JP3573170B2 - Damping force adjustment structure - Google Patents

Damping force adjustment structure Download PDF

Info

Publication number
JP3573170B2
JP3573170B2 JP05502695A JP5502695A JP3573170B2 JP 3573170 B2 JP3573170 B2 JP 3573170B2 JP 05502695 A JP05502695 A JP 05502695A JP 5502695 A JP5502695 A JP 5502695A JP 3573170 B2 JP3573170 B2 JP 3573170B2
Authority
JP
Japan
Prior art keywords
damping force
oil
oil chamber
pressure
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05502695A
Other languages
Japanese (ja)
Other versions
JPH08226485A (en
Inventor
義郎 問山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP05502695A priority Critical patent/JP3573170B2/en
Publication of JPH08226485A publication Critical patent/JPH08226485A/en
Application granted granted Critical
Publication of JP3573170B2 publication Critical patent/JP3573170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
この発明は、自動二輪車や特殊自転車等に架装される油圧緩衝器への利用に適する減衰力調整構造の改良に関する。
【0002】
【従来の技術】
一般に、自動二輪車等の車両に架装される油圧緩衝器は、その伸縮作動時に減衰力発生部で所定の大きさの減衰力が発生されるように構成されるが、近年の油圧緩衝器にあっては、減衰力発生部で発生される減衰力が減衰力調整部によって高低調整されて車両の走行条件等に応じた減衰力になるように構成されることが多い。
【0003】
特に、オフロード仕様の自動二輪車やモトクロス仕様の特殊自転車に架装される油圧緩衝器にあっては、減衰力発生部で発生される圧側の減衰力を減衰力調整部で高低調整し得るように構成されることが多く、この場合、該油圧緩衝器は、例えば、図2に示すような構成とされている。
【0004】
即ち、該油圧緩衝器は、ダンパ本体D内の圧側油室A1と所謂リザーバとしてのリザーバタンクR内の油室A2とを連通する油路L中に外部操作によってその圧縮作動時にピストン部等の減衰力発生部(図示せず)で発生される圧側減衰力を高低調整し得る減衰力調整部1を有する減衰力調整構造を採用している。
【0005】
そして、該減衰力調整構造を構成する減衰力調整部1は、図3に示すように、油路Lを圧側油室A1側の油路部分L1とリザーバタンクR側の油路部分L2とに分断するように部分的に膨径させて形成された容室A3に配在され外部操作によって回動可能とされる調整ロッド10を有してなる。
【0006】
該調整ロッド10は、油路部分L1からの作動油の油路部分L2への流入を阻止する圧側チェックバルブ11を有すると共に、油路部分L1からの作動油の油路部分L2側への流通を許容する流路12を有してなり、かつ、該流路12が油路部分L2に選択的に対向する口径の異なる複数のオリフィス13,14を有してなる。
【0007】
因に、この従来例にあって、調整ロッド10は、容室A3を占有するように配在されてその外周を容室A3の内周に摺接させ、言わば油路Lを遮断しているから、圧側チェックバルブ11は、油路部分L1に対向するように調整ロッド10の図中で左端部となる先端部の内周に配在されている。
【0008】
そして、該圧側チェックバルブ11は、調整ロッド10に開穿され油路部分L2側に連通する伸側ポート15をリタンスプリング16による附勢下に油路部分L1側から開閉可能に閉塞するように配設されている。
【0009】
さらに、伸側ポート15は、調整ロッド10の外周に形成された環状溝17に連通し、該環状溝17は、上記流路12に設けられているオリフィス13,14が選択的に対向する油路部分L2に連通するように設定されている。
【0010】
尚、この従来例にあって、調整ロッド10は、流路12と伸側ポート15とを連通する補助オリフィス18を有している。
【0011】
それ故、上記した減衰力調整部1を有する油圧緩衝器、即ち、従来の減衰力調整構造によれば、外部操作で調整ロッド10を回動して流路12に設けられているオリフィス13,14のいずれかを油路部分L2に対向させるとき、その選択されたオリフィス13,14の口径に応じた作動油の流れが保障され、ダンパ本体Dの圧縮作動時に発生される圧側減衰力が高低調整される。
【0012】
そして、調整ロッド10の操作ミス等でオリフィス13,14のいずれもが油路部分L2に対向されなくなるとき、該オリフィス13,14を迂回することになる補助オリフィス18を介してダンパ本体Dの圧側油室A1からの作動油がリザーバタンクRの油室A2に流入し得ることになる。
【0013】
その結果、オリフィス13,14が機能しない状態のままダンパ本体Dが圧側作動することになっても、ダンパ本体D内の圧側油室A1にオイルロック現象が招来されなくなり、シール部における油漏れやダンパ本体D自体の破損等の事態を予め回避し得ることになる。
【0014】
【発明が解決しようとする課題】
しかしながら、上記した従来の減衰力調整構造にあっては、以下ような不都合が指摘されている。
【0015】
即ち、上記した従来の減衰力調整構造にあっては、オリフィス13,14の選択でダンパ本体Dで発生される減衰力を調整するように構成しているから、ダンパ本体Dが高速で圧縮作動する場合には、所謂オリフィス特性が故に、ダンパ本体D内の圧側油室A1における油圧が異常に高くなり、シール部における油漏れやダンパ本体D自体の破損等の危惧が依然として残ることになる。
【0016】
また、上記と逆に、ダンパ本体Dが微低速を含む低速で圧縮作動する際には、口径の細いオリフィス、即ち、図示例では、オリフィス14を選択しても、オリフィス特性が故に、可変幅が狭く、調整幅を大きく、即ち、効果的に調整できないことになる。
【0017】
さらに、上記した従来の減衰力調整構造にあっては、調整ロッド10に対する操作ミス等でオリフィス13,14のいずれもが油路部分L2に対向されなくなるとき、ダンパ本体D内の圧側油室A1にオイルロック現象が招来されてシール部における油漏れが招来されたりダンパ本体D自体が破損する等の不都合を避けるために、オリフィス13,14を迂回する補助オリフィス18を設けるとしている。
【0018】
そのため、ダンパ本体Dが微低速を含む低速で圧縮作動する際には、上記補助オリフィス18が所謂活きているが故に、特に口径の細いオリフィス14が選択されても、所望の減衰力調整効果が得られないことになる。
【0019】
そして、補助オリフィス18を低速時用に設定する場合には、操作ミス等でいずれのオリフィス13,14も機能しない状態で、ダンパ本体Dが高速で圧縮作動するとき、前記した圧側油室A1における異常高圧によって、シール部における油漏れやダンパ本体D自体の破損等が招来され易くなることになる。
【0020】
その結果、上記した減衰力調整構造を利用する油圧緩衝器がオフロード仕様の自動二輪車やモトクロス仕様の特殊自転車に架装されても、好ましい圧側減衰力の調整を実現し得ないことになる。
【0021】
この発明は、上記した事情を鑑みて創案されたものであって、その目的とするところは、減衰力調整部における操作ミスがあってもシール部における油漏れやダンパ本体の破損等を招来させないのは勿論のこと、減衰力調整部に対する所定の操作で圧側減衰力を調整するについて効果的な制御が可能になり、オフロード仕様の自動二輪車やモトクロス仕様の特殊自転車に架装される油圧緩衝器への利用に最適となる減衰力調整構造を提供することである。
【0022】
【課題を解決するための手段】
上記した目的を達成するために、この発明の基本的な構成を、ダンパ本体内の圧側油室とリザーバタンク内の油室とを連通する油路を部分的に膨径させて形成された容室に収装され外部操作でダンパ本体の圧縮作動時に発生される圧側減衰力を高低調整し得る減衰力調整部を有してなり、該減衰力調整部が上記容室に配在され外部操作によって回動可能とされる調整ロッドを有し、該調整ロッドが上記圧側油室からの作動油の上記油室への流入を阻止する圧側チェックバルブを有すると共にその軸芯部に上記圧側油室からの作動油の上記油室への流入を許容する流路を有し、かつ、該流路が上記油室側に選択的に対向する口径の異なる複数のオリフィスを有してなる減衰力調整構造において、調整ロッドが先端インロー部の外周に上記圧側油室からの作動油の上記油室への流入を阻止する圧側チェックバルブと、背後側からの附勢力に抗して後退するその開放作動時に上記圧側油室からの作動油の上記油室への流入を許容する圧側リリーフバルブと、を介装してなり、該圧側リリーフバルブが背後側からの附勢力で上記圧側チェックバルブを離着座させるシート部材の背面に着座されるときに閉鎖状態におかれると共にその開放作動時に該圧側リリーフバルブの背面側に形成される流路面積をその後退量に依存して制限するように形成されてなるとする。
【0023】
そして、より具体的には、圧側リリーフバルブがその内周側に作動油の流通を許容する通路を形成してなる一方で、上記容室の内周にその外周が摺接する隔壁部を有してなり、該隔壁部の移動で上記流路面積を制限するように形成されてなるとする。
【0024】
【作用】
それ故、減衰力調整部における調整ロッドの正確な回動操作でいずれかのオリフィスが選択されているとき、ダンパ本体の圧縮作動時に該ダンパ本体内の圧側油室からの作動油が調整ロッドに形成の流路及び該流路に連通する上記いずれかのオリフィスを介してリザーバタンク内の油室に流入される。
【0025】
このとき、その作動油の流量が選択されているオリフィスの口径に応じた流量とされ、その限りでダンパ本体で発生される圧側減衰力が調整される。
【0026】
また、減衰力調整部における調整ロッドが正確に回動操作されずいずれのオリフィスも選択されていないときには、ダンパ本体の圧縮作動時に上記圧側油室からの作動油が圧側リリーフバルブを開放作動させてリザーバタンク内の油室に流入される。
【0027】
このとき、圧側リリーフバルブは、その外周側における作動油の流通を阻止してその内周側における作動油の流通を許容する一方で、該内周側を介しての作動油が上記油室に流入する際に、その流路面積を該圧側リリーフバルブの後退量に応じて制限する。
【0028】
その結果、いずれのオリフィスも選択されていなくても、ダンパ本体の高速傾向の圧縮作動時に該ダンパ本体内における圧側油室にオイルロック現象は勿論、異常高圧現象を招来させない。
【0029】
また、その一方で、圧側リリーフバルブの開放作動による上記圧側油室から上記油室へ向けての無制限な作動油の流れが抑制される。
【0030】
その結果、上記オリフィスが機能しない状態でもダンパ本体の高速傾向の圧縮作動時に圧側減衰力が調整される。
【0031】
そして、上記圧側リリーフバルブは、調整ロッドの正確な回動操作で口径の細いオリフィスが選択されているときであっても、ダンパ本体が高速傾向で圧縮作動する際には、所定の開放作動をして上記圧側油室にオイルロック現象及び異常高圧現象を招来させない。
【0032】
リザーバタンク内の油室に流入された作動油は、ダンパ本体の伸長作動時に、圧側リリーフバルブの内周側を通ると共に圧側チェックバルブを開放作動させて作動油が不足傾向になるダンパ本体内の圧側油室に戻される。
【0033】
【実施例】
以下、図示した実施例に基づいてこの発明を説明するが、この発明に係る減衰力調整構造も、図示しないが、前記した図2に示す従来例と同様に、ダンパ本体D内の圧側油室A1とリザーバタンクR内の油室A2とを連通する油路Lを部分的に膨径させて形成された容室A3に収装され外部操作でダンパ本体Dの圧縮作動時に発生される圧側減衰力を高低調整し得る減衰力調整部1を有してなる。
【0034】
尚、ダンパ本体Dは、図示しないが、その圧縮作動時に所定の圧側減衰力を発生させるピストン部を有している。
【0035】
上記減衰力調整部1は、図1に示すように、上記容室A3に配在され外部操作によって回動可能とされる調整ロッド10を有してなり、該調整ロッド10は、図中で左端側となるその先端側のインロー部10aの外周に圧側チェックバルブ11と圧側リリーフバルブ20を介装させている。
【0036】
また、該調整ロッド10は、その先端側の軸芯部に上記圧側油室A1からの作動油が上記油室A2側に向けて流通することを許容する流路12を有してなり、該流路12が上記油室A2側に選択的に対向する口径の異なる複数のオリフィス13,14を有してなるとしている。
【0037】
尚、調整ロッド10は、上記容室A3を形成するハウジング部Hに螺合される定着ナット2によって、所定位置、即ち、上記容室A3内から脱落されないように設定されている。
【0038】
また、該調整ロッド10は、図中で右側となるその基端側にその外周側に適宜の長さで突出する鍔部10bを有してなり、該調整ロッド10を上記容室A3に配在するにあって、上記鍔部10bを上記ハウジング部Hに形成の段差部H1に当接させ、その所定位置への定着を図っている。
【0039】
さらに、この実施例にあっても、調整ロッド10が上記容室A3に配在されることで、結果的には、前記油路Lを圧側油室A1側の油路部分L1と油室A2側の油路部分L2とに分断している。
【0040】
尚、調整ロッド10は、図中で右端となるその基端に該調整ロッド10を外部操作で回動可能にする工具の挿し込み溝10cを有している。
【0041】
上記圧側チェックバルブ11は、圧側油室A1からの作動油の上記油室A2への流入を阻止するもので、この実施例にあっては、前記インロー部10aの外周に介装されているバルブシート部材21に介装される状態に配在されている。
【0042】
そして、該圧側チェックバルブ11は、バルブシート部材21に開穿の連通孔21aを上記圧側油室A1側、即ち、油路部分L1側からリタンスプリング16の附勢下に開閉可能に閉塞している。
【0043】
尚、バルブシート部材21は、圧側チェックバルブ11と圧側リリーフバルブ20との間に配在され、調整ロッド10の先端側の外周に形成の段差部10dに当接された状態で調整ロッド10の先端螺条部10eへのナット22の螺合で定着されている。
【0044】
また、該バルブシート部材21は、その外周と容室A3の内周との間に隙間を有していて、作動油が通過することを許容している。
【0045】
上記圧側リリーフバルブ20は、その背後側からの附勢力、即ち、附勢スプリング23の附勢力に抗して後退するその開放作動時に上記圧側油室A1からの作動油の上記油室A2への流入を許容するように設定されている。
【0046】
また、該圧側リリーフバルブ20は、その背後側からの附勢力で上記シート部材21の背面に着座されるときに閉鎖状態におかれると共に、その後退時に該圧側リリーフバルブ20の背面側に形成される流路面積をその後退量に依存して制限するように設定されている。
【0047】
即ち、該圧側リリーフバルブ20は、この実施例にあって、上記シート部材21に連通孔21aを閉鎖しない状態に着座される平板環状の弁体部20aを有してなると共に、該弁体部20aから延長されて筒状に形成されその外周が上記容室A3の内周に摺接する隔壁部20bを有してなり、さらには、その内周側、特に、弁体部20aの内周と前記インロー部10aの外周との間に作動油の通過を許容する隙間を有するとしている。
【0048】
そして、上記隔壁部20bの図中で右端となる基端とこれが対向する部位、即ち、調整ロッド10における容室A3の内周への摺接部10fとの間に上記流路面積を確保するとしている。
【0049】
それ故、該圧側リリーフバルブ20にあっては、これが附勢スプリング23の附勢力に打ち勝ってシート部材21から離座するように後退するときに開放状態になり、圧側油室A1からの作動油がバルブシート部材21の外周を交すと共に弁体部20aの内周を交し、かつ、隔壁部20bと上記摺接部10fとの間を通過して油室A2に流入することを許容することになる。
【0050】
そして、このとき、該圧側リリーフバルブ20の後退量に応じてシート部材21と弁体部20aとの間を通過する作動油の流量が決まる一方で、該圧側リリーフバルブ20の後退量に応じて上記隔壁部20bと摺接部10fとの間に形成される流路面積が隔壁部20bの移動によって制限されて、そこを通過する作動油の流量が規制されることになる。
【0051】
以上のように形成された減衰力調整部1を有するこの実施例に係る減衰力調整構造にあっては、調整ロッド10の正確な回動操作でいずれかのオリフィス13,14が選択されているとき、ダンパ本体Dの圧縮作動時に該ダンパ本体D内の圧側油室A1からの作動油が調整ロッド10に形成の流路12及び該流路12に連通する上記いずれかのオリフィス13,14を介してリザーバタンクR内の油室A2に流入されることになる。
【0052】
このとき、その作動油の流量が選択されているオリフィス13,14の口径に応じた流量とされ、その限りでダンパ本体Dで発生される圧側減衰力が調整されることになる。
【0053】
また、減衰力調整部1における調整ロッド10が正確に回動操作されずにいずれのオリフィス13,14も選択されていないときには、ダンパ本体Dの圧縮作動時に上記圧側油室A1からの作動油が圧側リリーフバルブ20を開放作動させてリザーバタンクR内の油室A2に流入されることになる。
【0054】
このとき、圧側リリーフバルブ20は、その外周側における作動油の流通を阻止してその内周側における作動油の流通を許容する一方で、該内周側を介しての作動油が上記油室A2に流入する際に、その流路面積を該圧側リリーフバルブ20の後退量に応じて制限することになる。
【0055】
その結果、いずれのオリフィス13,14も選択されていなくても、ダンパ本体Dの高速傾向の圧縮作動時に該ダンパ本体D内における圧側油室A1にオイルロック現象は勿論のこと、異常高圧現象をも招来されないことになる。
【0056】
また、その一方で、圧側リリーフバルブ20の開放作動時には、上記圧側油室A1からの作動油が上記油室A2に向けて無制限に流入することが抑制されることになる。
【0057】
その結果、上記オリフィス13,14が機能しない状態でもダンパ本体Dの高速傾向の圧縮作動時に圧側減衰力が調整されることになる。
【0058】
そして、上記圧側リリーフバルブ20は、調整ロッド10の正確な回動操作で口径の細い、例えば、オリフィス14が選択されているときであっても、ダンパ本体Dが高速傾向で圧縮作動する際には、所定の開放作動をして上記圧側油室A1にオイルロック現象及び異常高圧現象を招来させないことになる。
【0059】
尚、リザーバタンクR内の油室A2に流入された作動油は、ダンパ本体Dの伸長作動時に、圧側リリーフバルブ20の内周側を通ると共に圧側チェックバルブ11を開放作動させて作動油が不足傾向になるダンパ本体D内の圧側油室A1に戻される。
【0060】
前記したところは、この発明に係る減衰力調整構造を構成する減衰力調整部1がダンパ本体D内の圧側油室A1とリザーバタンクR内の油室A2とを連通する通路L中、即ち、ダンパ本体Dとこれと分離される如き態様のリザーバタンクRとを連結するハウジング部H内に配在されてなるとしたが、この発明の意図するところからすれば、以下のように設定されても良い。
【0061】
即ち、図示しないが、リザーバタンクRがダンパ本体Dの外周に筒状に形成され、従って、減衰力調整部1がダンパ本体Dの下端部たるボトム部あるいはベースバルブ部に配在されていて、外部操作で調整ロッド10が回動可能に設定されているとしても良い。
【0062】
そして、この場合にも、前記した実施例の場合と同様の作用効果を期待できること勿論である。
【0063】
【発明の効果】
以上のように、この発明によれば、減衰力調整部が選択可能な口径の異なるオリフィスを有する一方で、圧側リリーフバルブを有するとしたので、オリフィスの選択でダンパ本体で発生される圧側減衰力を高低調整し得るのは勿論のこと、ダンパ本体が高速で圧縮作動する場合にも圧側リリーフバルブの作動でダンパ本体内の圧側油室における異常高圧を未然に阻止し得ることになり、シール部における油漏れやダンパ本体自体の破損等を危惧しなくて済むことになる。
【0064】
そして、調整ロッドに対する操作ミス等でオリフィスのいずれもが機能していないときにも、圧側リリーフバルブを有するが故に、ダンパ本体内の圧側油室にオイルロック現象を招来させることがなく、従って、この操作ミスの場合にも、シール部における油漏れやダンパ本体自体の破損を危惧しなくて済むことにもなる。
【0065】
また、この発明によれば、調整ロッドに対する操作ミス時にダンパ本体内にオイルロック現象を招来させないための補助オリフィスを有する構成としていないから、調整ロッドに対する回動操作で口径の細いオリフィスを選択してダンパ本体が微低速を含む低速で圧縮作動する際の減衰力を調整する場合にも、その調整がより効果的に実現されることになる。
【0066】
その結果、この発明によれば、上記減衰力調整部を有する減衰力調整構造を利用した油圧緩衝器がオフロード仕様の自動二輪車やモトクロス仕様の特殊自転車に架装される場合には、減衰力調整部における操作ミスがあってもシール部における油漏れやダンパ本体の破損等を招来させないのは勿論のこと、減衰力調整部に対する所定の操作で圧側減衰力を調整するについて効果的な制御が可能になって、好ましい圧側減衰力の調整を実現し得ることになる利点がある。
【図面の簡単な説明】
【図1】この発明の一実施例に係る減衰力調整構造を構成する減衰力調整部を示す部分拡大断面図である。
【図2】従来例としての減衰力調整構造を有する油圧緩衝器を一部破断して示す立面図である。
【図3】図2の減衰力調整構造を構成する減衰力調整部を示す部分断面図である。
【符号の説明】
1 減衰力調整部
10 調整ロッド
11 圧側チェックバルブ
12 流路
13,14 オリフィス
20 圧側リリーフバルブ
20b 隔壁部
21 シート部材
A1 圧側油室
A2 油室
A3 容室
D ダンパ本体
L 油路
R リザーバタンク
[0001]
[Industrial applications]
The present invention relates to an improvement in a damping force adjusting structure suitable for use in a hydraulic shock absorber mounted on a motorcycle, a special bicycle, or the like.
[0002]
[Prior art]
In general, a hydraulic shock absorber mounted on a vehicle such as a motorcycle is configured so that a damping force of a predetermined magnitude is generated by a damping force generating section when the telescopic operation is performed. In many cases, the damping force generated by the damping force generator is adjusted by the damping force adjuster so that the damping force becomes a damping force according to the running conditions of the vehicle.
[0003]
In particular, in the case of a hydraulic shock absorber mounted on an off-road motorcycle or a motocross special bicycle, the damping force on the pressure side generated by the damping force generation unit can be adjusted by the damping force adjustment unit. In many cases, the hydraulic shock absorber is configured as shown in FIG. 2, for example.
[0004]
That is, the hydraulic shock absorber is externally operated in an oil passage L communicating the pressure side oil chamber A1 in the damper body D and the oil chamber A2 in the so-called reservoir tank R as a so-called reservoir. A damping force adjusting structure having a damping force adjusting unit 1 capable of adjusting the level of a compression damping force generated by a damping force generating unit (not shown) is employed.
[0005]
As shown in FIG. 3, the damping force adjusting section 1 constituting the damping force adjusting structure connects the oil passage L to an oil passage portion L1 on the pressure side oil chamber A1 side and an oil passage portion L2 on the reservoir tank R side. An adjusting rod 10 is provided in a chamber A3 formed by partially expanding so as to be divided and rotatable by an external operation.
[0006]
The adjusting rod 10 has a pressure-side check valve 11 for preventing the flow of the hydraulic oil from the oil passage portion L1 into the oil passage portion L2, and the flow of the hydraulic oil from the oil passage portion L1 to the oil passage portion L2 side. And a plurality of orifices 13 and 14 having different diameters selectively facing the oil passage portion L2.
[0007]
In this conventional example, the adjusting rod 10 is disposed so as to occupy the chamber A3, and its outer periphery is slidably contacted with the inner periphery of the chamber A3, so that the oil passage L is shut off. Therefore, the pressure-side check valve 11 is disposed on the inner periphery of the distal end, which is the left end in the drawing, of the adjustment rod 10 so as to face the oil passage portion L1.
[0008]
The pressure-side check valve 11 is configured to open and close the expansion-side port 15 opened by the adjusting rod 10 and communicating with the oil passage portion L2 from the oil passage portion L1 under the urging of the return spring 16. It is arranged.
[0009]
Further, the extension side port 15 communicates with an annular groove 17 formed on the outer periphery of the adjusting rod 10, and the annular groove 17 is provided with an orifice 13, 14 provided in the flow path 12, which selectively opposes oil. It is set so as to communicate with the road portion L2.
[0010]
In this conventional example, the adjusting rod 10 has an auxiliary orifice 18 that connects the flow path 12 and the extension side port 15.
[0011]
Therefore, according to the hydraulic shock absorber having the above-described damping force adjusting section 1, that is, according to the conventional damping force adjusting structure, the adjusting rod 10 is rotated by an external operation to provide the orifices 13 and When any one of the orifices 14 faces the oil passage portion L2, the flow of the hydraulic oil according to the diameter of the selected orifices 13 and 14 is ensured, and the compression-side damping force generated when the damper main body D is compressed is high or low. Adjusted.
[0012]
When both of the orifices 13 and 14 are no longer opposed to the oil passage portion L2 due to an operation error of the adjustment rod 10 or the like, the pressure side of the damper main body D via the auxiliary orifice 18 that bypasses the orifices 13 and 14. The hydraulic oil from the oil chamber A1 can flow into the oil chamber A2 of the reservoir tank R.
[0013]
As a result, even when the damper main body D operates on the compression side while the orifices 13 and 14 do not function, the oil lock phenomenon does not occur in the compression side oil chamber A1 in the damper main body D, and oil leakage or leakage at the seal portion is prevented. A situation such as damage to the damper body D itself can be avoided in advance.
[0014]
[Problems to be solved by the invention]
However, the following disadvantages have been pointed out in the conventional damping force adjusting structure described above.
[0015]
That is, in the above-mentioned conventional damping force adjusting structure, the damping force generated in the damper main body D is adjusted by selecting the orifices 13 and 14, so that the damper main body D performs the compression operation at a high speed. In this case, because of the so-called orifice characteristic, the oil pressure in the pressure side oil chamber A1 in the damper main body D becomes abnormally high, and there still remains fears such as oil leakage at the seal portion and damage to the damper main body D itself.
[0016]
Conversely, when the damper body D performs a compression operation at a low speed including a very low speed, the orifice having a small diameter, that is, in the illustrated example, even if the orifice 14 is selected, the orifice characteristic causes a variable width. Is small, and the adjustment width is large, that is, it cannot be adjusted effectively.
[0017]
Further, in the above-described conventional damping force adjustment structure, when neither of the orifices 13 and 14 is opposed to the oil passage portion L2 due to an operation error or the like with respect to the adjustment rod 10, the pressure side oil chamber A1 in the damper body D. An auxiliary orifice 18 that bypasses the orifices 13 and 14 is provided in order to avoid inconveniences such as an oil lock phenomenon, oil leakage at the seal portion, and damage to the damper body D itself.
[0018]
Therefore, when the damper body D performs the compression operation at a low speed including a very low speed, since the auxiliary orifice 18 is so-called active, even if the orifice 14 having a particularly small diameter is selected, a desired damping force adjusting effect can be obtained. You will not get it.
[0019]
When the auxiliary orifice 18 is set for low speed operation, when the damper main body D performs a high-speed compression operation in a state where none of the orifices 13 and 14 function due to an operation error or the like, the above-mentioned pressure side oil chamber A1 has Due to the abnormally high pressure, oil leakage at the seal portion, damage to the damper body D itself, and the like are likely to occur.
[0020]
As a result, even if the hydraulic shock absorber using the above-described damping force adjustment structure is mounted on a motorcycle of an off-road specification or a special bicycle of a motocross specification, it is not possible to realize a preferable adjustment of the compression side damping force.
[0021]
The present invention has been made in view of the above circumstances, and an object of the present invention is to prevent the occurrence of oil leakage at the seal portion and damage to the damper body even if an operation error occurs in the damping force adjusting portion. Of course, it is possible to effectively control the compression-side damping force by a predetermined operation on the damping force adjusting unit, and the hydraulic shock absorber mounted on an off-road motorcycle or a motocross special bicycle. An object of the present invention is to provide a damping force adjusting structure that is optimal for use in a vessel.
[0022]
[Means for Solving the Problems]
In order to achieve the above-described object, a basic configuration of the present invention is configured such that an oil passage connecting a pressure side oil chamber in a damper main body and an oil chamber in a reservoir tank is partially expanded in diameter. A damping force adjustment unit housed in the chamber and capable of adjusting the compression-side damping force generated during the compression operation of the damper body by an external operation, wherein the damping force adjustment unit is disposed in the chamber and operated externally. An adjustment rod rotatable by the pressure-side oil chamber, the adjustment rod having a pressure-side check valve for preventing the flow of hydraulic oil from the pressure-side oil chamber into the oil chamber, and the pressure-side oil chamber being provided at a shaft portion thereof. Damping force adjustment having a flow path that allows the flow of hydraulic oil from the oil chamber into the oil chamber, and the flow path has a plurality of orifices of different diameters selectively facing the oil chamber side. In the structure, the adjustment rod is placed on the outer circumference of the A pressure-side check valve for preventing the hydraulic oil from flowing into the oil chamber, and the hydraulic oil from the pressure-side oil chamber flowing into the oil chamber at the time of its opening operation, which retreats against an urging force from the rear side. A pressure-side relief valve which allows the pressure-side relief valve to be closed when the pressure-side relief valve is seated on the back surface of a seat member that detaches and seats the pressure-side check valve with a biasing force from the back side. At the same time, it is assumed that the flow path area formed on the back side of the pressure side relief valve at the time of the opening operation is limited depending on the retreat amount.
[0023]
More specifically, the pressure-side relief valve forms a passage that allows the flow of hydraulic oil on its inner peripheral side, and has a partition wall part whose outer periphery is in sliding contact with the inner periphery of the chamber. It is assumed that the partition is formed so as to limit the flow path area by moving the partition.
[0024]
[Action]
Therefore, when one of the orifices is selected by the accurate turning operation of the adjusting rod in the damping force adjusting section, the hydraulic oil from the pressure side oil chamber in the damper main body is applied to the adjusting rod during the compression operation of the damper main body. The fluid flows into the oil chamber in the reservoir tank through the formed flow path and any one of the orifices communicating with the flow path.
[0025]
At this time, the flow rate of the hydraulic oil is set to a flow rate corresponding to the diameter of the selected orifice, and the pressure-side damping force generated in the damper main body is adjusted as far as it is.
[0026]
Further, when the adjusting rod in the damping force adjusting section is not accurately rotated and none of the orifices is selected, the hydraulic oil from the pressure side oil chamber opens the pressure side relief valve at the time of the compression operation of the damper body. It flows into the oil chamber in the reservoir tank.
[0027]
At this time, the pressure side relief valve blocks the flow of the hydraulic oil on the outer peripheral side to allow the flow of the hydraulic oil on the inner peripheral side, while the hydraulic oil via the inner peripheral side is supplied to the oil chamber. When flowing in, the flow passage area is limited according to the retreat amount of the pressure side relief valve.
[0028]
As a result, even if none of the orifices is selected, the compression-side oil chamber in the damper body does not cause the oil lock phenomenon or the abnormally high pressure phenomenon during the compression operation of the damper body at a high speed.
[0029]
On the other hand, unrestricted flow of hydraulic oil from the pressure side oil chamber to the oil chamber due to the opening operation of the pressure side relief valve is suppressed.
[0030]
As a result, even when the orifice does not function, the compression damping force is adjusted at the time of the compression operation of the damper body at a high speed.
[0031]
And, even when the orifice having a small diameter is selected by the accurate turning operation of the adjusting rod, the compression side relief valve performs a predetermined opening operation when the damper body performs the compression operation at a high speed. Thus, an oil lock phenomenon and an abnormally high pressure phenomenon are not caused in the pressure side oil chamber.
[0032]
Hydraulic oil that has flowed into the oil chamber in the reservoir tank passes through the inner peripheral side of the pressure side relief valve and opens the pressure side check valve when the damper body elongates, causing the hydraulic oil in the damper body to run short. It is returned to the compression oil chamber.
[0033]
【Example】
Hereinafter, the present invention will be described based on the illustrated embodiment, but the damping force adjusting structure according to the present invention is also not shown, but similarly to the conventional example shown in FIG. The pressure side damping which is accommodated in a chamber A3 formed by partially expanding an oil passage L communicating the oil passage A1 and an oil chamber A2 in the reservoir tank R and which is generated when the damper body D is compressed by an external operation. It has a damping force adjusting section 1 capable of adjusting the level of force.
[0034]
Although not shown, the damper main body D has a piston portion that generates a predetermined compression-side damping force during its compression operation.
[0035]
As shown in FIG. 1, the damping force adjusting section 1 includes an adjusting rod 10 which is disposed in the chamber A3 and is rotatable by an external operation. A pressure-side check valve 11 and a pressure-side relief valve 20 are interposed on the outer periphery of the spigot portion 10a on the left end side.
[0036]
Further, the adjusting rod 10 has a flow path 12 in the shaft core portion on the distal end side thereof, which allows the hydraulic oil from the pressure side oil chamber A1 to flow toward the oil chamber A2. The flow path 12 has a plurality of orifices 13 and 14 having different diameters selectively facing the oil chamber A2 side.
[0037]
The adjusting rod 10 is set so as not to be dropped from a predetermined position, that is, from the inside of the chamber A3, by the fixing nut 2 screwed to the housing portion H forming the chamber A3.
[0038]
Further, the adjusting rod 10 has a flange portion 10b protruding at an appropriate length on the outer peripheral side at a base end side on the right side in the drawing, and the adjusting rod 10 is disposed in the chamber A3. In this case, the flange portion 10b is brought into contact with a step H1 formed on the housing portion H to fix the flange portion 10b at a predetermined position.
[0039]
Further, also in this embodiment, since the adjusting rod 10 is disposed in the chamber A3, as a result, the oil passage L is connected to the oil passage portion L1 on the pressure side oil chamber A1 side and the oil chamber A2. And an oil passage portion L2 on the side.
[0040]
The adjustment rod 10 has a tool insertion groove 10c at its base end, which is the right end in the figure, for enabling the adjustment rod 10 to be rotated by an external operation.
[0041]
The pressure-side check valve 11 prevents the hydraulic oil from flowing from the pressure-side oil chamber A1 into the oil chamber A2. In this embodiment, the valve is provided on the outer periphery of the spigot portion 10a. It is arranged so as to be interposed in the seat member 21.
[0042]
The pressure side check valve 11 closes a communication hole 21a opened in the valve seat member 21 so as to be opened and closed under the urging of the return spring 16 from the pressure side oil chamber A1, that is, the oil passage portion L1 side. I have.
[0043]
The valve seat member 21 is disposed between the pressure-side check valve 11 and the pressure-side relief valve 20, and is in contact with a step 10 d formed on the outer periphery on the distal end side of the adjustment rod 10. It is fixed by screwing the nut 22 to the tip thread portion 10e.
[0044]
Further, the valve seat member 21 has a gap between the outer periphery thereof and the inner periphery of the storage chamber A3, and allows the passage of hydraulic oil.
[0045]
The pressure-side relief valve 20 is configured to move the hydraulic oil from the pressure-side oil chamber A1 to the oil chamber A2 at the time of its opening operation, which retreats against the urging force from the rear side, that is, the urging force of the urging spring 23. It is set to allow inflow.
[0046]
The pressure side relief valve 20 is closed when it is seated on the back surface of the seat member 21 by the urging force from the rear side, and is formed on the back side of the pressure side relief valve 20 when it retreats. The flow path area is set to be limited depending on the receding amount.
[0047]
That is, in this embodiment, the pressure side relief valve 20 has a flat annular valve body portion 20a which is seated on the seat member 21 in a state where the communication hole 21a is not closed. 20a, the partition wall 20b is formed in a cylindrical shape, the outer periphery of which is in sliding contact with the inner periphery of the chamber A3, and further has an inner peripheral side, particularly, an inner periphery of the valve body portion 20a. It is assumed that there is a gap between the outer periphery of the spigot portion 10a and the passage of hydraulic oil.
[0048]
Then, the flow path area is secured between the base end of the partition wall portion 20b, which is the right end in the drawing, and a portion facing the base end, that is, the sliding contact portion 10f of the adjustment rod 10 to the inner periphery of the chamber A3. And
[0049]
Therefore, the pressure side relief valve 20 is opened when it overcomes the urging force of the urging spring 23 and retreats away from the seat member 21, and the hydraulic oil from the pressure side oil chamber A 1 is opened. Crosses the outer periphery of the valve seat member 21 and the inner periphery of the valve body portion 20a, and allows the gas to flow into the oil chamber A2 through the space between the partition wall portion 20b and the sliding contact portion 10f. Will be.
[0050]
At this time, the flow rate of the hydraulic oil passing between the seat member 21 and the valve body 20a is determined according to the retreat amount of the pressure side relief valve 20, while the flow rate of the hydraulic oil is determined according to the retreat amount of the pressure side relief valve 20. The flow path area formed between the partition wall portion 20b and the sliding contact portion 10f is limited by the movement of the partition wall portion 20b, and the flow rate of the hydraulic oil passing therethrough is regulated.
[0051]
In the damping force adjusting structure according to this embodiment having the damping force adjusting portion 1 formed as described above, one of the orifices 13 and 14 is selected by the accurate turning operation of the adjusting rod 10. At the time of the compression operation of the damper main body D, the hydraulic oil from the pressure side oil chamber A1 in the damper main body D passes through the flow path 12 formed in the adjustment rod 10 and one of the orifices 13 and 14 communicating with the flow path 12. Through the oil chamber A2 in the reservoir tank R.
[0052]
At this time, the flow rate of the hydraulic oil is set to a flow rate corresponding to the diameter of the selected orifices 13 and 14, and the pressure-side damping force generated in the damper body D is adjusted as far as it is.
[0053]
Also, when the adjusting rod 10 in the damping force adjusting section 1 is not accurately rotated and neither of the orifices 13 and 14 is selected, the hydraulic oil from the pressure side oil chamber A1 is discharged during the compression operation of the damper body D. The pressure relief valve 20 is opened to flow into the oil chamber A2 in the reservoir tank R.
[0054]
At this time, the pressure side relief valve 20 prevents the flow of the hydraulic oil on the outer peripheral side to allow the flow of the hydraulic oil on the inner peripheral side, while the hydraulic oil through the inner peripheral side is supplied to the oil chamber. When flowing into A2, the flow path area is limited according to the retreat amount of the pressure side relief valve 20.
[0055]
As a result, even if neither of the orifices 13 and 14 is selected, not only the oil lock phenomenon but also the abnormal high pressure phenomenon occurs in the pressure side oil chamber A1 in the damper body D during the compression operation of the damper body D at a high speed. Will not be invited.
[0056]
On the other hand, at the time of the opening operation of the compression side relief valve 20, the operation oil from the compression side oil chamber A1 is suppressed from flowing into the oil chamber A2 without restriction.
[0057]
As a result, even when the orifices 13 and 14 do not function, the compression damping force is adjusted at the time of the compression operation of the damper main body D at a high speed.
[0058]
Then, even when the orifice 14 is selected, for example, when the orifice 14 is selected, the compression side relief valve 20 performs a compression operation at a high speed even when the orifice 14 is selected. Means that a predetermined opening operation is performed and the oil lock phenomenon and the abnormally high pressure phenomenon are not caused in the pressure side oil chamber A1.
[0059]
The hydraulic oil that has flowed into the oil chamber A2 in the reservoir tank R passes through the inner peripheral side of the pressure-side relief valve 20 and opens the pressure-side check valve 11 when the damper body D extends, so that the hydraulic oil runs short. It is returned to the pressure side oil chamber A1 in the damper main body D which tends to.
[0060]
As described above, the damping force adjusting portion 1 constituting the damping force adjusting structure according to the present invention is in the passage L communicating the pressure side oil chamber A1 in the damper body D and the oil chamber A2 in the reservoir tank R, that is, Although the damper body D and the reservoir tank R are separated from the damper body D, the damper body D is disposed in the housing portion H. However, in view of the intention of the present invention, the damper body D is set as follows. good.
[0061]
That is, although not shown, the reservoir tank R is formed in a cylindrical shape on the outer periphery of the damper main body D, and therefore, the damping force adjusting section 1 is disposed at the bottom portion or the base valve portion, which is the lower end of the damper main body D, The adjustment rod 10 may be set to be rotatable by an external operation.
[0062]
Also in this case, it is needless to say that the same operation and effect as in the above-described embodiment can be expected.
[0063]
【The invention's effect】
As described above, according to the present invention, while the damping force adjusting section has the orifices having different diameters that can be selected, the damping force adjusting section has the pressure-side relief valve. Therefore, the compression-side damping force generated in the damper body by selecting the orifice. In addition to being able to adjust the height of the seal, even when the damper main body performs the compression operation at a high speed, the operation of the pressure side relief valve can prevent the abnormally high pressure in the pressure side oil chamber in the damper main body beforehand, so that the seal portion can be prevented. In such a case, there is no need to worry about oil leakage or damage to the damper body itself.
[0064]
Then, even when none of the orifices is functioning due to an operation error with respect to the adjustment rod, etc., since the pressure side relief valve is provided, the oil lock phenomenon does not occur in the pressure side oil chamber in the damper body, and therefore, Even in the case of this operation error, there is no need to worry about oil leakage at the seal portion or damage to the damper body itself.
[0065]
Further, according to the present invention, since the auxiliary orifice for preventing the oil lock phenomenon from being caused in the damper body when the operation of the adjustment rod is erroneous is not configured, the orifice having a small diameter is selected by rotating the adjustment rod. Even when adjusting the damping force when the damper body performs the compression operation at a low speed including a very low speed, the adjustment is realized more effectively.
[0066]
As a result, according to the present invention, when the hydraulic shock absorber using the damping force adjusting structure having the damping force adjusting section is mounted on an off-road motorcycle or a motocross special bicycle, the damping force is reduced. Even if there is an operation error in the adjustment unit, it is possible to prevent oil leaks in the seal unit and damage to the damper body, etc., as well as to perform effective control for adjusting the compression-side damping force by a predetermined operation on the damping force adjustment unit. This has the advantage that it is possible to achieve a preferred adjustment of the compression damping force.
[Brief description of the drawings]
FIG. 1 is a partially enlarged cross-sectional view showing a damping force adjusting section constituting a damping force adjusting structure according to an embodiment of the present invention.
FIG. 2 is an elevational view showing a hydraulic shock absorber having a damping force adjusting structure as a conventional example, partially cut away.
FIG. 3 is a partial cross-sectional view illustrating a damping force adjustment unit included in the damping force adjustment structure of FIG. 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Damping force adjustment part 10 Adjustment rod 11 Pressure side check valve 12 Flow path 13, 14 Orifice 20 Pressure side relief valve 20b Partition wall 21 Sheet member A1 Pressure side oil chamber A2 Oil chamber A3 Storage chamber D Damper body L Oil path R Reservoir tank

Claims (2)

ダンパ本体内の圧側油室とリザーバタンク内の油室とを連通する油路を部分的に膨径させて形成された容室に収装され外部操作でダンパ本体の圧縮作動時に発生される圧側減衰力を高低調整し得る減衰力調整部を有してなり、該減衰力調整部が上記容室に配在され外部操作によって回動可能とされる調整ロッドを有し、該調整ロッドが上記圧側油室からの作動油の上記油室への流入を阻止する圧側チェックバルブを有すると共にその軸芯部に上記圧側油室からの作動油の上記油室への流入を許容する流路を有し、かつ、該流路が上記油室側に選択的に対向する口径の異なる複数のオリフィスを有してなる減衰力調整構造において、調整ロッドが先端インロー部の外周に上記圧側油室からの作動油の上記油室への流入を阻止する圧側チェックバルブと、背後側からの附勢力に抗して後退するその開放作動時に上記圧側油室からの作動油の上記油室への流入を許容する圧側リリーフバルブと、を介装してなり、該圧側リリーフバルブが背後側からの附勢力で上記圧側チェックバルブを離着座させるシート部材の背面に着座されるときに閉鎖状態におかれると共にその開放作動時に該圧側リリーフバルブの背面側に形成される流路面積をその後退量に依存して制限するように形成されてなる減衰力調整構造A pressure side generated when a compression operation of the damper body is performed by an external operation and housed in a chamber formed by partially expanding an oil path communicating the pressure side oil chamber in the damper body and the oil chamber in the reservoir tank. It has a damping force adjusting portion capable of adjusting the damping force, and the damping force adjusting portion has an adjusting rod disposed in the chamber and rotatable by an external operation. It has a pressure side check valve for preventing the flow of hydraulic oil from the pressure side oil chamber into the oil chamber, and has a flow passage in its shaft core that allows the flow of hydraulic oil from the pressure side oil chamber into the oil chamber. And, in the damping force adjusting structure in which the flow path has a plurality of orifices having different diameters selectively facing the oil chamber side, an adjusting rod is provided on the outer periphery of the front end spigot portion from the pressure side oil chamber. A pressure-side check bar that prevents hydraulic oil from flowing into the oil chamber And a pressure relief valve that allows the hydraulic oil from the pressure side oil chamber to flow into the oil chamber at the time of its opening operation, which retreats against the urging force from the rear side, and The compression-side relief valve is closed when the compression-side relief valve is seated on the back side of the seat member that detaches and seats the compression-side check valve by the urging force from the rear side, and is formed on the rear side of the compression-side relief valve when the compression-side check valve is opened. Damping force adjustment structure formed to limit the flow path area depending on the amount of retreat 圧側リリーフバルブがその内周側に作動油の流通を許容する通路を形成してなる一方で、上記容室の内周にその外周が摺接する隔壁部を有してなり、該隔壁部の移動で上記流路面積を制限するように形成されてなること特徴とする請求項1の減衰力調整構造The pressure side relief valve has a passage on the inner peripheral side thereof that allows the flow of hydraulic oil, and has a partition wall whose outer periphery is in sliding contact with the inner periphery of the chamber. 2. The damping force adjusting structure according to claim 1, wherein the damping force adjusting structure is formed so as to limit the flow passage area.
JP05502695A 1995-02-20 1995-02-20 Damping force adjustment structure Expired - Fee Related JP3573170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05502695A JP3573170B2 (en) 1995-02-20 1995-02-20 Damping force adjustment structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05502695A JP3573170B2 (en) 1995-02-20 1995-02-20 Damping force adjustment structure

Publications (2)

Publication Number Publication Date
JPH08226485A JPH08226485A (en) 1996-09-03
JP3573170B2 true JP3573170B2 (en) 2004-10-06

Family

ID=12987165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05502695A Expired - Fee Related JP3573170B2 (en) 1995-02-20 1995-02-20 Damping force adjustment structure

Country Status (1)

Country Link
JP (1) JP3573170B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753766B1 (en) * 2004-03-18 2007-08-31 주식회사 만도 Relief valve of a shock absorber capable of self-levelizing

Also Published As

Publication number Publication date
JPH08226485A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
US5404973A (en) Damping force control type hydraulic shock absorber
KR910008159B1 (en) Hydraulic shock absorber
US5649611A (en) Damping force control type hydraulic shock absorber
US6302248B1 (en) Damping force control type hydraulic shock absorber
US6398682B1 (en) Hydraulic tensioner with relief valve
KR100773362B1 (en) Damping force controlling valve and shock absorber of using the same
JPH01172648A (en) Shock absorber
EP1006291B1 (en) Damper valve for hydraulic power steering device
JP3573170B2 (en) Damping force adjustment structure
JPH10238582A (en) Hydraulic buffer and method for filling hydraulic buffer with hydraulic oil
US5402867A (en) Shock absorber with auxiliary port in guide member to control hydrodynamic force
JPS60175877A (en) Rapid closing type check valve
JP2006273288A (en) Front fork for motorcycle or the like
JP3348234B2 (en) Damping force adjustable hydraulic shock absorber
JP3080213B2 (en) Hydraulic shock absorber
JP4641948B2 (en) Damper valve
JP3644883B2 (en) Oil damper for vibration control
JPS6354924B2 (en)
JP2003172394A (en) Damping force adjusting device for hydraulic shock absorber
JPH11173362A (en) Hydraulic shock absorber
JP2003172393A (en) Damping force adjusting device for hydraulic shock absorber
JP3913294B2 (en) Front fork
JPH08233017A (en) Hydraulic shock absorber
JP2606002Y2 (en) Hydraulic shock absorber
JPS598031Y2 (en) Shock absorber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees