JP3572193B2 - Battery potential difference conversion circuit - Google Patents

Battery potential difference conversion circuit Download PDF

Info

Publication number
JP3572193B2
JP3572193B2 JP10455798A JP10455798A JP3572193B2 JP 3572193 B2 JP3572193 B2 JP 3572193B2 JP 10455798 A JP10455798 A JP 10455798A JP 10455798 A JP10455798 A JP 10455798A JP 3572193 B2 JP3572193 B2 JP 3572193B2
Authority
JP
Japan
Prior art keywords
potential difference
switch circuit
battery
switch
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10455798A
Other languages
Japanese (ja)
Other versions
JPH11299118A (en
Inventor
秀之 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP10455798A priority Critical patent/JP3572193B2/en
Publication of JPH11299118A publication Critical patent/JPH11299118A/en
Application granted granted Critical
Publication of JP3572193B2 publication Critical patent/JP3572193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電気自動車ならびに携帯機器やパーソナルコンピュータ等に内蔵される二次電池を使用したバッテリユニットの制御回路等に適用される電池電位差変換回路に関するものである。
【0002】
【従来の技術】
図2は二次電池を使用したバッテリユニットの制御回路において、3セル直列接続された各二次電池の電位差を各々接地電位を基準として1セル毎に変換して出力する電池電位差変換回路の従来例である。図2においてVA,VB,VCはそれぞれ二次電池を示し、出力部Vに1セル毎の電位が出力され、1b、2b、3b、4b、5b、6b、7bは導通状態と解放状態を実現するスイッチ回路である。
【0003】
図2において、二次電池VCの電位差を出力するにはスイッチ回路1b、4bのみを導通状態にして、コンデンサCに二次電池VCの電圧を充電する。その後スイッチ回路1b、4bを再び解放状態にしたあと、スイッチ回路7bを導通状態にすることにより出力部Vに接地電位を基準として二次電池VCの電位を出力することができる。同様に二次電池VBの電位差を出力するにはスイッチ回路2b、5bのみを導通状態にして、コンデンサCに二次電池VBの電圧を充電する。その後スイッチ回路2b、5bを解放状態にした後、スイッチ回路7bを導通状態にすることにより出力部Vに接地電位を基準として二次電池VBの電位を出力することができる。二次電池VAの電位差も同様な方法により出力部Vに出力することができる。
【0004】
【発明が解決しようとする課題】
従来、バッテリユニットに使用している各二次電池の電位差を各々接地電位を基準として1セル毎に変換して出力する電池電位差変換回路においては、使用するスイッチ回路に高電圧が印加されるため、高い電気的耐圧のスイッチ回路が必要になるという課題があった。
【0005】
すなわち、図2において二次電池VA、VB、VCが4.1Vのリチウムイオン二次電池の場合に、二次電池VCの電位差を出力するため、スイッチ回路1b、4bのみを導通状態にすると、解放状態のスイッチ回路3bおよび6b、7bは、それぞれ二次電池VB+VC、二次電池VA+VBの2セル分の電位差、すなわち8.2Vが印加されるため、3セル直列接続された各二次電池の電位差を、各々接地電位を基準として1セル毎に変換して出力する電位差変換回路を構成するスイッチ回路は、少なくとも2セル分以上の電気的耐圧が必要であった。
【0006】
したがって、n(n>3)セルの直列接続された二次電池の電位差変換回路において構成するスイッチ回路は、少なくともn−1セル分以上の電気的耐圧が必要となり、例えば、4.1Vのリチウムイオン二次電池で、n=11セルが直列接続された場合には、電位差変換回路を構成するスイッチ回路の電気的耐圧は少なくとも41V必要であり、スイッチ回路の構成が非常に困難であった。
【0007】
この発明は、上記従来の課題を解決するものであり、例えばバッテリユニットに使用している直列接続された各二次電池の電位差を各々接地電位を基準として1セル毎に変換して出力する電位差変換回路において、低い電気的耐圧のスイッチ回路を用いて実現することができる電池電位差変換回路を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1記載の電池電位差変換回路は、複数個直列接続された電池群と、直列接続されて電池群の少なくとも一つの電池に並列に接続された一対のスイッチ回路と、この一対のスイッチ回路の相互の接続点を第1電極側に接続したコンデンサと、このコンデンサの第2電極側を基準電位に接続する別のスイッチ回路とを備え、コンデンサの第2電極側の電位を出力電位としたものである。
【0009】
請求項1記載の電池電位差変換回路によれば、一対のスイッチ回路の一方と別のスイッチ回路を閉じるとコンデンサが充電され、つぎにこれらのスイッチ回路を開いて一対のスイッチ回路の他方を閉じるとコンデンサの第2電極側に電池の電位が現れる。この場合、一対のスイッチ回路の一方と別のスイッチ回路を閉じたとき一対のスイッチ回路の他方には1つの電池の電位差のみが加わり、解放したときも同様である。つぎに一対のスイッチ回路の他方を閉じたとき一対のスイッチ回路の一方と別のスイッチ回路には1つの電池の電位差のみが印加される。このためスイッチ回路は従来例と比較して、電池の数にかかわらず、低い電気的耐圧のスイッチ回路を用いて、各二次電池の電位差を各々基準電圧に対し、1セル毎に変換して出力する電位差変換回路を簡単に実現することができる。
【0010】
請求項2記載の電池電位差変換回路は、請求項1において、第1のスイッチ回路、第2のスイッチ回路および第3のスイッチ回路は、それぞれ第一導電形のMOSトランジスタからなるものである。
請求項2記載の電池電位差変換回路によれば、請求項1と同様な効果がある。請求項3記載の電池電位差変換回路は、請求項1において、第1のスイッチ回路、第2のスイッチ回路および第3のスイッチ回路は、それぞれ第一導電形のMOSトランジスタと第二導電形のMOSトランジスタを並列に接続したトランスミッションゲートからなるものである。
【0011】
請求項3記載の電池電位差変換回路によれば、請求項1と同様な効果がある。
【0012】
【発明の実施の形態】
以下、この発明の実施の形態について、図面を参照しながら説明する。
図1はこの発明の一実施の形態における二次電池電位差変換回路である。図1において、VA、VB、VCは例えば複数個直列接続される再充電可能な電池(以下、二次電池と称す)、具体的には各々4.1Vのリチウムイオン二次電池であり、VRは接地電位から二次電池VAの陰極側に生じている電位差であり、1、2、3、4、5、6、7、8、9、10、11、12はそれぞれ導通状態と解放状態を実現するスイッチ回路である。またC1、C2、C3はそれぞれコンデンサである。
【0013】
この二次電池電位差変換回路は、複数個直列接続された電池群VA、VB、VCと、直列接続されて電池群VA、VB、VCの各々に並列に接続された一対のスイッチ回路群すなわち一対のスイッチ回路1、2、一対のスイッチ回路3、4、一対のスイッチ回路5、6と、これらの一対のスイッチ回路の相互の接続点をそれぞれ第1電極側に接続したコンデンサC1、C2、C3と、このコンデンサC1、C2、C3の各第2電極側を基準電位に接続する別のスイッチ回路10、11、12とを備え、コンデンサC1、C2、C3の第2電極側の電位を出力電位Vとしている。
【0014】
実施の形態では二次電池VA,VB,VCが3個直列に接続されており、二次電池VCの陽極側にはスイッチ回路1が接続され、二次電池VCの陰極側にはスイッチ回路2が接続されておりスイッチ回路1、2の出力は、コンデンサC1の片側の電極に接続されている。同様に二次電池VBの陽極側にはスイッチ回路3が接続され、二次電池VBの陰極側にはスイッチ回路4が接続されておりスイッチ回路3、4の出力は、コンデンサC2の片側の電極に接続されている。さらに二次電池VAの陽極側にはスイッチ回路5が接続され、二次電池VAの陰極側にはスイッチ回路6が接続されておりスイッチ回路5、6の出力は、コンデンサC3の片側の電極に接続されている。コンデンサC1、C2、C3の反対側の電極には接地用スイッチ回路10、11、12および出力用スイッチ回路7、8、9が接続されている。Vは出力部であり、接地電位を基準として各VA、VB、VCの電位差が出力される。
【0015】
以上のように構成された二次電池電位差変換回路について、その動作を説明する。最初にスイッチ回路2、4、6およびスイッチ回路10、11、12を、導通状態にしてコンデンサC1にVA+VB+VRの電圧を充電し、コンデンサC2にVA+VRの電圧を充電し、コンデンサC3にVRの電圧を充電する。このとき解放状態にあるスイッチ類に印加されている電圧はつぎのようになる。
スイッチ回路1−−−−二次電池VCの電位差
スイッチ回路3−−−−二次電池VBの電位差
スイッチ回路5−−−−二次電池VAの電位差
スイッチ回路7−−−−0V
スイッチ回路8−−−−0V
スイッチ回路9−−−−0V
次にすべてのスイッチ回路を解放状態にする。このときのスイッチ類に印加されている電圧はつぎのようになる。
スイッチ回路1−−−−二次電池VCの電位差
スイッチ回路2−−−−0V
スイッチ回路3−−−−二次電池VBの電位差
スイッチ回路4−−−−0V
スイッチ回路5−−−−二次電池VAの電位差
スイッチ回路6−−−−0V
スイッチ回路7−−−−0V
スイッチ回路8−−−−0V
スイッチ回路9−−−−0V
スイッチ回路10−−0V
スイッチ回路11−−0V
スイッチ回路12−−0V
この後に二次電池VCの電位を出力する場合はスイッチ回路1、7を、二次電池VBの電位を出力する場合はスイッチ回路3、8を、二次電池VAの電位を出力する場合はスイッチ5、9を導通状態にすれば、各々の二次電池の電位差が接地電圧を基準としてVに出力される。例えばスイッチ回路1、7を導通状態にした場合の他の解放状態のスイッチ類に印加されている電圧はつぎのようになる。
スイッチ回路2−−−−二次電池VCの電位差
スイッチ回路3−−−−二次電池VBの電位差
スイッチ回路4−−−−0V
スイッチ回路5−−−−二次電池VAの電位差
スイッチ回路6−−−−0V
スイッチ回路8−−−−二次電池VCの電位差
スイッチ回路9−−−−二次電池VCの電位差
スイッチ回路10−−二次電池VCの電位差
スイッチ回路11−−0V
スイッチ回路12−−0V
したがって一連の電位差変換回路の動作において、構成されるすべてのスイッチ類には常に1セル分4.1Vの電位差が印加される。二次電池VBの電位を出力するためにスイッチ回路3、8を、さらに二次電池VAの電位を出力するためにスイッチ回路5、9を導通状態にした場合も同様に構成されるすべてのスイッチ類には常に1セル分の電位差が印加される。
【0016】
以上のように、この発明の実施の形態によれば、複数個直列接続された二次電池において、複数個直列接続された二次電池群の少なくとも一つの二次電池の第1電極側と第2電極側の電位をそれぞれコンデンサの第1電極側に出力するスイッチ回路と、コンデンサの第2電極側の電位を基準電位に出力するスイッチ回路を備えることにより、低い電気的耐圧のスイッチ回路を用いて二次電池電位差変換回路を実現することができる。
【0017】
なお、この実施の形態では、3個直列に接続された二次電池に対する電位差均等化回路の構成および動作を説明したが、3個以上に直列に接続された二次電池に対する電位差均等化回路を同様に構成しても、すべてのスイッチ類には常に1セル分の電位差が印加されるため、直列接続された二次電池の個数が増加するほどこの発明の効果が大きくなる。
【0018】
またスイッチ回路1〜12は、機械式あるいは電子式リレー装置が使用できる。
またスイッチ回路1〜12は、それぞれ第一導電形のMOSトランジスタ例えばP形MOSトランジスタ単体により構成することができる。
さらにスイッチ回路1〜12は、それぞれ第一導電形のMOSトランジスタと第二導電形のMOSトランジスタを並列に接続したトランスミッションゲート、例えばP形MOSトランジスタとN形MOSトランジスタを並列に接続したトランスミッションゲート等が使用可能である。
【0019】
また、この発明の電池電位差変換回路は、電池群の少なくとも一つの電池について電位差変換して出力するものであればよい。
【0020】
【発明の効果】
請求項1記載の電池電位差変換回路によれば、一対のスイッチ回路の一方と別のスイッチ回路を閉じるとコンデンサが充電され、つぎにこれらのスイッチ回路を開いて一対のスイッチ回路の他方を閉じるとコンデンサの第2電極側に電池の電位が現れる。この場合、一対のスイッチ回路の一方と別のスイッチ回路を閉じたとき一対のスイッチ回路の他方には1つの電池の電位差のみが加わり、解放したときも同様である。つぎに一対のスイッチ回路の他方を閉じたとき一対のスイッチ回路の一方と別のスイッチ回路には1つの電池の電位差のみが印加される。このためスイッチ回路は従来例と比較して、電池の数にかかわらず、低い電気的耐圧のスイッチ回路を用いて、各二次電池の電位差を各々基準電圧に対し、1セル毎に変換して出力する電位差変換回路を簡単に実現することができる。
【0021】
請求項2記載の電池電位差変換回路によれば、請求項1と同様な効果がある。請求項3記載の電池電位差変換回路によれば、請求項1と同様な効果がある。
【図面の簡単な説明】
【図1】この発明の一実施の形態における二次電池電位差変換回路図である。
【図2】従来の二次電池電位差変換回路図である。
【符号の説明】
VA,VB,VC 二次電池
1〜12、1b〜7b スイッチ回路
C、C1、C2、C3 コンデンサ
V 各二次電池の接地電位に対する出力電圧の出力部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery potential difference conversion circuit applied to a control circuit of a battery unit using a secondary battery incorporated in an electric vehicle, a portable device, a personal computer, and the like.
[0002]
[Prior art]
FIG. 2 shows a conventional battery potential difference conversion circuit that converts a potential difference between three cells connected in series in a battery unit control circuit using a secondary battery for each cell with respect to a ground potential. It is an example. In FIG. 2, VA, VB, and VC denote secondary batteries, respectively, and the potential of each cell is output to the output unit V. 1b, 2b, 3b, 4b, 5b, 6b, and 7b realize a conductive state and a released state. Switch circuit.
[0003]
In FIG. 2, to output the potential difference of the secondary battery VC, only the switch circuits 1b and 4b are turned on, and the capacitor C is charged with the voltage of the secondary battery VC. Then, after the switch circuits 1b and 4b are released again, the switch circuit 7b is turned on, whereby the potential of the secondary battery VC can be output to the output unit V with reference to the ground potential. Similarly, to output the potential difference of the secondary battery VB, only the switch circuits 2b and 5b are turned on, and the capacitor C is charged with the voltage of the secondary battery VB. Then, after the switch circuits 2b and 5b are released, the switch circuit 7b is turned on, whereby the potential of the secondary battery VB can be output to the output unit V with reference to the ground potential. The potential difference of the secondary battery VA can be output to the output unit V in a similar manner.
[0004]
[Problems to be solved by the invention]
Conventionally, in a battery potential difference conversion circuit that converts the potential difference of each secondary battery used in a battery unit for each cell with reference to the ground potential and outputs the same, a high voltage is applied to a switch circuit used. However, there is a problem that a switch circuit having a high electric breakdown voltage is required.
[0005]
In other words, in FIG. 2, when the secondary batteries VA, VB, and VC are 4.1 V lithium ion secondary batteries, to output the potential difference of the secondary battery VC, if only the switch circuits 1b and 4b are turned on, The switch circuits 3b and 6b, 7b in the released state are applied with a potential difference of two cells of the secondary batteries VB + VC and VA + VB, that is, 8.2V, so that the three-cell series-connected secondary batteries are connected. A switch circuit that constitutes a potential difference conversion circuit that converts a potential difference for each cell with respect to a ground potential and outputs the result requires an electric breakdown voltage of at least two cells or more.
[0006]
Therefore, a switch circuit formed in a potential difference conversion circuit of a secondary battery in which n (n> 3) cells are connected in series needs to have an electric breakdown voltage of at least n-1 cells or more. When n = 11 cells are connected in series in an ion secondary battery, the electrical withstand voltage of the switch circuit constituting the potential difference conversion circuit must be at least 41 V, and the configuration of the switch circuit has been extremely difficult.
[0007]
The present invention has been made to solve the above-mentioned conventional problems, and for example, converts a potential difference between series-connected secondary batteries used in a battery unit for each cell with respect to a ground potential and outputs the potential difference. It is an object of the present invention to provide a battery potential difference conversion circuit which can be realized using a switch circuit having a low electric breakdown voltage in a conversion circuit.
[0008]
[Means for Solving the Problems]
The battery potential difference conversion circuit according to claim 1 includes a plurality of battery groups connected in series, a pair of switch circuits connected in series and connected in parallel to at least one battery of the battery group, and a pair of switch circuits. A capacitor having a mutual connection point connected to the first electrode side and another switch circuit connecting the second electrode side of the capacitor to a reference potential, wherein the potential on the second electrode side of the capacitor is set as an output potential It is.
[0009]
According to the battery potential difference conversion circuit of the first aspect, when one of the pair of switch circuits and another switch circuit are closed, the capacitor is charged. Then, when these switch circuits are opened and the other of the pair of switch circuits is closed, the capacitor is charged. The potential of the battery appears on the second electrode side of the capacitor. In this case, when one of the pair of switch circuits and another switch circuit are closed, only the potential difference of one battery is applied to the other of the pair of switch circuits. Next, when the other of the pair of switch circuits is closed, only the potential difference of one battery is applied to one of the pair of switch circuits and another switch circuit. Therefore, as compared with the conventional example, the switch circuit uses a switch circuit having a low electric breakdown voltage regardless of the number of batteries, and converts the potential difference of each secondary battery with respect to each reference voltage for each cell. The output potential conversion circuit can be easily realized.
[0010]
According to a second aspect of the present invention, in the battery potential difference conversion circuit of the first aspect, the first switch circuit, the second switch circuit, and the third switch circuit each include a first conductivity type MOS transistor.
According to the battery potential difference conversion circuit of the second aspect, the same effect as that of the first aspect is obtained. According to a third aspect of the present invention, the first switch circuit, the second switch circuit and the third switch circuit are a first conductivity type MOS transistor and a second conductivity type MOS transistor, respectively. It comprises a transmission gate in which transistors are connected in parallel.
[0011]
According to the battery potential difference conversion circuit of the third aspect, the same effect as that of the first aspect is obtained.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a secondary battery potential difference conversion circuit according to an embodiment of the present invention. In FIG. 1, VA, VB, and VC are, for example, rechargeable batteries (hereinafter, referred to as secondary batteries) connected in series, specifically, lithium ion secondary batteries of 4.1 V each. Is a potential difference generated from the ground potential to the cathode side of the secondary battery VA, and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 are in a conductive state and a released state, respectively. It is a switch circuit to be realized. C1, C2, and C3 are capacitors.
[0013]
This secondary battery potential difference conversion circuit includes a plurality of battery groups VA, VB, and VC connected in series, and a pair of switch circuit groups connected in series and connected in parallel to each of the battery groups VA, VB, and VC, that is, a pair of switch circuits. Switch circuits 1, 2, a pair of switch circuits 3, 4, a pair of switch circuits 5, 6, and capacitors C1, C2, C3 each having a connection point of the pair of switch circuits connected to the first electrode side. And other switch circuits 10, 11, and 12 for connecting the respective second electrode sides of the capacitors C1, C2, and C3 to a reference potential, and the potentials of the capacitors C1, C2, and C3 on the second electrode side are output potentials. V.
[0014]
In the embodiment, three secondary batteries VA, VB, and VC are connected in series, a switch circuit 1 is connected to the anode side of the secondary battery VC, and a switch circuit 2 is connected to the cathode side of the secondary battery VC. And the outputs of the switch circuits 1 and 2 are connected to one electrode of the capacitor C1. Similarly, a switch circuit 3 is connected to the anode side of the secondary battery VB, and a switch circuit 4 is connected to the cathode side of the secondary battery VB. The outputs of the switch circuits 3 and 4 are connected to one electrode of the capacitor C2. It is connected to the. Further, a switch circuit 5 is connected to the anode side of the secondary battery VA, and a switch circuit 6 is connected to the cathode side of the secondary battery VA. The outputs of the switch circuits 5 and 6 are connected to one electrode of the capacitor C3. It is connected. Ground switch circuits 10, 11, 12 and output switch circuits 7, 8, 9 are connected to the electrodes on the opposite sides of the capacitors C1, C2, C3. V is an output unit that outputs a potential difference between VA, VB, and VC with reference to the ground potential.
[0015]
The operation of the secondary battery potential difference conversion circuit configured as described above will be described. First, the switch circuits 2, 4, 6 and the switch circuits 10, 11, and 12 are turned on to charge the capacitor C1 with a voltage of VA + VB + VR, charge the capacitor C2 with a voltage of VA + VR, and charge the capacitor C3 with a voltage of VR. Charge. The voltages applied to the switches in the open state at this time are as follows.
Switch circuit 1 ---- Potential difference switch circuit of secondary battery VC 3 ----Potential difference switch circuit of secondary battery VB 5 ----Potential difference switch circuit 7 of secondary battery VA --- 0 V
Switch circuit 8----0V
Switch circuit 9--0V
Next, all the switch circuits are released. The voltages applied to the switches at this time are as follows.
Switch circuit 1 ---- Potential difference switch circuit 2 --- 0V of secondary battery VC
Switch circuit 3 ------ Potential difference switch circuit of secondary battery VB 4--0 V
Switch circuit 5 ---- Potential difference switch circuit 6--0V of secondary battery VA
Switch circuit 7--0V
Switch circuit 8----0V
Switch circuit 9--0V
Switch circuit 10-0V
Switch circuit 11-0V
Switch circuit 12-0V
Thereafter, the switch circuits 1 and 7 are used to output the potential of the secondary battery VC, the switch circuits 3 and 8 are used to output the potential of the secondary battery VB, and the switch circuits are used to output the potential of the secondary battery VA. When the terminals 5 and 9 are turned on, the potential difference of each secondary battery is output to V with respect to the ground voltage. For example, the voltages applied to other open switches when the switch circuits 1 and 7 are turned on are as follows.
Switch circuit 2 ---- Potential difference switch circuit of secondary battery VC 3 ------ Potential difference switch circuit 4-2 V of secondary battery VB
Switch circuit 5 ---- Potential difference switch circuit 6--0V of secondary battery VA
Switch circuit 8 --- Potential difference switch circuit of secondary battery VC 9 ----Potential difference switch circuit 10 of secondary battery VC-Potential difference switch circuit 11 of secondary battery VC --- 0 V
Switch circuit 12-0V
Therefore, in a series of operations of the potential difference conversion circuit, a potential difference of 4.1 V for one cell is always applied to all the configured switches. All switches configured in the same manner when the switch circuits 3 and 8 for outputting the potential of the secondary battery VB and the switch circuits 5 and 9 for conducting the output of the potential of the secondary battery VA are turned on. Are always applied with a potential difference of one cell.
[0016]
As described above, according to the embodiment of the present invention, in the plurality of secondary batteries connected in series, the first electrode side of at least one of the secondary batteries in the group of secondary batteries connected in series is connected to the first electrode side. A switch circuit that outputs a potential on the two electrodes side to the first electrode side of the capacitor and a switch circuit that outputs the potential on the second electrode side of the capacitor to the reference potential is used. Thus, a secondary battery potential difference conversion circuit can be realized.
[0017]
In this embodiment, the configuration and operation of the potential difference equalizing circuit for the three secondary batteries connected in series have been described. However, the potential difference equalizing circuit for the three or more secondary batteries connected in series has been described. Even with the same configuration, since the potential difference of one cell is always applied to all the switches, the effect of the present invention increases as the number of secondary batteries connected in series increases.
[0018]
Further, as the switch circuits 1 to 12, a mechanical or electronic relay device can be used.
Each of the switch circuits 1 to 12 can be constituted by a single MOS transistor of the first conductivity type, for example, a single P-type MOS transistor.
Further, the switch circuits 1 to 12 each include a transmission gate in which a first conductivity type MOS transistor and a second conductivity type MOS transistor are connected in parallel, such as a transmission gate in which a P type MOS transistor and an N type MOS transistor are connected in parallel. Can be used.
[0019]
Further, the battery potential difference conversion circuit of the present invention may be any circuit that converts the potential difference of at least one battery of the battery group and outputs the result.
[0020]
【The invention's effect】
According to the battery potential difference conversion circuit of the first aspect, when one of the pair of switch circuits and another switch circuit are closed, the capacitor is charged. Then, when these switch circuits are opened and the other of the pair of switch circuits is closed, the capacitor is charged. The potential of the battery appears on the second electrode side of the capacitor. In this case, when one of the pair of switch circuits and another switch circuit are closed, only the potential difference of one battery is applied to the other of the pair of switch circuits. Next, when the other of the pair of switch circuits is closed, only the potential difference of one battery is applied to one of the pair of switch circuits and another switch circuit. Therefore, as compared with the conventional example, the switch circuit uses a switch circuit having a low electric breakdown voltage regardless of the number of batteries, and converts the potential difference of each secondary battery with respect to each reference voltage for each cell. The output potential conversion circuit can be easily realized.
[0021]
According to the battery potential difference conversion circuit of the second aspect, the same effect as that of the first aspect is obtained. According to the battery potential difference conversion circuit of the third aspect, the same effect as that of the first aspect is obtained.
[Brief description of the drawings]
FIG. 1 is a diagram of a secondary battery potential difference conversion circuit according to an embodiment of the present invention.
FIG. 2 is a conventional secondary battery potential difference conversion circuit diagram.
[Explanation of symbols]
VA, VB, VC Secondary batteries 1 to 12, 1b to 7b Switch circuits C, C1, C2, C3 Capacitor V Output section of output voltage with respect to the ground potential of each secondary battery

Claims (3)

複数個直列接続された電池群と、直列接続されて前記電池群の少なくとも一つの電池に並列に接続された一対のスイッチ回路と、この一対のスイッチ回路の相互の接続点を第1電極側に接続したコンデンサと、このコンデンサの第2電極側を基準電位に接続する別のスイッチ回路とを備え、前記コンデンサの前記第2電極側の電位を出力電位とした電池電位差変換回路。A plurality of battery groups connected in series, a pair of switch circuits connected in series and connected in parallel to at least one battery of the battery group, and a mutual connection point of the pair of switch circuits on the first electrode side. A battery potential difference conversion circuit, comprising: a connected capacitor; and another switch circuit for connecting a second electrode side of the capacitor to a reference potential, wherein the potential on the second electrode side of the capacitor is an output potential. 第1のスイッチ回路、第2のスイッチ回路および第3のスイッチ回路は、それぞれ第一導電形のMOSトランジスタからなる請求項1記載の電池電位差変換回路。2. The battery potential difference conversion circuit according to claim 1, wherein each of the first switch circuit, the second switch circuit, and the third switch circuit comprises a first conductivity type MOS transistor. 第1のスイッチ回路、第2のスイッチ回路および第3のスイッチ回路は、それぞれ第一導電形のMOSトランジスタと第二導電形のMOSトランジスタを並列に接続したトランスミッションゲートからなる請求項1記載の電池電位差変換回路。2. The battery according to claim 1, wherein the first switch circuit, the second switch circuit, and the third switch circuit each include a transmission gate in which a first conductivity type MOS transistor and a second conductivity type MOS transistor are connected in parallel. Potential difference conversion circuit.
JP10455798A 1998-04-15 1998-04-15 Battery potential difference conversion circuit Expired - Fee Related JP3572193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10455798A JP3572193B2 (en) 1998-04-15 1998-04-15 Battery potential difference conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10455798A JP3572193B2 (en) 1998-04-15 1998-04-15 Battery potential difference conversion circuit

Publications (2)

Publication Number Publication Date
JPH11299118A JPH11299118A (en) 1999-10-29
JP3572193B2 true JP3572193B2 (en) 2004-09-29

Family

ID=14383775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10455798A Expired - Fee Related JP3572193B2 (en) 1998-04-15 1998-04-15 Battery potential difference conversion circuit

Country Status (1)

Country Link
JP (1) JP3572193B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427667B2 (en) * 2010-03-30 2014-02-26 本田技研工業株式会社 Charging device and charging device manufacturing method

Also Published As

Publication number Publication date
JPH11299118A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
JP5194412B2 (en) Back gate voltage generation circuit, four-terminal back gate switching FET, charge / discharge protection circuit using the FET, battery pack incorporating the charge / discharge protection circuit, and electronic device using the battery pack
CN103001275B (en) Battery bag, electronic installation and battery bag arrangement
JP3121963B2 (en) battery pack
CN107666017B (en) Battery system for hybrid vehicle
JP4407641B2 (en) Secondary battery device
US20130241471A1 (en) Charge control circuit and battery device
EP3506477A1 (en) Electronic cigarette power supply circuit
KR20100044194A (en) Intersecting battery cavities
KR101137376B1 (en) Battery pack
US20060132090A1 (en) Battery module
JP2012105525A (en) Battery control circuit
JP3572193B2 (en) Battery potential difference conversion circuit
CN113063981A (en) Battery pack voltage acquisition circuit and voltage acquisition method
CN104953658B (en) Cell voltage conversion circuit and battery management system
CN214280983U (en) Equalization chip of series battery pack and battery management system
CN202258818U (en) Super capacitor voltage balancing circuit, single-stage super capacitor module and two-stage super capacitor module
CN112470402B (en) Switching device, electrical energy storage system, device and/or vehicle and method for connecting a voltage source to a load resistor
US10305149B2 (en) Electrochemical stack direct heat to electricity generator
JP2003017027A (en) Battery pack
CN112751393B (en) Balancing chip of series battery pack and battery management system
JP2963914B2 (en) Boost circuit
CN213484531U (en) Active voltage balancing circuit for battery formation and grading and electronic equipment
US9391464B2 (en) External battery for determining the amplitude of charge current
CN116418328B (en) Shutdown control circuit, battery management system and battery pack
CN220964370U (en) Power supply circuit and power supply system of battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees