366C (en) | Expanded and extruded thermoplastic foams made with methyl formate-based blowing agents | |
CA2655727A1 (en) | Polymer foams containing multi-functional layered nano-graphite | |
JP2010522815A (en) | Polystyrene foam incorporating nanographite and HFC-134 | |
KR19990008054A (en) | Extruded Continuous Foam Microporous Foam and Method for Manufacturing the Same | |
JP2004516375A (en) | Blowing agent composition containing hydrofluorocarbon and low-boiling alcohol and / or low-boiling carbonyl compound | |
CA2082494C (en) | Production of foam boards of high compressive strength | |
KR100595337B1 (en) | Process for producing extruded foam | |
JP2003508613A (en) | Extruded thermal insulation foam with monovinyl aromatic polymer of broad molecular weight distribution | |
JP5563442B2 (en) | Low solubility hydrofluorocarbon containing alkenyl aromatic foam | |
KR102579812B1 (en) | Z-HFO-1336mzz blowing agent blend for foaming thermoplastic polymers containing polystyrene | |
JP3574297B2 (en) | Method for producing polystyrene resin foam and polystyrene resin foam produced by the method | |
WO1996016111A1 (en) | Polystyrene resin foam and process for producing the foam | |
JP4346363B2 (en) | Polystyrene resin extruded foam and method for producing the same | |
US6624208B2 (en) | Blowing agent based on HFC-134a and cyclopentane for the expansion of polymers | |
JP3761310B2 (en) | Styrene resin extruded foam manufacturing method and foam | |
JPH1036548A (en) | Polystyrene resin foam and its production | |
JPH10237210A (en) | Polystyrene resin foam and its manufacture | |
JP3273685B2 (en) | Polystyrene-based resin foam insulation and manufacturing method thereof | |
JP3654722B2 (en) | Process for producing alkenyl aromatic resin foam | |
JP3686510B2 (en) | Styrene resin extruded foam manufacturing method and manufactured foam | |
KR20090048432A (en) | Polymer foams containing multi-functional layered nano-graphite | |
JPH10273548A (en) | Polystyrene resin foam and production thereof | |
JP3634936B2 (en) | Process for producing alkenyl aromatic resin foam and produced foam | |
JP2002144409A (en) | Extruded foam sheet of polystyrene resin and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040622 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040701 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110709 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120709 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |