JP3573274B2 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP3573274B2
JP3573274B2 JP2000316389A JP2000316389A JP3573274B2 JP 3573274 B2 JP3573274 B2 JP 3573274B2 JP 2000316389 A JP2000316389 A JP 2000316389A JP 2000316389 A JP2000316389 A JP 2000316389A JP 3573274 B2 JP3573274 B2 JP 3573274B2
Authority
JP
Japan
Prior art keywords
storage battery
battery module
battery modules
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000316389A
Other languages
Japanese (ja)
Other versions
JP2002125325A (en
Inventor
一彦 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000316389A priority Critical patent/JP3573274B2/en
Publication of JP2002125325A publication Critical patent/JP2002125325A/en
Application granted granted Critical
Publication of JP3573274B2 publication Critical patent/JP3573274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、蓄電池モジュールを直列接続した組電池を個別に充電する蓄電装置に係り、それぞれの蓄電池モジュールにフライバックトランスと整流素子を備えた構成により、それぞれの蓄電池モジュールの充電電圧のばらつきを一定値に制限する蓄電装置に関する。
【0002】
【従来の技術】
高電圧が必要な電気自動車や通信用電源装置のエネルギー源として、複数の蓄電池モジュールを直列接続した組電池が使用される。複数の蓄電池モジュールを直列に接続して充・放電する場合、電池特性のばらつきにより、個々の蓄電池モジュールの電圧が不規則に分布し、また、特定の 電池モジュールの過充電や過放電が起きる。したがって、蓄電池モジュールを組電池として使用する場合には、特性のばらつきの少ない蓄電池モジュールを組み合わせて使用する必要がある。実際的には、各蓄電池モジュールの配置によって放熱が悪くなり温度が上昇し、蓄電池モジュール特性に影響を与えたり、長期間使用の蓄電池モジュールの劣化の度合いが一様でないため、蓄電池モジュール特性を揃えることは困難である。したがって、それぞれの蓄電池モジュール電圧のばらつきを減少するために、均等充電(組電池の個々の蓄電池モジュールに生じた充電状態のばらつきをなくするために行う充電)が必要になる。
【0003】
蓄電池モジュールを均等充電するための代表的な蓄電装置として、▲1▼それぞれの蓄電池モジュールと同数の二次巻線を有する多巻き線トランス(一次巻線と複数の二次巻線を同じコアに巻いたトランス)から、ダイオードを介して個々の蓄電池モジュールに二次巻線を接続する構造や、▲2▼蓄電池モジュールのそれぞれに対してdc/dcコンバータを接続する構造が提案されている。
【0004】
▲1▼の構成は、[”Balanced Charge of Series Connected Battery Cells”,INTELEC’98,pp.311−315]に示されるように、多巻き線トランス(一つの磁気コアに一個の一次巻線と複数の二次巻線を同時に巻いたトランス)を備え、この多巻き線トランスから二次巻線を引き出して、個々の蓄電池モジュールの正極と負極にダイオードを介して接続し、個々の蓄電池モジュールを充電する。
【0005】
また、▲2▼の構成は、[”Dynamic Equalization Techniques for Series Battery Stacks”,INTELEC’96,pp.514−521]に示されるように、組電池それぞれに対してフライバック型dc/dcコンバータまたはフォワード型dc/dcコンバータを接続し、各々のdc/dcコンバータで個々の蓄電池モジュールを充電あるいは放電する。さらに、本文献には、充電および放電を一台のdc/dcコンバータ(bi−directional isolated flyback dc−dc convertersと呼称)により行う構成も示されている。
【0006】
【発明が解決しようとする課題】
上記従来技術を多数の蓄電池モジュールから構成された組電池に応用するためには、トランスの配線が複雑になる、充電装置の部品点数が増加する等の問題点があった。
【0007】
すなわち、▲1▼の構成によれば、二次巻線を一つの磁気コアに集中して巻き回す必要があるので、個々の蓄電池モジュールに接続する二次巻き線の配線が長くなり、もつれ易いという問題があった。また、フライバックトランスでは、一次巻線から供給される電流エネルギーを一個の磁気コアに一旦蓄積し、その後に複数の蓄電池モジュールに分配するので、蓄電池モジュールを大きな電流で充電する場合には、磁気コアが大型化し、設置スペースが限られるという問題があった。さらに、蓄電池モジュールと磁気コアが離れている場合には、二次巻き線の配線長が増大するので、抵抗成分による電圧降下や損失が増大するという問題があった。
【0008】
▲2▼の構成は、蓄電池モジュール数に対応してdc/dcコンバータを接続するため、dc/dcコンバータの構成部品数(主な構成部品は、トランスの一次巻き線と二次巻き線間を絶縁するフライバックまたはフォワードトランス、蓄電池モジュール電圧を検出するホトカップラ、検出電圧と基準電圧を比較して差分電圧を増幅する誤差増幅器、誤差増幅器の出力によりdc/dcコンバータのスイッチ素子のオンオフ比を調整する発信器、及びスイッチ素子)が増加するという問題があった。
【0009】
本発明は、上記状況に鑑みて、簡単な構成により電圧の低い蓄電池モジュールを重点的に充電し、各蓄電池モジュールの電圧が一定になった後は各々の蓄電池モジュールを同等に充電する蓄電装置を提供することを目的とする。また、各々の蓄電池モジュールが満充電に達する条件に個体差のある場合に、満充電に達した蓄電池モジュールが過充電になることを避けるための蓄電装置を提供することを目的とする。
【0010】
【問題を解決するための手段】
上記問題を解決するため、本発明の蓄電装置は、1以上の蓄電池セルを直列接続してなる蓄電池モジュールを複数個接続し、該蓄電池モジュールを充・放電する蓄電装置において、前記蓄電池モジュールそれぞれに対してフライバックトランスと、整流素子を設け、前記フライバックトランスの二次巻線が前記整流素子を介して前記蓄電池モジュールの正極と負極に接続され、前記フライバックトランスの各々の一次巻線は1 つのスイッチ素子と駆動回路と直流電源を直列接続した回路の両端部に並列に接続され、前記整流素子の各々と前記駆動回路は整流素子制御回路に接続され、前記整流素子制御回路は各々の蓄電池モジュールに備えた充電状態検出回路の信号を受信する満充電検出回路に接続されていることを特徴とする。
【0011】
【作用】
本発明は、従来の発明とは、複数の蓄電池モジュールに一対一に対応したフライバックトランスを使用し、前記フライバックトランスの一次巻き線側は一個のスイッチ素子で共通にオンオフする点で異なる。
【0012】
すなわち、本発明では、蓄電池モジュールそれぞれにフライバックトランスが設置されるため、蓄電池モジュールに接続された二次巻線は短小化できるので、電圧降下や抵抗による電力損失を考慮する必要が無い。また、蓄電池モジュールの充電用構造の大部分は、蓄電池モジュール直近に置かれるため、二次巻線の引き回しは必要でなくなり、蓄電池モジュールの陽極と陰極には二次巻線を予め接続しておくことも可能となるため、誤配線の問題も避けられる。さらに、フライバックトランスの励磁電流の調整を、一個のスイッチ素子で行うことが可能となり、また、満充電に達した蓄電池モジュールが過度に充電されないようにフライバックトランスの二次巻き線側のパワーMOS FETで制限することが可能になる。蓄電池モジュールが満充電に達するまで、パワーMOS FETを前記スイッチ素子と同期させてオンオフさせることは、いわゆる同期整流方式であるから、蓄電装置の損失低減にもなる。
【0013】
請求項1に係る発明は、満充電以前の蓄電池モジュールを重点的に充電し、各蓄電池モジュールの充電電圧のばらつきをなくすることを目的とするが、満充電に達しない蓄電池モジュールがあまりにも急速に充電される可能性がある。これを避けるために、請求項2に係る発明では、満充電に達した蓄電池モジュールが増加した場合、満充電検出回路の信号により前記スイッチ素子のオンオ
フ比を調整する機能を有する。例えば、満充電に達した蓄電池モジュール数が増加した場合に、前記スイッチ素子のオン時間を短くすれば、フライバックトランスの励磁電流が減少し、スイッチ素子のオフ期間に蓄電池モジュール側に供給される充電電流を減少することが可能になる。
【0014】
請求項3に係る発明では、上記蓄電装置において、前記整流素子はパワーMOS FETであり、各蓄電池モジュールが満充電状態になる以前には整流素子制御回路で共通にオンオフされ、満充電検出後には該パワーMOS FETを遮断する。
【0015】
【実施例】
以下図面を参照して本発明の実施例を詳細に説明する。
【0016】
(実施例1)
図1に本願発明の蓄電池モジュール3にダイオード2とフライバックトランス1を接続して構成した第一の実施例を示す。本図では、三組の蓄電池モジュールを直列接続した例を示しており、この蓄電池モジュールを充電するための外部回路として、スイッチ素子4、駆動回路5、直流電源6を使用する。なお、本図に置いて蓄電池モジュールと並列にコンデンサ20を接続しているのは、フライバックトランス1の脈動する電流を吸収させるためであり、このコンデンサ20は必ずしも必要では無い。
【0017】
各フライバックトランス1の二次巻き線は、蓄電池モジュール3に対応して設けており、一次巻き線は順送りに直流電源1とスイッチ素子4の間に並列に接続する。
【0018】
フライバックトランス1とダイオード2は、図示の極性で個々の蓄電池モジュール3に対応して設ける。すなわち、本回路はスイッチ素子4の導通時にフライバックトランス1に励磁電流を蓄積し、スイッチ素子4の非導通時に二次巻線側に均等充電電流を流すように動作する。各フライバックトランス1の一次巻き線は、順送りに接続するので、各一次巻き線の両端から、直流電源6とスイッチ素子4に対して接続線を引き回す必要は無く、上下のフライバックトランス1の一次巻き線を順々に繋ぐのみで十分である。
【0019】
なお、フライバックトランス1の特性は、後に述べるように必ずしも揃っている必要は無いので、フライバックトランス1を大量生産しても良い。
【0020】
図2にフライバックトランス1の励磁インダクタンスを二次巻き線側に移した等価回路を示す。本等価回路では、回路の動作が最小限説明できるように、二組の蓄電池モジュール3を充電する場合を示している。なお、図2による動作説明は、各蓄電池モジュールの電圧が等しい場合の基本的なものである。
【0021】
図2(a)に示すように、スイッチ素子がオンになり、フライバックトランス1a,1bに励磁電流7が流れる場合を動作の開始点とする。この時、励磁インダクタンスには直流電源電圧が印加されるので、励磁電流7はスイッチ素子のオン時間とともに直線的に増加する。また、ダイオード2a,2bにより、蓄電池モジュール3a,3bからの電流は阻止される。この状態は、スイッチ素子がオフになるまで続くので、フライバックトランス1a,1bの磁気コアは励磁電流により飽和しないように設計する必要がある。
【0022】
スイッチ素子がオフになった場合の励磁電流7の流れを図2(b)に示す。励磁電流7は、ダイオード2a,2bを通して蓄電池モジュール3a,3bに続流として流れ、蓄電池モジュール3a,3bを充電する。この状態は励磁電流が零になるまで続き、励磁電流が零になるとスイッチ素子がオンになるまで静止状態となる。
【0023】
次に、蓄電池モジュール3a,3bの電圧が異なる場合の本回路の動作説明図を図3に示す。
【0024】
図3において、上側の蓄電池モジュール3aの電圧は、下側の蓄電池モジュール3bの電圧より若干低いものと仮定する。スイッチ素子のオン時に蓄積された励磁電流は、スイッチ素子がオフになると、図2と同様に蓄電池モジュール3a,3bの充電を開始する。しかし、下側のフライバックトランス1bの励磁電流(点線で示す)は、電圧の低い蓄電池モジュール3a側に回り込み、上側のフライバックトランス1aの励磁電流とともに上側の蓄電池モジュール3aを充電するので、電圧が低い上側の蓄電池モジュール3aの充電が促進される。やがては、図2に示すように蓄電池モジュール3aと3bは同じ電圧まで充電され、図2(b)のような経路で蓄電池モジュール3aと3bの充電が行われる。この不足充電を補う励磁電流の経路の切り替わりは、主に蓄電池モジュール3aの電圧によるので、フライバックトランス1aとフライバックトランス1bとの特性が不揃いであっても同様の効果を得ることができる。
【0025】
図2の構成の実施例の効果を図4に示す。図4は、直流電源電圧24V、フライバックトランスの励磁インダクタンス(二次巻き線側換算値:約60μH)、スイッチ素子のオン時間:約2μs、スイッチ素子のオフ時間:約3μsで、蓄電池モジュールを模擬するものとして200μFの電解コンデンサを使用した例である。実線が若干電圧の低い蓄電池モジュール、破線が電圧の高い蓄電池モジュールに相当する。波形が滑らかでないのは、蓄電池モジュールの充電電流が不連続なためであるが、蓄電池モジュールの電圧が時間の経過とともに均一になるという本願発明の効果が示されている。
【0026】
(実施例2、3)
次に本願発明の第二及び第三実施例について説明する。本願発明の第一実施例の回路により、電圧の異なる蓄電池モジュールの電圧を均等化できることを示したが、必ずしも蓄電池モジュールが均等になった場合が、最適な充電状態でない場合がある。例えば、ある蓄電池モジュールは、他の蓄電池モジュールより低い電圧で満充電に達する場合などが想定され、満充電に達した蓄電池モジュールをさらに充電すると過充電になり、寿命に影響する。このような場合を想定した第二及び第三実施例を図5により説明する。
【0027】
図1と図5の違いは、ダイオード2の代わりにパワーMOS FET (整流素子)13を使用し、各蓄電池モジュールに充電状態検出回路9、充電状態検出回路の信号を受信する満充電検出回路11、整流素子制御回路12を付加した点である。また、整流素子制御回路は、駆動回路5を制御して、スイッチ素子のオンオフ比を調整する機能を有する。以下、それぞれの効果について説明する。
【0028】
通常、整流素子制御回路12は、スイッチ素子4のオン信号がオフ信号に変わると、整流素子13にオン信号を送出する。また、スイッチ素子4のオフ信号がオン信号に変わると整流素子13にオフ信号を送出する。つまり、スイッチ素子4と整流素子13は、逆位相の信号で動作する。
【0029】
充電状態検出回路9は、蓄電池モジュール3の温度あるいは充電電圧を測定した結果を電気信号に変換して、満充電検出回路11に送出する。
【0030】
満充電検出回路11は、充電状態検出回路からの信号を受信し、各蓄電池モジュールが満充電状態にあるかどうかを判断する。ここでは満充電状態にあるかどうかの判断は、ニッケル・水素電池などの急速充電制御方式で行う。急速充電制御方式は、−△V方式と電池の温度上昇を利用する方式に大別され、−△V方式は充電終期に電池の電圧がピークに達してから低下する現象を利用したものであり、温度上昇を利用する方式は、充電開始時からの温度上昇値(△T)あるいは温度上昇速度(dT/dt)を検出するものである。
整流素子制御回路12は、いずれかの蓄電池モジュールが満充電に達したことを検出すると、その蓄電池モジュールに接続される整流素子13のオンオフ信号を遮断する。遮断される以前の整流素子13の導通時には、パワーMOS FETの内蔵ダイオード16とオン抵抗を通して分流していた充電電流(オン抵抗に流れる電流による電圧降下≒内蔵ダイオードの電圧降下に達するまでは、オン抵抗を経由し、それ以上の電流で内蔵ダイオードも使用)は、遮断後には内蔵ダイオード16以外を流れることができないので、電圧降下が増加する。このため、実質的に蓄電池モジュールと直列に大きな電圧が接続された状態と等価になり、この蓄電池モジュールの充電電流が減少し、過充電を防止することが可能になる。
【0031】
図6は、図4と同じ回路定数の蓄電装置に図5の発明を適用した例であり、実線で示す電池モジュールが満充電に達した後の二組の蓄電池モジュールの充電電圧の変化を示している。パワーMOS FETの信号を遮断した実線の電圧上昇値は、明らかに遮断していない破線の電圧上昇率よりも低く押さえられ、過充電が防止されていることが分かる。
【0032】
なお、さらに電圧上昇率を減少して過充電を防止するためには、スイッチ素子のオンオフ比を整流素子制御回路の信号12で減少させ、フライバックトランス9の励磁電流を減少させると効果的である。
【0033】
【発明の効果】
以上述べたように本発明によれば次の効果が達成される。
【0034】
▲1▼1以上の蓄電池セルを直列接続してなる蓄電池モジュールを複数個接続し、該蓄電池モジュールを充・放電する蓄電装置において、直流電源とスイッチ素子の直列回路の両端部に接続された一以上の、フライバックトランスの励磁電流が、充電電圧の低い蓄電池モジュールを重点的に充電するように分流するため、各蓄電池の充電電圧を速やかに均等化することが可能である。
【0035】
また、蓄電池モジュールの充電用構造の大部分は、蓄電池モジュール直近に置かれるため、二次巻線の引き回しは必要でなくなり、蓄電池モジュールの正極と負極には二次巻線を予め接続しておくことも可能となるので、誤配線の問題も避けられる。
【0036】
▲2▼蓄電池モジュールの満充電電圧にばらつきが予想される場合には、フライバックトランスの二次側に接続したパワーMOS FETのオン抵抗と内蔵ダイオードの特性を利用して、先に満充電に達した蓄電池モジュールがそれ以上過充電されることを防止できる。
【図面の簡単な説明】
【図1】本願発明の第一実施例の回路図である。
【図2】第一実施例の基本説明図である。
【図3】本願発明の詳細説明図である。
【図4】第一実施例の効果を示す実験結果である。
【図5】第二および第三実施例の回路図である。
【図6】第二実施例の効果を示す実験結果である。
【符号の説明】
1,1a,1b:フライバックトランス、
2,2a,2b:ダイオード、
3,3a,3b:蓄電池モジュール、
4:スイッチ素子、
5:駆動回路、
6:直流電源、
7、励磁電流、
8、分流する励磁電流、
9:充電状態検出回路、
10:共通制御部、
11:満充電検出回路、
12:整流素子制御回路、
13:パワーMOS FET (内蔵ダイオード16を含む)、
14:整流素子のオンオフ信号、
15:スイッチ素子のオンオフ比調整信号、
16:内蔵ダイオード、
20:コンデンサ。
[0001]
[Industrial applications]
The present invention relates to a power storage device that individually charges assembled batteries in which storage battery modules are connected in series, and has a configuration in which a flyback transformer and a rectifying element are provided in each of the storage battery modules, whereby variations in the charging voltage of each storage battery module are kept constant. It relates to a power storage device that limits the value.
[0002]
[Prior art]
As an energy source for an electric vehicle or a communication power supply device that requires a high voltage, an assembled battery in which a plurality of storage battery modules are connected in series is used. When a plurality of battery modules are connected in series and charged and discharged, the voltage of each battery module is irregularly distributed due to variations in battery characteristics, and overcharge or overdischarge of a specific battery module occurs. Therefore, when a storage battery module is used as an assembled battery, it is necessary to use a combination of storage battery modules with small variations in characteristics. In practice, the arrangement of each storage battery module deteriorates the heat radiation and raises the temperature, which affects the storage battery module characteristics and the degree of deterioration of the storage battery modules used for a long period of time is not uniform, so the storage battery module characteristics are made uniform. It is difficult. Therefore, in order to reduce the variation in the voltage of each storage battery module, equal charging (charging performed to eliminate the variation in the state of charge that has occurred in each storage battery module of the assembled battery) is required.
[0003]
As a typical power storage device for charging the storage battery modules equally, (1) a multi-winding transformer having the same number of secondary windings as each storage battery module (a primary winding and a plurality of secondary windings on the same core) From a wound transformer) to a secondary winding connected to each storage battery module via a diode, and (2) a dc / dc converter connected to each of the storage battery modules.
[0004]
The configuration of {circle around (1)} is described in [“Balanced Charge of Series Connected Battery Cells”, INTELEC'98, p. 311-315], a multi-winding transformer (a transformer in which one primary winding and a plurality of secondary windings are simultaneously wound on one magnetic core) is provided, and the secondary winding is converted from the multi-winding transformer. The wires are drawn out and connected to the positive and negative electrodes of the individual storage battery modules via diodes to charge the individual storage battery modules.
[0005]
The configuration of (2) is described in ["Dynamic Equalization Technologies for Series Battery Stacks Stacks", INTELEC'96, pp. 146-64. 514-521], a flyback dc / dc converter or a forward dc / dc converter is connected to each battery pack, and each dc / dc converter charges or discharges an individual storage battery module. . Further, this document also discloses a configuration in which charging and discharging are performed by one dc / dc converter (referred to as bi-directionally isolated flyback dc-dc converters).
[0006]
[Problems to be solved by the invention]
In order to apply the above-described conventional technology to an assembled battery including a large number of storage battery modules, there are problems such as complicated wiring of a transformer and an increase in the number of parts of a charging device.
[0007]
That is, according to the configuration of (1), since the secondary winding needs to be wound around one magnetic core in a concentrated manner, the wiring of the secondary winding connected to each storage battery module becomes long, and it is easy to get tangled. There was a problem. In a flyback transformer, the current energy supplied from the primary winding is temporarily stored in one magnetic core and then distributed to a plurality of storage battery modules. There was a problem that the core became large and the installation space was limited. Further, when the storage battery module is separated from the magnetic core, the wiring length of the secondary winding is increased, so that there is a problem that a voltage drop and a loss due to a resistance component increase.
[0008]
In the configuration of (2), the dc / dc converter is connected in accordance with the number of storage battery modules. Therefore, the number of components of the dc / dc converter (the main component is that between the primary winding and the secondary winding of the transformer. Flyback or forward transformer to insulate, photocoupler to detect battery module voltage, error amplifier to compare detected voltage to reference voltage to amplify differential voltage, and adjust on / off ratio of switch element of dc / dc converter by output of error amplifier Transmitters and switch elements).
[0009]
In view of the above circumstances, the present invention provides a power storage device that mainly charges a low-voltage storage battery module with a simple configuration, and charges each storage battery module equally after the voltage of each storage battery module becomes constant. The purpose is to provide. It is another object of the present invention to provide a power storage device for preventing a fully charged storage battery module from being overcharged when there are individual differences in conditions under which each storage battery module reaches full charge.
[0010]
[Means to solve the problem]
In order to solve the above problem, a power storage device of the present invention is a power storage device that connects a plurality of storage battery modules each having one or more storage battery cells connected in series and charges and discharges the storage battery modules. A flyback transformer and a rectifying element are provided, and a secondary winding of the flyback transformer is connected to a positive electrode and a negative electrode of the storage battery module via the rectifying element, and a primary winding of each of the flyback transformers is are connected in parallel with one switch element and the drive circuit and the DC power supply at both ends of the circuit connected in series, each said drive circuit of said rectifying element is connected to the rectifier element control circuit, the rectifier element control circuit each A full charge detection circuit that receives a signal of a charge state detection circuit provided in the storage battery module .
[0011]
[Action]
The present invention is different from the conventional invention in that a flyback transformer corresponding to a plurality of storage battery modules is used one-to-one, and the primary winding side of the flyback transformer is commonly turned on and off by one switch element.
[0012]
That is, in the present invention, since the flyback transformer is installed in each storage battery module, the secondary winding connected to the storage battery module can be shortened, so that it is not necessary to consider the power loss due to the voltage drop and the resistance. In addition, since most of the charging structure of the storage battery module is placed in the immediate vicinity of the storage battery module, it is not necessary to route the secondary winding, and the secondary winding is connected in advance to the anode and the cathode of the storage battery module. It is also possible to avoid the problem of incorrect wiring. Furthermore, the excitation current of the flyback transformer can be adjusted with a single switch element, and the power of the secondary winding side of the flyback transformer can be adjusted so that the fully charged storage battery module is not excessively charged. It becomes possible to limit with a MOS FET. Turning the power MOS FET on and off in synchronization with the switch element until the storage battery module reaches a full charge is a so-called synchronous rectification method, which also reduces the loss of the power storage device.
[0013]
The invention according to claim 1 aims to charge the storage battery modules prior to full charge and eliminate variations in the charging voltage of each storage battery module, but the storage battery modules that do not reach full charge are too fast. May be charged. In order to avoid this, in the invention according to claim 2, when the number of storage battery modules that have reached a full charge increases, the switching element is turned on and off by a signal of a full charge detection circuit.
It has a function to adjust the ratio. For example, when the number of storage battery modules that have reached a full charge increases, if the ON time of the switch element is shortened, the exciting current of the flyback transformer decreases and is supplied to the storage battery module during the OFF period of the switch element. The charging current can be reduced.
[0014]
According to the third aspect of the present invention, in the power storage device, the rectifying element is a power MOS FET, and is turned on / off by a rectifying element control circuit before each storage battery module is fully charged. The power MOS FET is cut off.
[0015]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
(Example 1)
FIG. 1 shows a first embodiment in which a diode 2 and a flyback transformer 1 are connected to a storage battery module 3 of the present invention. This drawing shows an example in which three sets of storage battery modules are connected in series, and a switch element 4, a drive circuit 5, and a DC power supply 6 are used as external circuits for charging the storage battery modules. In this figure, the reason why the capacitor 20 is connected in parallel with the storage battery module is to absorb the pulsating current of the flyback transformer 1, and the capacitor 20 is not always necessary.
[0017]
The secondary winding of each flyback transformer 1 is provided corresponding to the storage battery module 3, and the primary winding is connected in parallel between the DC power supply 1 and the switch element 4 in order.
[0018]
The flyback transformer 1 and the diode 2 are provided corresponding to each storage battery module 3 with the polarity shown. That is, the present circuit operates so that the exciting current is accumulated in the flyback transformer 1 when the switch element 4 is turned on, and the uniform charging current flows to the secondary winding side when the switch element 4 is turned off. Since the primary windings of the flyback transformers 1 are connected in a forward direction, there is no need to route connecting wires from both ends of each primary winding to the DC power supply 6 and the switch element 4, and the upper and lower flyback transformers 1 It is sufficient to connect the primary windings in sequence.
[0019]
Since the characteristics of the flyback transformer 1 do not necessarily have to be uniform as described later, the flyback transformer 1 may be mass-produced.
[0020]
FIG. 2 shows an equivalent circuit in which the exciting inductance of the flyback transformer 1 is shifted to the secondary winding side. This equivalent circuit shows a case where two sets of storage battery modules 3 are charged so that the operation of the circuit can be described at a minimum. The description of the operation shown in FIG. 2 is based on the case where the voltages of the storage battery modules are equal.
[0021]
As shown in FIG. 2A, a case where the switching element is turned on and the exciting current 7 flows through the flyback transformers 1a and 1b is defined as an operation start point. At this time, since the DC power supply voltage is applied to the exciting inductance, the exciting current 7 increases linearly with the ON time of the switch element. Further, currents from the storage battery modules 3a, 3b are blocked by the diodes 2a, 2b. Since this state continues until the switching element is turned off, it is necessary to design the magnetic cores of the flyback transformers 1a and 1b not to be saturated by the exciting current.
[0022]
FIG. 2B shows the flow of the exciting current 7 when the switch element is turned off. Excitation current 7 flows as a continuation flow into storage battery modules 3a and 3b through diodes 2a and 2b, and charges storage battery modules 3a and 3b. This state continues until the exciting current becomes zero, and when the exciting current becomes zero, the state remains stationary until the switch element is turned on.
[0023]
Next, FIG. 3 shows an explanatory diagram of the operation of this circuit when the voltages of the storage battery modules 3a and 3b are different.
[0024]
In FIG. 3, it is assumed that the voltage of the upper storage battery module 3a is slightly lower than the voltage of the lower storage battery module 3b. When the switch element is turned off, the exciting current accumulated when the switch element is turned on starts charging the storage battery modules 3a and 3b as in FIG. However, the excitation current of the lower flyback transformer 1b (indicated by a dotted line) sneaks toward the storage battery module 3a having a lower voltage and charges the upper storage battery module 3a together with the excitation current of the upper flyback transformer 1a. , The charging of the upper storage battery module 3a is promoted. Eventually, as shown in FIG. 2, the storage battery modules 3a and 3b are charged to the same voltage, and the storage battery modules 3a and 3b are charged along a route as shown in FIG. 2B. Since the switching of the path of the exciting current for compensating for the insufficient charging mainly depends on the voltage of the storage battery module 3a, the same effect can be obtained even if the characteristics of the flyback transformers 1a and 1b are not uniform.
[0025]
FIG. 4 shows the effect of the embodiment having the configuration of FIG. FIG. 4 shows a storage battery module with a DC power supply voltage of 24 V, a magnetizing inductance of a flyback transformer (converted value on the secondary winding side: about 60 μH), an on time of the switch element: about 2 μs, and an off time of the switch element: about 3 μs. This is an example in which a 200 μF electrolytic capacitor is used as a simulation. The solid line corresponds to the storage battery module with a slightly lower voltage, and the broken line corresponds to the storage battery module with a higher voltage. The reason why the waveform is not smooth is that the charging current of the storage battery module is discontinuous, and the effect of the present invention that the voltage of the storage battery module becomes uniform over time is shown.
[0026]
(Examples 2 and 3)
Next, second and third embodiments of the present invention will be described. Although it has been shown that the voltage of the storage battery modules having different voltages can be equalized by the circuit of the first embodiment of the present invention, the case where the storage battery modules are equalized is not always the optimum state of charge. For example, it is assumed that a certain storage battery module reaches full charge at a lower voltage than another storage battery module. If the storage battery module that has reached full charge is further charged, it becomes overcharged, which affects the life. Second and third embodiments assuming such a case will be described with reference to FIG.
[0027]
The difference between FIG. 1 and FIG. 5 is that a power MOS FET (rectifying element) 13 is used in place of the diode 2, and each storage battery module has a charge state detection circuit 9 and a full charge detection circuit 11 that receives a signal from the charge state detection circuit And the rectifying element control circuit 12 is added. Further, the rectifying element control circuit has a function of controlling the drive circuit 5 to adjust the on / off ratio of the switch element. Hereinafter, each effect will be described.
[0028]
Normally, the rectifying element control circuit 12 sends an ON signal to the rectifying element 13 when the ON signal of the switch element 4 changes to an OFF signal. When the off signal of the switch element 4 changes to an on signal, the off signal is sent to the rectifying element 13. That is, the switching element 4 and the rectifying element 13 operate with signals having opposite phases.
[0029]
The charge state detection circuit 9 converts the measurement result of the temperature or the charge voltage of the storage battery module 3 into an electric signal and sends it to the full charge detection circuit 11.
[0030]
Full charge detection circuit 11 receives a signal from the charge state detection circuit and determines whether each storage battery module is in a fully charged state. Here, the determination as to whether or not the battery is fully charged is made by a quick charge control method for a nickel-metal hydride battery or the like. The rapid charging control method is roughly classified into a-△ V method and a method using a temperature rise of the battery, and the-△ V method utilizes a phenomenon in which the voltage of the battery reaches a peak at the end of charging and then decreases. The method using the temperature rise detects a temperature rise value (ΔT) or a temperature rise rate (dT / dt) from the start of charging.
When detecting that one of the storage battery modules has reached full charge, the rectifier control circuit 12 shuts off the on / off signal of the rectifier 13 connected to the storage battery module. At the time of conduction of the rectifying element 13 before being cut off, the charging current (the voltage drop due to the current flowing through the on-resistance divided by the current flowing through the on-resistance / the voltage drop of the built-in diode until reaching the voltage drop of the built-in diode). Since the built-in diode is also used at a higher current via the resistor), after the cutoff, it can not flow except the built-in diode 16, so that the voltage drop increases. For this reason, it becomes substantially equivalent to a state where a large voltage is connected in series with the storage battery module, the charging current of the storage battery module is reduced, and overcharging can be prevented.
[0031]
FIG. 6 shows an example in which the invention of FIG. 5 is applied to a power storage device having the same circuit constants as FIG. 4, and shows changes in charging voltages of two sets of storage battery modules after the battery modules indicated by solid lines reach full charge. ing. It can be seen that the voltage rise value of the solid line where the signal of the power MOS FET is cut off is suppressed lower than the voltage rise rate of the broken line where the signal is not cut off, thereby preventing overcharging.
[0032]
In order to further reduce the rate of voltage rise and prevent overcharging, it is effective to reduce the on / off ratio of the switch element by the signal 12 of the rectifying element control circuit and reduce the exciting current of the flyback transformer 9. is there.
[0033]
【The invention's effect】
As described above, according to the present invention, the following effects can be achieved.
[0034]
(1) In a power storage device for connecting a plurality of storage battery modules formed by connecting one or more storage battery cells in series and charging / discharging the storage battery modules, one end connected to both ends of a series circuit of a DC power supply and a switch element. As described above, since the exciting current of the flyback transformer is diverted so as to mainly charge the storage battery module having a low charging voltage, the charging voltage of each storage battery can be quickly equalized.
[0035]
In addition, since most of the charging structure of the storage battery module is placed close to the storage battery module, it is not necessary to route the secondary winding, and the secondary winding is connected in advance to the positive and negative electrodes of the storage battery module. This also makes it possible to avoid the problem of incorrect wiring.
[0036]
(2) If the full charge voltage of the storage battery module is expected to vary, use the on-resistance of the power MOS FET connected to the secondary side of the flyback transformer and the characteristics of the built-in diode to achieve full charge first. The reached storage battery module can be prevented from being overcharged further.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a first embodiment of the present invention.
FIG. 2 is a basic explanatory diagram of the first embodiment.
FIG. 3 is a detailed explanatory diagram of the present invention.
FIG. 4 is an experimental result showing the effect of the first embodiment.
FIG. 5 is a circuit diagram of the second and third embodiments.
FIG. 6 is an experimental result showing the effect of the second embodiment.
[Explanation of symbols]
1, 1a, 1b: flyback transformer,
2, 2a, 2b: diode,
3, 3a, 3b: storage battery module,
4: switch element,
5: drive circuit,
6: DC power supply,
7, exciting current,
8, the shunting excitation current,
9: Charge state detection circuit,
10: Common control unit,
11: Full charge detection circuit
12: rectifying element control circuit,
13: Power MOS FET (including built-in diode 16)
14: rectifier on / off signal,
15: ON / OFF ratio adjustment signal of the switch element,
16: Built-in diode,
20: condenser.

Claims (3)

1以上の蓄電池セルを直列接続してなる蓄電池モジュールを複数個接続し、該蓄電池モジュールを充・放電する蓄電装置において、前記蓄電池モジュールそれぞれに対してフライバックトランスと、整流素子を設け、前記フライバックトランスの二次巻線が前記整流素子を介して前記蓄電池モジュールの正極と負極に接続され、前記フライバックトランスの各々の一次巻線は1 つのスイッチ素子と駆動回路と直流電源を直列接続した回路の両端部に並列に接続され、前記整流素子の各々と前記駆動回路は整流素子制御回路に接続され、前記整流素子制御回路は各々の蓄電池モジュールに備えた充電状態検出回路の信号を受信する満充電検出回路に接続されていることを特徴とする蓄電装置。In a power storage device for connecting a plurality of storage battery modules each having one or more storage cells connected in series and charging / discharging the storage battery modules, a flyback transformer and a rectifying element are provided for each of the storage battery modules; connected back transformer secondary winding via the rectifying device to a positive electrode and a negative electrode of the battery module, the primary winding of each of said flyback transformer connected in series a DC power supply and one switch element and the driving circuit Each of the rectifying elements and the driving circuit are connected to a rectifying element control circuit, and the rectifying element control circuit receives a signal of a charge state detecting circuit provided in each storage battery module. A power storage device connected to a full-charge detection circuit . 前記整流素子制御回路は、前記駆動回路を制御して前記スイッチ素子のオンオフ比を調整する機能、並びに、いずれかの蓄電池モジュールが満充電に達したことを検出するとその蓄電池モジュールに接続される整流素子のオンオフ信号を遮断する機能とを有することを特徴とする請求項記載の蓄電装置。The rectifying element control circuit has a function of controlling the drive circuit to adjust the on / off ratio of the switch element, and a rectifier connected to the storage battery module when detecting that one of the storage battery modules has reached a full charge. electrical storage device according to claim 1, characterized in that it has a function of blocking off signal of the element. 前記整流素子は、パワーMOS FETであることを特徴とする請求項1又請求項2に記載の蓄電装置。The rectifying element, the electric storage device according to claim 1 or claim 2, wherein the Power MOS FET der Turkey.
JP2000316389A 2000-10-17 2000-10-17 Power storage device Expired - Fee Related JP3573274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000316389A JP3573274B2 (en) 2000-10-17 2000-10-17 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000316389A JP3573274B2 (en) 2000-10-17 2000-10-17 Power storage device

Publications (2)

Publication Number Publication Date
JP2002125325A JP2002125325A (en) 2002-04-26
JP3573274B2 true JP3573274B2 (en) 2004-10-06

Family

ID=18795345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000316389A Expired - Fee Related JP3573274B2 (en) 2000-10-17 2000-10-17 Power storage device

Country Status (1)

Country Link
JP (1) JP3573274B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105743354A (en) * 2016-04-20 2016-07-06 华北电力大学(保定) Laser drive circuit of single-ended flyback circuit

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031216A1 (en) 2004-06-28 2006-01-19 Siemens Ag Apparatus and method for charge equalization in series connected energy storage
KR101124803B1 (en) * 2006-06-15 2012-03-23 한국과학기술원 Charge Equalization Apparatus and Method
KR101188944B1 (en) 2006-06-15 2012-10-08 한국과학기술원 Charge equalization apparatus with parallel connection of secondary windings of multiple transformers
KR101124725B1 (en) * 2006-06-15 2012-03-23 한국과학기술원 Charge Equalization Apparatus
KR101174166B1 (en) 2006-06-15 2012-08-14 한국과학기술원 Charge equalization apparatus with parallel connection of primary windings of multiple transformers
KR101081255B1 (en) 2007-02-09 2011-11-08 한국과학기술원 Charge Equalization Apparatus
EP2514064B1 (en) * 2009-12-14 2020-04-08 Leach International Corporation Systems and methods for balancing multi-cell batteries
US20120119676A1 (en) * 2010-11-15 2012-05-17 Power Integrations, Inc. Flyback power converter with divided energy transfer element
JP2012253999A (en) * 2011-05-11 2012-12-20 Shindengen Electric Mfg Co Ltd Power conversion circuit
EP2587614A2 (en) 2011-08-31 2013-05-01 Sony Corporation Electric storage apparatus, electronic device, electric vehicle, and electric power system
JP2013051856A (en) * 2011-08-31 2013-03-14 Sony Corp Power storage device, electronic apparatus, electric vehicle, and electric power system
JP2013051857A (en) * 2011-08-31 2013-03-14 Sony Corp Power storage device, electronic apparatus, electric vehicle, and electric power system
US8472219B2 (en) * 2011-09-14 2013-06-25 General Electric Company Method and systems for converting power
CN106961140A (en) * 2017-04-28 2017-07-18 哈尔滨工业大学 Trapezium structure accumulation power supply equalizing system based on inductance transformer
KR102394826B1 (en) * 2018-02-14 2022-05-04 주식회사 엘지에너지솔루션 Power supply circuit for energy transfer between battery and smoothing capacitor and battery management system including the same
JP6994428B2 (en) * 2018-04-26 2022-01-14 Ntn株式会社 Storage battery charging device
JP6746076B2 (en) * 2018-08-31 2020-08-26 エクセルギー・パワー・システムズ株式会社 DC power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105743354A (en) * 2016-04-20 2016-07-06 华北电力大学(保定) Laser drive circuit of single-ended flyback circuit

Also Published As

Publication number Publication date
JP2002125325A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
JP3573274B2 (en) Power storage device
US9478995B2 (en) Battery system
KR101122598B1 (en) Apparatus for uniform charging battery
EP2115850B1 (en) Charge equalization apparatus
US6670789B2 (en) Voltage equalizing apparatus for battery devices
Kutkut et al. Dynamic equalization techniques for series battery stacks
KR101124725B1 (en) Charge Equalization Apparatus
US6373223B1 (en) Voltage equalizing apparatus and voltage equalizing method for battery devices
EP0992811B1 (en) Battery apparatus and control system therefor
KR101081255B1 (en) Charge Equalization Apparatus
KR20070119432A (en) Charge equalization apparatus with parallel connection of primary windings of multiple transformers
US9755439B2 (en) Battery state control circuit, battery state control device, and battery pack
JP2013514055A (en) System and method for balancing multi-cell batteries
JP5794982B2 (en) Power supply device and charging circuit
US20050275374A1 (en) Pseudo constant current multiple cell battery charger configured with a parallel topology
KR20120131844A (en) Cell balancing circuit for energy storage module
US20150140374A1 (en) Battery state control circuit, battery state control apparatus, and battery pack
JP5285322B2 (en) Voltage equalizing device, charging device, battery assembly, and charging system
TW201914184A (en) Power device with an isolated high boost converter and a balance modules for serially connected batteries
JP5604947B2 (en) Power supply device and voltage adjustment method
WO2021130464A1 (en) Power supply unit
JP3175574U (en) Discharge-type battery management device
JP3392214B2 (en) Battery charge control device and method
CN118137619A (en) Control circuit and method for actively balancing battery
JP3071491B2 (en) Battery charger

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees