JP3570734B2 - Engine fuel injection control device - Google Patents

Engine fuel injection control device Download PDF

Info

Publication number
JP3570734B2
JP3570734B2 JP27424292A JP27424292A JP3570734B2 JP 3570734 B2 JP3570734 B2 JP 3570734B2 JP 27424292 A JP27424292 A JP 27424292A JP 27424292 A JP27424292 A JP 27424292A JP 3570734 B2 JP3570734 B2 JP 3570734B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
torque
engine
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27424292A
Other languages
Japanese (ja)
Other versions
JPH06129276A (en
Inventor
博文 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP27424292A priority Critical patent/JP3570734B2/en
Publication of JPH06129276A publication Critical patent/JPH06129276A/en
Application granted granted Critical
Publication of JP3570734B2 publication Critical patent/JP3570734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【産業上の利用分野】
本発明はエンジンの燃料噴射制御装置に関し、特に目標トルクをパラメータとして空燃比制御を行うようにしたエンジンの燃料噴射制御装置に関する。
【0002】
【従来の技術】
従来空燃比制御を行う場合、エンジン回転数と吸入空気量(又は吸気管圧力)とから実験的に求めた目標空燃比値となるように制御していた。この場合、空気量が変化したときのトルク変化に対しては情報がなく、実験的に求めた値(実際にエンジンを動かして空気量から実験的に求めた参考値)によって補正するようにされる。そのため空気量が変化した際のトルク段差(不連続的な変化)や、該空気量が一定量づつ増加したときのトルクカーブのスムーズさがないという問題点を生ずる。これは空気量が変化してもトルクがほとんど変化しない領域や、逆に空気量がほとんど変化しなくてもトルクが大きく変化する領域があることにも起因している。
【0003】
【発明が解決しようとする課題】
本発明はかかる技術的背景のもとになされたもので、アクセル開度とエンジン回転数とから求められた目標トルクを空燃比決定のパラメータとすることにより、より精密な空燃比制御を行いうるようにしたものである。
【0004】
【課題を解決するための手段】
かかる課題を解決するために、本発明のエンジンの噴射制御装置によれば、アクセル開度とエンジン回転数から求められた目標トルクに基づいて空燃比を算出する手段を備えるエンジンの燃料噴射制御装置において、
該空燃比を算出する手段は、加速状態を検出する加速検出手段と、前回および今回算出された空燃比に基づき空燃比がリーン方向に変化しているか否かを判定する判定手段と、該加速検出手段で加速状態が検出され、かつ該判定手段で空燃比がリーン方向に変化していることが判定されたとき、空燃比をなまし処理するなまし処理手段とを更に含むことを特徴とする。
【0005】
【作用】
上記構成によれば、アクセル開度とエンジン回転数とから、当該エンジンに合った値に自由に設定できる上記目標トルクを空燃比決定のパラメータとすることにより、トルク段差の大きさも推定できるため段差ショックの低減も可能となり、加速状態が検出され、かつ前回および今回検出された空燃比に基づき、空燃比がリーン方向に変化しているか否か判定し、空燃比がリーン方向に変化していると判定されたときはなまし処理を行うことにより、空気量が増加したときのトルクカーブもスムーズなものとすることができる。
【0006】
【実施例】
図1は本発明装置のシステム構成を示すもので、エンジン制御コンピュータCOMPにはアクセル開度ACPとエンジン回転数NEとがとり込まれる。そして該エンジン制御コンピュータには、従来のNE−空気量による空燃比マップに代り、NE−目標トルクTRQによる空燃比マップが設けられる。ここで該エンジン回転数NE(rpm )と目標トルクTRQ(kg・m)とから空燃比を算出するマップの1例が表1に示されている。
【0007】
【表1】

Figure 0003570734
【0008】
また該目標トルクTRQはエンジン回転数NEとアクセル開度ACPとから求められるもので、該エンジン回転数(rpm )をパラメータとしたアクセル開度ACPと目標トルクTRQとの相互関係が図4に例示されている。このようにアクセル開度ACPをパラメータにとることにより、アクセルペダルの踏み込み量に対して目標トルクTRQの立ち上がりを自由に設定することができる。更に該アクセル開度とエンジン回転数の変化によるトルク変化の情報もえられるため、トルク段差の大きさも推定でき、したがって例えばフューエルカット時やフューエル増加時などにおける段差ショックの低減も可能となる。
【0009】
図2は上記図1に示されるエンジン制御コンピュータによってなされる空燃比制御値算出の処理手順を例示するもので、ステップ1では上記表1に示されるようなマップをもとにして、上記エンジン回転数NEと目標トルクTRQとから空燃比が算出される。次いでステップ2では前回算出された目標トルクと今回算出された目標トルクとを比較することによってトルク増加があったか否かが判別される。そしてノウのとき(すなわち定常状態のとき)には、ステップ3に進んで上記ステップ1で算出された値がそのまま空燃比の値とされる。
【0010】
一方、上記ステップ2の判定がイエスのとき(すなわちトルク増加を生じた加速状態のとき)には、ステップ4で前回算出された空燃比が今回算出された(上記ステップ1で算出された)空燃比以上であるか否かが判別される。そしてイエスのとき(すなわち今回算出された空燃比の方がリッチのとき)には、ステップ6に進んで上記ステップ1で算出された値がそのまま空燃比の値とされるが、ノウのとき(すなわち今回算出された空燃比の方がリーンのとき)には、ステップ5で該空燃比のなまし処理(すなわち一気に該算出空燃比の値とせず数回の演算処理を経て徐々に該算出空燃比の値まで増加させる)を行い、ステップ6で該なまし処理された値が今回の空燃比の値とされる。なお、上記ステップにおいて、トルク増加を生じて加速状態であることを検出する加速検出手段、トルク増加を生じ加速状態であることが検出されたとき、空燃比がリーン方向に変化しているか否かを判定する手段、及びなまし処理手段は、図1のエンジン制御コンピュータCOMPに含まれている
【0011】
このようにトルク増加時において、上記算出空燃比が前回算出された値より大きい(リーンの方向になった)場合、該算出値をそのまま用いると(すなわち急にリーンの方向に変化させると)、加速不良などのショックが発生するため、上述した空燃比のなまし処理がなされる。図3は該空燃比のなまし処理によるトルク変化の影響を示すもので、T1は前回算出された目標トルク、T2は今回算出された目標トルクを示している。また▲1▼は上記なまし処理を行わない場合のトルク変化を示し、▲2▼は上記なまし処理を行った場合のトルク変化を示している。該図3に示されるように、上記空燃比のなまし処理を行うことによって、そのときのトルク変化を実線で示される理想のトルク変化に近づけて、上記ショックの発生を防止することができる。
【0012】
【発明の効果】
本発明によれば目標トルクを空燃比決定のパラメータとすることによって、より精密な空燃比制御を行うことができ、空気量が変化したときのトルク段差によるショックをも低減させることができる。
【図面の簡単な説明】
【図1】本発明装置のシステム構成図である。
【図2】図1に示されるエンジン制御コンピュータによってなされる処理手順をフローチャートで例示する図である。
【図3】空燃比のなまし処理によるトルク変化の影響を示す図である。
【図4】アクセル開度、エンジン回転数、および目標トルクの相互関係を例示する図である。[0001]
[Industrial applications]
The present invention relates to a fuel injection control device for an engine, and more particularly to a fuel injection control device for an engine that performs air-fuel ratio control using a target torque as a parameter.
[0002]
[Prior art]
Conventionally, when performing air-fuel ratio control, control has been performed so that a target air-fuel ratio value experimentally obtained from an engine speed and an intake air amount (or intake pipe pressure) is obtained. In this case, there is no information on the torque change when the air amount changes, and the torque is corrected by an experimentally obtained value (a reference value experimentally obtained from the air amount by actually operating the engine). You. Therefore, there arises a problem that there is no torque step (discontinuous change) when the air amount changes, and there is no smoothness of the torque curve when the air amount increases by a constant amount. This is also because there is a region where the torque hardly changes even when the air amount changes, and conversely, a region where the torque largely changes even when the air amount hardly changes.
[0003]
[Problems to be solved by the invention]
The present invention has been made under such a technical background, and it is possible to perform more precise air-fuel ratio control by using a target torque obtained from an accelerator opening and an engine speed as a parameter for determining an air-fuel ratio. It is like that.
[0004]
[Means for Solving the Problems]
According to an embodiment of the present invention, there is provided an engine fuel injection control apparatus including: a unit configured to calculate an air-fuel ratio based on a target torque obtained from an accelerator opening and an engine speed. At
Means, an acceleration detecting means for detecting an acceleration state, a determination unit configured to determine whether the air-fuel ratio has changed from lean direction based on the air-fuel ratio previously calculated and now the pressurized speed for calculating the air-fuel ratio When the acceleration state is detected by the detection means, and when the determination means determines that the air-fuel ratio is changing in the lean direction, the smoothing processing means for smoothing the air-fuel ratio is further included. I do.
[0005]
[Action]
According to the above configuration, the target torque, which can be freely set to a value suitable for the engine, is used as a parameter for determining the air-fuel ratio based on the accelerator opening and the engine speed. Shock reduction is also possible, the acceleration state is detected, and it is determined whether the air-fuel ratio is changing in the lean direction based on the air-fuel ratio detected last time and this time, and the air-fuel ratio is changing in the lean direction. By performing the smoothing process when it is determined, the torque curve when the air amount increases can be made smooth.
[0006]
【Example】
FIG. 1 shows a system configuration of the apparatus of the present invention. An engine control computer COMP takes an accelerator opening ACP and an engine speed NE. The engine control computer is provided with an air-fuel ratio map based on the NE-target torque TRQ instead of the conventional air-fuel ratio map based on the NE-air amount. Here, one example of a map for calculating the air-fuel ratio from the engine speed NE (rpm) and the target torque TRQ (kg · m) is shown in Table 1.
[0007]
[Table 1]
Figure 0003570734
[0008]
The target torque TRQ is obtained from the engine speed NE and the accelerator opening ACP. FIG. 4 shows an example of the correlation between the accelerator opening ACP and the target torque TRQ using the engine speed (rpm) as a parameter. Have been. By using the accelerator opening ACP as a parameter in this manner, the rise of the target torque TRQ can be set freely with respect to the amount of depression of the accelerator pedal. Further, since information on the torque change due to the change in the accelerator opening and the engine speed can be obtained, the magnitude of the torque step can be estimated, and therefore, for example, a step shock can be reduced when the fuel is cut or the fuel is increased.
[0009]
FIG. 2 exemplifies a processing procedure for calculating an air-fuel ratio control value performed by the engine control computer shown in FIG. 1. In step 1, the engine speed is calculated based on a map shown in Table 1 above. The air-fuel ratio is calculated from the number NE and the target torque TRQ. Next, at step 2, it is determined whether or not the torque has increased by comparing the previously calculated target torque with the currently calculated target torque. Then, in the case of a know-how (that is, in a steady state), the process proceeds to step 3 and the value calculated in step 1 is directly used as the value of the air-fuel ratio.
[0010]
On the other hand, if the determination in step 2 is YES (that is, if the vehicle is accelerating with an increase in torque), the air-fuel ratio calculated last time in step 4 is the air-fuel ratio calculated this time (calculated in step 1). It is determined whether or not the fuel ratio is equal to or higher than the fuel ratio. If the answer is yes (that is, if the air-fuel ratio calculated this time is richer), the process proceeds to step 6 and the value calculated in step 1 is used as it is as the air-fuel ratio. That is, when the air-fuel ratio calculated this time is leaner, the air-fuel ratio smoothing process is performed in step 5 (that is, the calculated air-fuel ratio is not reduced to the calculated air-fuel ratio value at once, but is gradually calculated through several calculation processes). Is increased to the value of the fuel ratio), and the value subjected to the annealing process in step 6 is set as the current value of the air-fuel ratio. Note that, in the above step, acceleration detecting means for detecting an acceleration state due to an increase in the torque, and determining whether the air-fuel ratio is changing in a lean direction when the acceleration state is detected due to the increase in the torque. And the smoothing processing means are included in the engine control computer COMP of FIG .
[0011]
When the calculated air-fuel ratio is larger than the previously calculated value (in the lean direction) when the torque is increased as described above, if the calculated value is used as it is (that is, if it is suddenly changed in the lean direction), Since a shock such as poor acceleration occurs, the above-described air-fuel ratio smoothing process is performed. FIG. 3 shows the influence of a torque change due to the smoothing process of the air-fuel ratio, where T1 indicates the target torque calculated last time, and T2 indicates the target torque calculated this time. Further, (1) shows a change in torque when the above-mentioned averaging process is not performed, and (2) shows a change in torque when the above-mentioned averaging process is performed. As shown in FIG. 3, by performing the air-fuel ratio smoothing process, the torque change at that time can be made closer to the ideal torque change indicated by the solid line, and the occurrence of the shock can be prevented.
[0012]
【The invention's effect】
According to the present invention, by using the target torque as a parameter for determining the air-fuel ratio, more precise air-fuel ratio control can be performed, and shock due to a torque step when the air amount changes can be reduced.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of an apparatus of the present invention.
FIG. 2 is a flowchart illustrating a processing procedure performed by an engine control computer shown in FIG. 1;
FIG. 3 is a diagram showing an influence of a torque change due to an air-fuel ratio smoothing process.
FIG. 4 is a diagram illustrating an interrelationship between an accelerator opening, an engine speed, and a target torque.

Claims (1)

アクセル開度とエンジン回転数から求められた目標トルクに基づいて空燃比を算出する手段を備えるエンジンの燃料噴射制御装置において、該空燃比を算出する手段は、加速状態を検出する加速検出手段と、前回および今回算出された空燃比に基づき空燃比がリーン方向に変化しているか否かを判定する判定手段と、該加速検出手段で加速状態が検出され、かつ該判定手段で空燃比がリーン方向に変化していることが判定されたとき、空燃比をなまし処理するなまし処理手段とを更に含むことを特徴とするエンジンの燃料噴射制御装置。In a fuel injection control device for an engine, comprising: means for calculating an air-fuel ratio based on a target torque obtained from an accelerator opening and an engine speed, the means for calculating the air-fuel ratio includes acceleration detection means for detecting an acceleration state; Determining means for determining whether or not the air-fuel ratio is changing in the lean direction based on the air-fuel ratio calculated last time and this time; and detecting the acceleration state by the acceleration detecting means, and determining whether the air-fuel ratio is lean. A fuel injection control device for an engine, further comprising: a smoothing means for smoothing the air-fuel ratio when it is determined that the direction is changing .
JP27424292A 1992-10-13 1992-10-13 Engine fuel injection control device Expired - Fee Related JP3570734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27424292A JP3570734B2 (en) 1992-10-13 1992-10-13 Engine fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27424292A JP3570734B2 (en) 1992-10-13 1992-10-13 Engine fuel injection control device

Publications (2)

Publication Number Publication Date
JPH06129276A JPH06129276A (en) 1994-05-10
JP3570734B2 true JP3570734B2 (en) 2004-09-29

Family

ID=17538986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27424292A Expired - Fee Related JP3570734B2 (en) 1992-10-13 1992-10-13 Engine fuel injection control device

Country Status (1)

Country Link
JP (1) JP3570734B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285493B2 (en) * 1996-07-05 2002-05-27 株式会社日立製作所 Lean-burn engine control apparatus and method and engine system

Also Published As

Publication number Publication date
JPH06129276A (en) 1994-05-10

Similar Documents

Publication Publication Date Title
US8010272B2 (en) Control device for internal combustion engine
JP2517909B2 (en) Internal combustion engine control system and control method thereof
US8977461B2 (en) Vehicle control system
US7853394B2 (en) Internal combustion engine feedback control with variably set gain
KR20200071527A (en) Control method of engine combustion for decreasing irregular vibration
JP5499882B2 (en) ENGINE CONTROL METHOD AND CONTROL DEVICE
JP3570734B2 (en) Engine fuel injection control device
JP2759957B2 (en) Engine control method
JP2820171B2 (en) Fuel control system for vehicle internal combustion engine
JP2008128119A (en) Operating condition determination device for internal combustion engine
JPS63314371A (en) Ignition timing controller for internal combustion engine
JP3089094B2 (en) Control device for internal combustion engine
JP2002317684A (en) Operating condition discriminating device of internal combustion engine
JP2594998B2 (en) Engine operating state determination method
JP2962446B2 (en) Fuel supply control device for internal combustion engine
JPH102238A (en) Vehicle vibration reducing device
JP2003254149A (en) Device for calculating suction air quantity for engine
JPH01125567A (en) Controller for engine
JPS63246440A (en) Control device for engine
JPS63129140A (en) Air-fuel ratio control device for internal combustion engine
JP2003254148A (en) Device for calculating suction air quantity for engine
KR0154022B1 (en) Engine control method in acceleration and decelleration
JPS63272933A (en) Control device for fuel injection
JPH0783104A (en) Ignition timing control method
JPH10205377A (en) Engine control system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees