JP3571567B2 - Ion optical system of time-of-flight mass spectrometer - Google Patents

Ion optical system of time-of-flight mass spectrometer Download PDF

Info

Publication number
JP3571567B2
JP3571567B2 JP04137599A JP4137599A JP3571567B2 JP 3571567 B2 JP3571567 B2 JP 3571567B2 JP 04137599 A JP04137599 A JP 04137599A JP 4137599 A JP4137599 A JP 4137599A JP 3571567 B2 JP3571567 B2 JP 3571567B2
Authority
JP
Japan
Prior art keywords
optical system
ion
electric field
time
mass spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04137599A
Other languages
Japanese (ja)
Other versions
JP2000243346A (en
Inventor
久 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP04137599A priority Critical patent/JP3571567B2/en
Publication of JP2000243346A publication Critical patent/JP2000243346A/en
Application granted granted Critical
Publication of JP3571567B2 publication Critical patent/JP3571567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/408Time-of-flight spectrometers with multiple changes of direction, e.g. by using electric or magnetic sectors, closed-loop time-of-flight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、飛行時間型質量分析計(TOFMS)のイオン光学系に関するものである。
【0002】
【従来の技術】
飛行時間型質量分析計(TOFMS)においては、一定の加速エネルギーで加速した試料イオンが質量に応じた飛行速度を持つことに基づき、一定距離を飛行するのに要する飛行時間を計測して質量を求める。
【0003】
飛行時間型質量分析計では、飛行距離が長い程高い質量分離能が得られるが、飛行距離を長くすると装置の大型化は避けられない。そこで、大型化を防ぎつつ長い飛行距離を実現するために、これまでに多くの工夫がなされている。
【0004】
その一つは、大阪大学で考案されたモーターウェイ型装置で、直径41cmの真空容器内に1.727mの飛行距離を有するイオン光学系を納めることが出来た(Int.J. Mass Spect. Ion Proc., 66(1985)283)。
【0005】
また、最近では、同一軌道を複数回周回させるマルチターンのイオン光学系が提案されている(第46回質量分析総合討論会(1998)講演要旨集p.33〜及びp319〜)。この方法では、トラック状の同一軌道に何回もイオンを周回させることにより飛行距離を長くできる。
【0006】
【発明が解決しようとする課題】
しかし、モーターウェイ型装置は、多数の扇形電場が必要であり、構造が複雑である。
【0007】
また、マルチターンのイオン光学系は、イオン群を周回軌道へタイミングをはかって打ち込み及び取り出しするための機構が必要になり構造が複雑になる。また、特定のイオン群しか分析できない欠点がある。さらに、同一軌道を何回も回るので、速いイオンと遅いイオンが混合するおそれもある。このため、多成分を持つ未知試料の分析は困難であると考えられる。
【0008】
本発明は、上述した諸点に鑑みてなされたものであり、比較的簡単な構造で、限られた狭い空間に長い飛行距離を収容できる、新規な飛行時間型質量分析計のイオン光学系を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
前述の課題を解決するために、本発明の飛行時間型質量分析計のイオン光学系は、イオンが順次通過する複数の扇形電場を備えた飛行時間型質量分析計のイオン光学系であって、該複数の扇形電場により、イオンが360°以上回転するイオン軌道を構成すると共に、回転角が360°を超えたイオン軌道が360°までのイオン軌道の内側または外側に配置されるように構成されたことを特徴としている。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳説する。図1は、本発明に従う飛行時間型質量分析計のイオン光学系の一実施例におけるイオン軌道を示す図である。図1において、多層円筒電場1〜3は、同心で等しい回転角(120°)を持ち回転半径の少しずつ異なる5つの円筒電場を多層に並べた構造を有する。各多層円筒電場は、それぞれの回転中心O1〜O3をイオン光学系の中心Oに向け、該中心Oを中心として放射状におおよそ120°の間隔で配置されている。
【0011】
入射用偏向電場4は、図示しないイオン源で生成され、図示しないパルス化手段によってパルス化された試料イオン群を多層円筒電場1の最外側の円筒電場に入射させるために設けられている。
【0012】
取り出し用偏向電場5は、多層円筒電場3の最内側の円筒電場を出射したイオンを、イオン光学系の中心付近に設けられた図示しないイオン検出器へ向けて送り出すために設けられている。
【0013】
図2は、多層円筒電場1の構造を示す斜視図である。図2において、11〜16は、5層の円筒電場を間に形成するためにほぼ等しいピッチで同心的に配置される6枚の同心円筒電極である。各電極は、各電極の端部がはめ込まれる溝を設けた2枚の絶縁基板21,22の間に挟まれる形で保持されている。各同心円筒電極は、円筒形に曲げられた絶縁薄板から出来ており、その内周面と外周面のそれぞれに、アルミニウムなどの薄膜電極が全面にわたって形成されている。そして、図2に示されているように、内周面に形成された各電極の方には可変分圧器VR1を介して少しずつ異なる正電圧が印加され、外周面に形成された各電極の方には可変分圧器VR2を介して少しずつ異なる負電圧が印加される。
【0014】
上記可変分圧器VR1は、直流正電圧+Vの上に乗っている可変電源23の出力電圧ΔVを分圧することにより、+Vから少しずつ高くなる5種の正電圧を発生する。また、可変分圧器VR2も、直流負電圧−Vの上に乗っている可変電源24の出力電圧ΔVを分圧することにより−Vから少しずつ低くなる5種の負電圧を発生する。
【0015】
そして、内周面に形成された各電極の方には可変分圧器VR1が発生する5種の正電圧が、図2に示されているように外側の電極ほど電圧が低くなるようにそれぞれ印加される。また、外周面に形成された各電極の方には可変分圧器VR2が発生する5種の負電圧が、図2に示されているように外側の電極ほど電圧が高くなるようにそれぞれ印加される。
【0016】
その結果、各同心円筒電極11〜16の内周面と外周面によって挟まれた5つの空間には、同心で等しい回転角を有する5層の円筒電場C1〜C5が形成される。そして、等しい電極間隔に対して電極間の電位差が内側ほど大きくなっていることから、円筒電場C1〜C5の強度は内側ほど強くなり、R5,R4,・・,R1と内側になるにつれて徐々に小さくなる電場内イオン軌道半径が実現されている。その他の多層円筒電場2,3も各層の円筒電場の回転半径が多層円筒電場1よりも少しずつ小さくされている他は同一の構造で製作されている。
【0017】
なお、各電極に印可される電圧は、可変分圧器VR1,VR2の摺動電極を移動させることにより独立に調整可能であり、また、電圧ΔV,+V,−Vを変化させることにより、相互関係を保ったままで、一体的に電圧を調整することも出来る。
【0018】
上述のような構成において、3つの多層円筒電場により、図1に示されているような三角渦巻き型のイオン軌道が形成される。すなわち、入射用偏向電場4を介して多層円筒電場1の最外側の1層目の円筒電場C1に入射しそれを通過したイオンは、多層円筒電場2,3の1層目の円筒電場を次々と通過して1周し、多層円筒電場1へ戻る。
【0019】
2周目において、イオンは多層円筒電場1の2層目の円筒電場C2へ入射して通過し、さらに多層円筒電場2,3の2層目の円筒電場を次々と通過して多層円筒電場1へ戻ってその3層目の円筒電場へ入射し、3周目に入る。以下、全く同様にして、イオンは各多層円筒電場の3層目、4層目、5層目の円筒電場を次々と通過し、最後の多層円筒電場3の5層目の円筒電場を出射したイオンは、取り出し用偏向電場5により、イオン検出器へ向けて飛行するように偏向される。
【0020】
このような渦巻き型のイオン軌道を形成するために、多層円筒電場1〜3を構成する各層の円筒電場の回転半径は、多層円筒電場1が最も大きく、ついで多層円筒電場2,3の順に少しずつ小さくなるように選定されると共に、各多層円筒電場の回転中心O1〜O3の位置は、図1に示されているように、イオン光学系の中心Oからの距離がO1,O2,O3の順に大きくなるように選定され、且つ120°等間隔の線上から少しずれるように選定されている。
【0021】
なお、飛行時間型質量分析計のイオン光学系においては、イオンの進行と共にイオンビームが発散してしまわないことと、質量が等しくエネルギーの異なるイオン群が時間収束できるかどうかが問題となるが、図1の光学系においては、何回転させても収束性を持つことが確認された。図1のイオン光学系において、エネルギー時間収束が起こる位置に丸印が付してある。
【0022】
円筒電場は、本来、軌道平面内(x方向)の方向収束性を持っており、また、直列に接続した扇形場の偏向方向(回転の方向)が同方向であれば、エネルギーの拡がりによる発散があっても、クロスオーバーの後、再び収束するので、問題にはならない。
【0023】
さらに、y方向については、理想円筒電場は本来収束性を持たないが、円筒電場を作るための同心円筒電極の上下に松田プレートと呼ばれる補助電極を配置し、この上下の補助電極に適宜な電圧を印加することにより円筒電場を少し変形すると、y方向の収束性を持たせることができる。この補助電極を採用するのであれば、図2における絶縁基板21,22の各同心円筒電極に挟まれた内面に円弧状の補助電極を形成して適宜な直流電圧を印加できるようにすればよい。
【0024】
図1のイオン光学系では、例えば直径30cmの容器に収容できる大きさに設計した場合、5回転で約4mの飛行距離が得られる。
【0025】
図3は、本発明の他の実施例を示すイオン光学図である。本実施例では、回転角60°の6つの多層円筒電場31〜36が、おおよそ60°間隔で配置されている。各多層円筒電場は、図2と同様の構造で、回転角度が60°、層数が4に選定され、各層のイオン軌道の回転半径も適宜選定されている。
【0026】
表1は、図3に示されているイオン光学系において、円筒電場の最大イオン軌道回転半径を50mm、イオン軌道の層間間隔を5mmとし、4周後にイオンを取り出した場合について計算により求めた、周回毎のx方向の収束性を表わす収差係数(x┃x),(x┃a),(x┃d)と、時間収束性を表わす収差係数(t┃x),(t┃a),(t┃d)を示している。

Figure 0003571567
表1における4周後の収差係数はいずれも極めて小さく、x方向の収束性と時間収束性が共に優れた飛行時間型質量分析計のイオン光学系であることが分かる。また、直径わずか20cmの空間に、交差の全くない2m以上の飛行距離が得られる。
【0027】
なお、本発明は、上述した実施例に限定されることなく変形が可能である。例えば、上記実施例では外側から内側へイオンを進行させたが、渦巻き型イオン軌道を逆に内側から外側へ進行させるようにしても良い。また、渦巻き型イオン軌道を作成するために上記実施例のように多層円筒電場を一体的に作成することは必ずしも必要なく、複数の円筒電場を別体で作成し、渦巻き型イオン軌道が形成されるように適宜配列するようにしても良い。
【0028】
また、構成簡略化のため、図4に示すように図2におけるVR2及び電源24を除き、多層円筒電場を発生させるための負側の各電極に電圧−Vを等しく印加するようにしても良い。このような構成では、零電位の位置が若干ずれるものの、図2の実施例と同様、円筒電場C1〜C5の強度は内側ほど強くなり、R5,R4,・・,R1と内側になるにつれて徐々に小さくなる電場内イオン軌道半径が実現される。なお、逆にVR1及び電源23を除き、多層円筒電場を発生させるための正側の各電極に電圧+Vを等しく印加するようにしても良い。
【0029】
【発明の効果】
このように、本発明では、イオンが順次通過する複数の扇形電場を備えた飛行時間型質量分析計のイオン光学系において、該複数の扇形電場により、イオンが360°以上回転するイオン軌道を構成すると共に、回転角が360°を超えたイオン軌道が360°までのイオン軌道の内側または外側に配置されるように構成したため、渦巻き型のイオン軌道を形成することができる。このため、イオンが同一軌道を飛行することもなく、また交差することもない長いイオン軌道を限られた空間内に実現することができる。また、イオンを打ち込む軌道と取り出す軌道が別れているため、打ち込みと取り出しのタイミングをはかる必要がなく、打ち込み及び取り出しのための構造が簡単になる。
【図面の簡単な説明】
【図1】本発明にかかる飛行時間型質量分析計のイオン光学系の一実施例を示す図である。
【図2】多層円筒電場の構造を示す斜視図である。
【図3】本発明にかかる飛行時間型質量分析計のイオン光学系の他の実施例を示す図である。
【図4】多層円筒電場の簡略化した構造を示す斜視図である。
【符号の説明】
1〜3、31〜36…多層円筒電場
4…入射用偏向電場
5…取り出し用偏向電場
11〜16…同心円筒電極
21,22…絶縁基板
23,24…電源
VR1,VR2…可変分圧器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ion optical system of a time-of-flight mass spectrometer (TOFMS).
[0002]
[Prior art]
In a time-of-flight mass spectrometer (TOFMS), the time of flight required to fly a certain distance is measured based on the fact that sample ions accelerated with a certain acceleration energy have a flight speed according to the mass, and the mass is measured. Ask.
[0003]
In a time-of-flight mass spectrometer, the higher the flight distance, the higher the mass resolving power can be obtained, but if the flight distance is increased, the size of the apparatus cannot be avoided. Therefore, many attempts have been made to achieve a long flight distance while preventing an increase in size.
[0004]
One of them is a motorway type device devised by Osaka University, in which an ion optical system having a flight distance of 1.727 m can be accommodated in a vacuum vessel having a diameter of 41 cm (Int. J. Mass Spect. Ion). Proc., 66 (1985) 283).
[0005]
Recently, a multi-turn ion optical system for orbiting the same orbit a plurality of times has been proposed (the 46th mass spectrometry general discussion meeting (1998) abstracts p.33- and p319-). In this method, the flight distance can be lengthened by making the ions orbit around the same track-like orbit many times.
[0006]
[Problems to be solved by the invention]
However, the motorway type device requires a large number of electric sectors and is complicated in structure.
[0007]
In addition, a multi-turn ion optical system requires a mechanism for implanting and extracting ions into a circular orbit at a proper timing, and the structure becomes complicated. In addition, there is a disadvantage that only a specific ion group can be analyzed. Further, since the orbit goes around the same orbit many times, fast ions and slow ions may be mixed. For this reason, it is considered difficult to analyze an unknown sample having multiple components.
[0008]
The present invention has been made in view of the above-mentioned points, and provides a novel time-of-flight mass spectrometer ion optical system which has a relatively simple structure and can accommodate a long flight distance in a limited narrow space. It is intended to do so.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the ion optical system of the time-of-flight mass spectrometer of the present invention is an ion optical system of a time-of-flight mass spectrometer including a plurality of sector electric fields through which ions sequentially pass, The plurality of sector electric fields form an ion trajectory in which ions rotate by 360 ° or more, and an ion trajectory having a rotation angle exceeding 360 ° is arranged inside or outside the ion trajectory up to 360 °. It is characterized by having.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing an ion trajectory in one embodiment of an ion optical system of a time-of-flight mass spectrometer according to the present invention. In FIG. 1, each of the multilayer cylindrical electric fields 1 to 3 has a structure in which five cylindrical electric fields which are concentric, have the same rotation angle (120 °), and have slightly different rotation radii are arranged in multiple layers. Each of the multilayer cylindrical electric fields has its center of rotation O1 to O3 directed toward the center O of the ion optical system, and is arranged radially about the center O at intervals of about 120 °.
[0011]
The incident deflection electric field 4 is provided to allow a sample ion group generated by an ion source (not shown) and pulsed by a pulser (not shown) to be incident on the outermost cylindrical electric field of the multilayer cylindrical electric field 1.
[0012]
The extraction deflection electric field 5 is provided for sending out the ions emitted from the innermost cylindrical electric field of the multilayer cylindrical electric field 3 to an ion detector (not shown) provided near the center of the ion optical system.
[0013]
FIG. 2 is a perspective view showing the structure of the multilayer cylindrical electric field 1. In FIG. 2, reference numerals 11 to 16 denote six concentric cylindrical electrodes arranged concentrically at substantially equal pitches to form five layers of cylindrical electric fields therebetween. Each electrode is held so as to be sandwiched between two insulating substrates 21 and 22 provided with a groove into which an end of each electrode is fitted. Each concentric cylindrical electrode is made of an insulating thin plate bent into a cylindrical shape, and a thin film electrode of aluminum or the like is formed on the entire inner surface and outer surface of the concentric cylindrical electrode. Then, as shown in FIG. 2, a slightly different positive voltage is applied to each of the electrodes formed on the inner peripheral surface through the variable voltage divider VR1, and each of the electrodes formed on the outer peripheral surface is On the other hand, a slightly different negative voltage is applied via a variable voltage divider VR2.
[0014]
The variable voltage divider VR1 generates five types of positive voltages that gradually increase from + V by dividing the output voltage ΔV of the variable power supply 23 on the DC positive voltage + V. The variable voltage divider VR2 also generates five types of negative voltages that gradually decrease from -V by dividing the output voltage [Delta] V of the variable power supply 24 on the DC negative voltage -V.
[0015]
Then, five types of positive voltages generated by the variable voltage divider VR1 are applied to the respective electrodes formed on the inner peripheral surface such that the voltage becomes lower toward the outer electrode as shown in FIG. Is done. In addition, five kinds of negative voltages generated by the variable voltage divider VR2 are applied to the respective electrodes formed on the outer peripheral surface such that the voltage becomes higher toward the outer electrode as shown in FIG. You.
[0016]
As a result, five layers of cylindrical electric fields C1 to C5 having concentric and equal rotation angles are formed in five spaces sandwiched between the inner and outer peripheral surfaces of the concentric cylindrical electrodes 11 to 16. Since the potential difference between the electrodes becomes larger toward the inside with respect to the same electrode interval, the strength of the cylindrical electric fields C1 to C5 becomes stronger toward the inside, and gradually increases toward R5, R4,. A smaller ion orbit radius in the electric field has been realized. The other multilayer cylindrical electric fields 2 and 3 are manufactured in the same structure except that the turning radius of the cylindrical electric field of each layer is made slightly smaller than that of the multilayer cylindrical electric field 1.
[0017]
The voltage applied to each electrode can be adjusted independently by moving the sliding electrodes of the variable voltage dividers VR1 and VR2, and by changing the voltages ΔV, + V, and −V, the mutual relationship can be adjusted. It is also possible to adjust the voltage integrally while maintaining the voltage.
[0018]
In the configuration as described above, a triangular spiral ion trajectory as shown in FIG. 1 is formed by the three multilayer cylindrical electric fields. That is, the ions that enter the outermost cylindrical electric field C1 of the outermost layer of the multilayer cylindrical electric field 1 via the incident deflection electric field 4 and pass through the cylindrical electric fields C1 of the multilayer cylindrical electric fields 2 and 3 successively. , And returns to the multilayer cylindrical electric field 1.
[0019]
In the second round, the ions are incident on and pass through the cylindrical electric field C2 of the second layer of the multilayer cylindrical electric field 1, and further pass through the cylindrical electric fields of the second layer of the multilayer cylindrical electric fields 2 and 3 one after another to form the multilayer cylindrical electric field 1 Then, the light enters the cylindrical electric field of the third layer and enters the third round. Hereinafter, in exactly the same manner, ions successively pass through the third, fourth, and fifth cylindrical electric fields of each multilayer cylindrical electric field, and emit the fifth cylindrical electric field of the final multilayer cylindrical electric field 3. The ions are deflected by the extraction deflection electric field 5 so as to fly toward the ion detector.
[0020]
In order to form such a spiral ion orbit, the rotating radius of the cylindrical electric field of each layer constituting the multilayer cylindrical electric fields 1 to 3 is largest in the multilayer cylindrical electric field 1, and then slightly in the order of the multilayer cylindrical electric fields 2 and 3. As shown in FIG. 1, the positions of the rotation centers O1 to O3 of the respective multilayer cylindrical electric fields are set at distances O1, O2, and O3 from the center O of the ion optical system, as shown in FIG. They are selected so as to increase in order, and are slightly shifted from the line at 120 ° equal intervals.
[0021]
In the ion optical system of the time-of-flight mass spectrometer, there is a problem that the ion beam does not diverge with the progress of the ions and whether or not ions having the same mass and different energies can be time-converged. It has been confirmed that the optical system of FIG. 1 has convergence regardless of the rotation. In the ion optical system shown in FIG. 1, circles indicate positions where energy time convergence occurs.
[0022]
The cylindrical electric field originally has directional convergence in the orbit plane (x direction). If the deflection directions (rotation directions) of the sector fields connected in series are the same, divergence due to the spread of energy Even if there is, there is no problem since it converges again after the crossover.
[0023]
Furthermore, in the y direction, an ideal cylindrical electric field does not originally have convergence, but auxiliary electrodes called Matsuda plates are arranged above and below a concentric cylindrical electrode for producing a cylindrical electric field, and appropriate voltage is applied to the upper and lower auxiliary electrodes. When the cylindrical electric field is slightly deformed by applying, the convergence in the y direction can be provided. If this auxiliary electrode is adopted, an arc-shaped auxiliary electrode may be formed on the inner surface of the insulating substrates 21 and 22 between the concentric cylindrical electrodes in FIG. 2 so that an appropriate DC voltage can be applied. .
[0024]
In the ion optical system shown in FIG. 1, for example, if the ion optical system is designed to be housed in a container having a diameter of 30 cm, a flight distance of about 4 m can be obtained by five rotations.
[0025]
FIG. 3 is an ion optical diagram showing another embodiment of the present invention. In the present embodiment, six multilayer cylindrical electric fields 31 to 36 having a rotation angle of 60 ° are arranged at intervals of approximately 60 °. Each multilayer cylindrical electric field has the same structure as that of FIG. 2, the rotation angle is set to 60 °, the number of layers is selected to be 4, and the rotation radius of the ion orbit of each layer is appropriately selected.
[0026]
Table 1 shows that, in the ion optical system shown in FIG. 3, the maximum ion orbital radius of rotation of the cylindrical electric field was 50 mm, the interlayer distance between the ion orbitals was 5 mm, and the ions were taken out after four rounds. Aberration coefficients (x┃x), (x┃a), (x┃d) representing convergence in the x direction for each revolution, and aberration coefficients (t┃x), (t┃a), representing time convergence. (T┃d).
Figure 0003571567
The aberration coefficients after four rounds in Table 1 are all extremely small, which indicates that the ion optical system of the time-of-flight mass spectrometer has excellent convergence in the x-direction and time convergence. In addition, a flight distance of 2 m or more without any intersection can be obtained in a space having a diameter of only 20 cm.
[0027]
The present invention can be modified without being limited to the above-described embodiment. For example, in the above embodiment, ions are made to progress from the outside to the inside, but the spiral ion orbit may be made to progress from the inside to the outside. Further, it is not always necessary to integrally form a multilayer cylindrical electric field as in the above-described embodiment in order to create a spiral ion trajectory, and a plurality of cylindrical electric fields are separately formed to form a spiral ion trajectory. May be arranged as appropriate.
[0028]
Further, for simplification of the configuration, as shown in FIG. 4, except for the VR2 and the power supply 24 in FIG. 2, the voltage -V may be equally applied to each negative electrode for generating the multilayer cylindrical electric field. . In such a configuration, although the position of the zero potential is slightly shifted, the intensity of the cylindrical electric fields C1 to C5 increases toward the inner side and gradually increases toward R5, R4,..., R1, as in the embodiment of FIG. The ion orbit radius in the electric field, which becomes smaller, is realized. Conversely, except for the VR1 and the power supply 23, the voltage + V may be equally applied to each positive electrode for generating the multilayer cylindrical electric field.
[0029]
【The invention's effect】
As described above, according to the present invention, in the ion optical system of the time-of-flight mass spectrometer provided with a plurality of sector electric fields through which ions sequentially pass, the plurality of sector electric fields form an ion trajectory in which ions rotate by 360 ° or more. In addition, since the ion trajectory having a rotation angle exceeding 360 ° is arranged inside or outside the ion trajectory up to 360 °, a spiral ion trajectory can be formed. Therefore, it is possible to realize a long ion trajectory in which ions do not fly in the same trajectory and do not intersect in a limited space. Further, since the trajectory for implanting ions and the trajectory for extracting ions are separated, it is not necessary to measure the timing of implantation and extraction, and the structure for implantation and extraction is simplified.
[Brief description of the drawings]
FIG. 1 is a diagram showing one embodiment of an ion optical system of a time-of-flight mass spectrometer according to the present invention.
FIG. 2 is a perspective view showing a structure of a multilayer cylindrical electric field.
FIG. 3 is a diagram showing another embodiment of the ion optical system of the time-of-flight mass spectrometer according to the present invention.
FIG. 4 is a perspective view showing a simplified structure of a multilayer cylindrical electric field.
[Explanation of symbols]
1-3, 31-36 ... Multilayer cylindrical electric field 4 ... Incident deflection electric field 5 ... Outgoing deflection electric field 11-16 ... Concentric cylindrical electrodes 21,22 ... Insulating substrates 23,24 ... Power supply VR1, VR2 ... Variable voltage divider

Claims (4)

イオンが順次通過する複数の扇形電場を備えた飛行時間型質量分析計のイオン光学系であって、該複数の扇形電場により、イオンが360°以上回転するイオン軌道を構成すると共に、回転角が360°を超えたイオン軌道が360°までのイオン軌道の内側または外側に配置されるように構成されたことを特徴とする飛行時間型質量分析計のイオン光学系。An ion optical system of a time-of-flight mass spectrometer provided with a plurality of sector electric fields through which ions sequentially pass, wherein the plurality of sector electric fields form an ion trajectory in which ions rotate 360 ° or more, and a rotation angle is An ion optical system for a time-of-flight mass spectrometer, wherein an ion trajectory exceeding 360 ° is arranged inside or outside the ion trajectory up to 360 °. 前記複数の扇形電場は、同心で等しい回転角度を持ち回転半径が異なる複数の扇形電場を1組の扇形電場グループとして複数組の扇形電場グループから成り、該複数組の扇形電場グループの各回転角度の合計が360°となるようにされていることを特徴とする請求項1記載の飛行時間型質量分析計のイオン光学系。The plurality of sector electric fields are composed of a plurality of sector electric field groups as a set of sector electric fields, and the rotation angles of the plurality of sector electric fields are different. 2. The ion optical system of a time-of-flight mass spectrometer according to claim 1, wherein the sum of the angles is 360 °. 前記扇形電場グループを3組有し、各グループの回転角度が120°に選定されていることを特徴とする請求項2記載の飛行時間型質量分析計のイオン光学系。3. The ion optical system of a time-of-flight mass spectrometer according to claim 2, wherein three groups of said electric sector electric fields are provided, and a rotation angle of each group is selected to be 120 [deg.]. 前記扇形電場グループを6組有し、各グループの回転角度が60°に選定されていることを特徴とする請求項2記載の飛行時間型質量分析計のイオン光学系。3. An ion optical system for a time-of-flight mass spectrometer according to claim 2, wherein said electric field group has six sets of electric field groups, and a rotation angle of each group is selected to be 60 [deg.].
JP04137599A 1999-02-19 1999-02-19 Ion optical system of time-of-flight mass spectrometer Expired - Fee Related JP3571567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04137599A JP3571567B2 (en) 1999-02-19 1999-02-19 Ion optical system of time-of-flight mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04137599A JP3571567B2 (en) 1999-02-19 1999-02-19 Ion optical system of time-of-flight mass spectrometer

Publications (2)

Publication Number Publication Date
JP2000243346A JP2000243346A (en) 2000-09-08
JP3571567B2 true JP3571567B2 (en) 2004-09-29

Family

ID=12606677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04137599A Expired - Fee Related JP3571567B2 (en) 1999-02-19 1999-02-19 Ion optical system of time-of-flight mass spectrometer

Country Status (1)

Country Link
JP (1) JP3571567B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867414B2 (en) 2002-09-24 2005-03-15 Ciphergen Biosystems, Inc. Electric sector time-of-flight mass spectrometer with adjustable ion optical elements
JP2005322429A (en) * 2004-05-06 2005-11-17 Shimadzu Corp Mass spectrometer
JP4980583B2 (en) * 2004-05-21 2012-07-18 日本電子株式会社 Time-of-flight mass spectrometry method and apparatus
JP2006228435A (en) * 2005-02-15 2006-08-31 Shimadzu Corp Time of flight mass spectroscope
JP4645424B2 (en) 2005-11-24 2011-03-09 株式会社島津製作所 Time-of-flight mass spectrometer
JP4939138B2 (en) * 2006-07-20 2012-05-23 株式会社島津製作所 Design method of ion optical system for mass spectrometer

Also Published As

Publication number Publication date
JP2000243346A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
US10269549B2 (en) Time of flight mass spectrometer
JP3571566B2 (en) Ion optical system of time-of-flight mass spectrometer
US7868289B2 (en) Mass spectrometer ion guide providing axial field, and method
JP5915760B2 (en) Mass spectrometer, mass spectrometer, and methods related thereto
US6727495B2 (en) Ion mobility spectrometer with high ion transmission efficiency
JP2006228435A (en) Time of flight mass spectroscope
JP3773430B2 (en) Ion optics of a time-of-flight mass spectrometer.
CN108022823A (en) Multiple reflection mass spectrograph with retarding stage
CN104067371A (en) Multi-reflection mass spectrometer
US20070284524A1 (en) Rf multipole ion guides for broad mass range
JP2015502649A (en) First-order and second-order focusing using field-free regions in time of flight
JP3571567B2 (en) Ion optical system of time-of-flight mass spectrometer
US7439520B2 (en) Ion optics systems
US4634931A (en) Ion implanter
US20160133452A1 (en) Dual field multipole converging ion guides, hyperbolic ion guides, and related methods
JPH02103854A (en) Method and apparatus for applying ions to large surface
CN108735572B (en) Ion guide device, method and mass spectrometer
JP2006324051A (en) Charge particle beam irradiation method and device
JPH0278143A (en) Charged particle device and focusing lens thereof
CN110504152A (en) Ion guide
WO2018193733A1 (en) Particle beam accelerator and particle beam therapy device
US20180061624A1 (en) System and methodology for expressing ion path in a time-of-flight mass spectrometer
JP4957187B2 (en) Time-of-flight mass spectrometer
US20220319826A1 (en) Apparatuses and methods for merging ion beams
US20110101892A1 (en) Accelerator for Accelerating Charged Particles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees