JP3570572B2 - 3D delay dispersion estimation method - Google Patents

3D delay dispersion estimation method Download PDF

Info

Publication number
JP3570572B2
JP3570572B2 JP00849795A JP849795A JP3570572B2 JP 3570572 B2 JP3570572 B2 JP 3570572B2 JP 00849795 A JP00849795 A JP 00849795A JP 849795 A JP849795 A JP 849795A JP 3570572 B2 JP3570572 B2 JP 3570572B2
Authority
JP
Japan
Prior art keywords
delay
wave source
wave
frequency
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00849795A
Other languages
Japanese (ja)
Other versions
JPH08201460A (en
Inventor
均 北吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP00849795A priority Critical patent/JP3570572B2/en
Priority to DE19680108T priority patent/DE19680108T1/en
Priority to US08/716,289 priority patent/US5752167A/en
Priority to PCT/JP1996/000110 priority patent/WO1996023363A1/en
Publication of JPH08201460A publication Critical patent/JPH08201460A/en
Application granted granted Critical
Publication of JP3570572B2 publication Critical patent/JP3570572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
この発明は無線通信においてアンテナから放射された電波が反射、回析を繰り返して作る3次元的なマルチパス遅延波の分散を推定する方法に関する。
【0002】
【従来の技術】
前記遅延分散は通信品質の評価に利用され、例えば遅延分散の値から通信可能な最大ビットレートが決まる。従来においては例えばIEEE Transactions on Antenas and Propagation,Vol.42,No.10.Oct.,1994,PP.1369〜1376「A New Approach for Estinating Indoor Radio Propagation Characteristics」に示されているように、PNコードを変調した電波を送信し、測定したい位置に設けた受信機で前記送信波を受信して測定している。
【0003】
【発明が解決しようとする課題】
従来においては評価したい各場所に、いちいち受信機を設置して、直接測定しているため、測定作業が大変で時間も掛る。PNコードで変調しているため、変調周波数帯域幅を十分広げないと短かい遅延を分離することができず、測定精度も悪い。
【0004】
【課題を解決するための手段】
この発明によれば一次波源を見ることでき、かつ推定したい波動場空間を見渡せる位置で波動の2次元干渉データを少くとも2周波数で測定し、この測定した2次元干渉データを用いて波源像を再生し、その再生波源像の一次波源に対する伝搬遅延時間をその波源の位相から求め、更に再生波源像と伝搬遅延時間と、推定したい周波数で観測された波源の位相を用いて各波源を3次元空間中に再配置し、評価したい受信点から、再配置された各波源までの距離に応じた遅延時間と強度減衰量とを求め遅延平均値と遅延分散値とを算出する。
【0005】
【実施例】
以下この発明を、構内における電波の3次元遅延分散の推定に適用した実施例につき説明する。この実施例では一次波源を見ることができ、かつ推定したい電磁場空間を見渡せる位置で電磁波の2次元干渉データを少くとも2周波数で測定する。例えば図1に示すように構内11内に一次波源として周波数fの電波と周波数fの電波とを放射する放射器12が用いられ、この放射器12を見ることができ、かつ推定したい電磁場空間を見渡せる位置に観測面13を配し、観測面13の各点に走査アンテナ14を位置させて受信すると共に、これと比較的接近した位置に固定的に設けた固定アンテナ15で受信する。アンテナ14,15の各受信出力は前置増幅器16,17を通じ、更にフィルタ18,19で不要波が除去された後、周波数混合器21,22で局部発振器23よりの局部信号と周波数混合され、その各差周波数成分(例えば21.4MHz)が帯域通過フィルタ24,25でそれぞれ取出され、これらは更に周波数混合器26,27で局部発振器28の局部信号(例えば22.4MHz)と周波数混合され、その各差周波数成分(例えば1MHz)が低域通過フィルタ29,31でそれぞれ取出される。フィルタ29,31の各出力はフーリエ積分器32,33に供給され、発振器34からのパルス(例えば10.24MHz)によりそれぞれサンプリングされ、各サンプル値がディジタル信号に変換され、それぞれ離散的フーリエ積分される。これらフーリエ積分結果S(x,y),Sはホログラム演算部35において、フーリエ積分器33の出力Sを基準としたホログラム演算
H(x,y)=(S(x,y)/S)・|S| …(1)
がなされ干渉データが得られる。x,yは観測面13上の直交座標の各点を示す。発振器23,28,34は基準発振器36からの安定した基準信号(例えば10MHz)により同期化されている。局部発振器23の周波数を調整して、周波数fの電波を受信した時の複素ホログラム(二次元干渉データ)と、周波数fの電波を受信した時の複素ホログラムとを測定する。観測面13の大きさは例えば28×28cmであり、走査アンテナ14のx,yの各方向における移動ピッチはそれぞれ例えば0.45cmである。
【0006】
H(x,y)は観測面13における各点の固定アンテナ15の受信波を基準とした受信信号の振幅と位相とを求めたことになる。このH(x,y)を二次元フーリエ積分すると、

Figure 0003570572
となる。zは観測面13と垂直なz軸上の観測面13からの距離、ξはz軸に対する方位角、ηはz軸に対する仰角である。
【0007】
このI(ξ,η)は観測面13から各方向を見た時の振幅と、位相とが求まり、電波源像が再生されたことになる。この再生波源像の一次波源である放射器12の波動に対する各伝搬遅延時間をその波源の位相から求める。即ち一次波源である放射器12の位置を(ξ,η)、放射器12の観測面13からの距離をγとし、電波の速度をc、ω=2πf、ω=2πfとすると再生波源像、つまり観測面から見た二次波源および一次波源の伝搬遅延時間D(ξ,η)は次式より求まる。
Figure 0003570572
更に上記再生波源像I(ξ,η)exp(jθ(ξ,η))と、伝搬遅延時間D(ξ,η)と、推定したい周波数2πf=ωにより観測された波源の位相とを用いて各波源を3次元空間に再配置する。つまり各波源の絶対座標は次式で与えられる。
【0008】
γ(ξ,η)=D(ξ,η)・cとすると、
X(ξ,η)=γ(ξ,η)・ξ・cos(sin−1(η)) …(4) Y(ξ,η)=γ(ξ,η)・η・cos(sin−1(ξ)) …(5) Z(ξ,η)=√(γ(ξ,η)−X(ξ,η)−Y(ξ,η)…(6) この時の各波源の放射強度と位相は次式となる。
【0009】
I′(ξ,η,ω)=γ(ξ,η)・I(ξ,η,ω) …(7)
θ′(ξ,η,ω)=θ(ξ,η,ω)+2πγ(ξ,η)f …(8)
再生像の座標(ξ,η)で決る3次元空間の各位置つまり(4),(5),(6)式で与えられる座標X,Y,Z上に(7)式及び(8)式で与えられる波源が存在することになる。
【0010】
ここで3次元空間の任意の位置(x′,y′,z′)における遅延平均値τ、遅延の標準差τrms は、その位置(x′,y′,z′)から各波源までの距離γ′(ξ,η)に応じた遅延時間γ′(ξ,η)/cと強度(I′(ξ,η,ω)/r(ξ,η))とからそれぞれ次式により求まる。
Figure 0003570572
【0011】
【数1】
Figure 0003570572
(9),(10)式でΣΣはそれぞれξ,ηの各値についての加算であり、
Figure 0003570572
このようにしてホログラム観測面13から見える3次元空間の任意の位置(x′,y′,z′)における遅延平均τ、遅延の標準偏差τrms をそれぞれ(9),(10)式を演算することにより求めることができる。上述の処理手順を図2に示す。なお遅延波分散量は(9)式において開平演算を行うものであるが、(9)式を遅延分散と呼ぶこともある。
【0012】
通常の電波による通信においては有限の周波数帯域で行われる。従って有限帯域ω±Δωの範囲では各波源の強度I′(ξ,η,ω)位相θ′(ξ,η,ω)は変化が小さいと考えられ、それぞれをI′(ξ,η)、θ′(ξ,η)とし、アンテナ指向特性をA(ξ,η)とすると、任意の位置(x′,y′,z′)における伝搬路の周波数応答を次式で求めることができる。
【0013】
Figure 0003570572
更に周波数帯域制限関数をB(ω)とすると、伝搬路の時間応答関数g(t)は次式で表すことができる。
g(t)=∫G(ω)・B(ω)・exp(jωt)dω
∫は制限されている周波数範囲の積分
この時間応答関数から、任意の位置(x′,y′,z′)における遅延平均τ、遅延の標準偏差τrms はそれぞれ次式で求めることができる。
【0014】
τ=∫t・|g(t)|dt/∫|g(t)|dt …(12)
τrms =√{∫(t−τ|g(t)|dt/∫|g(t)|dt}…(13)
電波ホログラム(干渉データ)H(x,y)を得るにはスペクトル領域ではなく、時間領域での積分により求めることもできる。その例を図3に、図1と対応する部分に同一符号を付けて示す。低域通過フィルタ29、31よりのベースバンド信号は乗算器64,65ヘ供給される。一方基準となる固定アンテナ15側の帯域通過フィルタ25の出力は、局部発振器28の出力を移相器66でπ/2ずらされたものと乗算器67で乗算され、その乗算出力は低域通過フィルタ68によりベースバンド信号が取出される。低域通過フィルタ31,68の各出力はそれぞれ乗算器64,65へ供給される。つまり帯域通過フィルタ25の出力は直交検波されるその検波出力の同相成分と、直交成分とが走査アンテナ14側のベースバンド信号と乗算器64,65で乗算される。乗算器64,65の各出力は積分器71,72で発振器34からのクロックによりサンプリングされ、時系列デジタル信号にされた後、それぞれ時間領域で積分され、実部R、虚部Iとして演算部73へ供される。この例では図に示していない固定無線機よりの電波をアンテナ14,15で受信すると共に、前記固定無線機との通信用送受信機74によリ得られている受信電界強度|S|が演算部73へ供給される。演算部73ではR+jI=S・S を演算し、これを|S|で割算して、電波ホログラムH(x,y)を得る。またこの例では送受信機74が受信した特定のIDコードを検出した時に、乗算器64,65の各出力を積分器71,72へ供給するようにすることもできる。また送受信機74での受信電波の選択と対応して、局部発振器23の発振周波数を自動的に制御するようにされている。
【0015】
このようにすると、運用中の通信システムの電波を利用して、その電波の伝搬路の3次元空間の各部の遅延平均τと遅延標準偏差τrms を求めることにより、ビルディングの設置、取壊しなどで電波環境が変化したことにもとずく通信品質の劣化などを評価することができる。
【0016】
【発明の効果】
以上述べたようにこの発明によれば、干渉データを観測し、その波源像を再生し、これを3次元空間の再配置し、ホログラム観測面から見ることができる任意の位置の各波源との距離に対応した減衰と遅延とを求めて遅延平均τと遅延標準偏差τrms とを求めているため、各位置に受信機を移動させて測定する従来技術と比較して簡単かつ短時間に求めることができ、しかも特別な変調を必要とせず、狭帯域で測定して、短かい遅延も分離することができる。
【図面の簡単な説明】
【図1】干渉データを得るための構成例を示すブロック図。
【図2】この発明による方法の処理手順を示す図。
【図3】干渉データを得る他の構成例を示すブロック図。[0001]
[Industrial applications]
The present invention relates to a method for estimating the variance of a three-dimensional multipath delay wave generated by repeating reflection and diffraction of radio waves radiated from an antenna in wireless communication.
[0002]
[Prior art]
The delay dispersion is used for evaluating communication quality. For example, the maximum communicable bit rate is determined from the value of the delay dispersion. Conventionally, for example, in IEEE Transactions on Antenas and Propagation, Vol. 42, no. 10. Oct. , 1994, PP. 1369-1376, as shown in "A New Approach for Estimating Indoor Radio Propagation Characteristics", a radio wave obtained by modulating a PN code is transmitted, and a receiver provided at a position to be measured receives the transmission wave to measure. ing.
[0003]
[Problems to be solved by the invention]
Conventionally, a receiver is installed in each place to be evaluated and measurement is performed directly, so that the measurement operation is difficult and time-consuming. Since modulation is performed using the PN code, short delays cannot be separated unless the modulation frequency bandwidth is sufficiently widened, and measurement accuracy is poor.
[0004]
[Means for Solving the Problems]
According to the present invention, two-dimensional interference data of a wave is measured at at least two frequencies at a position where the primary wave source can be seen and the wave field space to be estimated can be seen, and a wave source image is formed using the measured two-dimensional interference data. Reconstructed, the propagation delay time of the reconstructed wave source image with respect to the primary wave source is obtained from the phase of the wave source, and each wave source is three-dimensionally determined using the reproduced wave source image, the propagation delay time, and the phase of the wave source observed at the frequency to be estimated. The delay time and the intensity attenuation corresponding to the distance from the reception point to be rearranged in the space to be evaluated to each of the rearranged wave sources are obtained, and a delay average value and a delay dispersion value are calculated.
[0005]
【Example】
Hereinafter, an embodiment in which the present invention is applied to estimation of three-dimensional delay dispersion of radio waves in a premises will be described. In this embodiment, two-dimensional interference data of an electromagnetic wave is measured at at least two frequencies at a position where the primary wave source can be seen and the electromagnetic field space to be estimated can be seen. For example radiator 12 for radiating the radio wave of the radio wave and the frequency f 2 frequency f 1 as the primary wave sources in the premises 11 are used as shown in FIG. 1, it can be seen the radiator 12, and want to estimate the electromagnetic field The observation surface 13 is arranged at a position overlooking the space, and the scanning antenna 14 is positioned at each point of the observation surface 13 for reception, and the signal is received by a fixed antenna 15 fixedly provided at a position relatively close to the scanning antenna 14. The respective reception outputs of the antennas 14 and 15 pass through preamplifiers 16 and 17, and after unnecessary waves are removed by filters 18 and 19, are frequency-mixed with local signals from a local oscillator 23 by frequency mixers 21 and 22. The respective difference frequency components (for example, 21.4 MHz) are taken out by band-pass filters 24 and 25, respectively, and these are further frequency-mixed by frequency mixers 26 and 27 with a local signal (for example, 22.4 MHz) of a local oscillator 28, The respective difference frequency components (for example, 1 MHz) are extracted by the low-pass filters 29 and 31, respectively. Outputs of the filters 29 and 31 are supplied to Fourier integrators 32 and 33, respectively, are sampled by a pulse (for example, 10.24 MHz) from an oscillator 34, each sample value is converted into a digital signal, and discrete Fourier integration is performed. You. These Fourier integration results S m (x, y) and S r are output from the hologram calculation unit 35 to the hologram calculation H (x, y) = (S m (x, y)) based on the output S r of the Fourier integrator 33. / S r ) · | S r | (1)
Is performed to obtain interference data. x and y indicate each point of the rectangular coordinates on the observation surface 13. The oscillators 23, 28 and 34 are synchronized by a stable reference signal (for example, 10 MHz) from the reference oscillator 36. By adjusting the frequency of the local oscillator 23, to measure the complex hologram when receiving a radio wave of frequency f 1 (two-dimensional interference data), and a complex hologram at the time of receiving the radio waves of the frequency f 2. The size of the observation surface 13 is, for example, 28 × 28 cm 2 , and the moving pitch of the scanning antenna 14 in each of the x and y directions is, for example, 0.45 cm.
[0006]
H (x, y) means that the amplitude and phase of the received signal with respect to the received wave of the fixed antenna 15 at each point on the observation surface 13 have been obtained. When H (x, y) is two-dimensionally Fourier-integrated,
Figure 0003570572
It becomes. z is the distance from the observation plane 13 on the z axis perpendicular to the observation plane 13, ξ is the azimuth angle with respect to the z axis, and η is the elevation angle with respect to the z axis.
[0007]
The amplitude and phase of this I (ξ, η) when viewing each direction from the observation surface 13 are obtained, and the radio wave source image is reproduced. Each propagation delay time for the wave of the radiator 12, which is the primary wave source of the reproduced wave source image, is obtained from the phase of the wave source. That is, the position of the radiator 12 as the primary wave source is (ξ 0 , η 0 ), the distance of the radiator 12 from the observation surface 13 is γ 0 , the speed of the radio wave is c, ω 1 = 2πf 1 , ω 2 = 2πf. Assuming that 2 , the reproduced wave source image, that is, the propagation delay time D (ξ, η) of the secondary wave source and the primary wave source viewed from the observation surface is obtained by the following equation.
Figure 0003570572
Further, using the reproduced wave source image I (ξ, η) exp (jθ (ξ, η)), the propagation delay time D (ξ, η), and the phase of the wave source observed at the frequency 2πf = ω to be estimated. Each wave source is rearranged in a three-dimensional space. That is, the absolute coordinates of each wave source are given by the following equations.
[0008]
If γ (ξ, η) = D (ξ, η) · c,
X (ξ, η) = γ (ξ, η) · ξ · cos (sin −1 (η)) (4) Y (ξ, η) = γ (ξ, η) · η · cos (sin −1) (Ξ)) ... (5) Z (ξ, η) = √ (γ (ξ, η) 2 -X (ξ, η) 2 -Y (ξ, η) 2 … (6) The radiation intensity and phase are as follows.
[0009]
I ′ (ξ, η, ω) = γ (ξ, η) · I (・, η, ω) (7)
θ ′ (ξ, η, ω) = θ (ξ, η, ω) + 2πγ (ξ, η) f (8)
Equations (7) and (8) on each position in the three-dimensional space determined by the coordinates (ξ, η) of the reproduced image, that is, coordinates X, Y, and Z given by equations (4), (5), and (6) There will be a wave source given by
[0010]
Here, the delay average value τ m and the standard delay τ rms at an arbitrary position (x ′, y ′, z ′) in the three-dimensional space are calculated from the position (x ′, y ′, z ′) to each wave source. From the delay time γ ′ (ξ, η) / c and the intensity (I ′ (ξ, η, ω) / r (ξ, η)) 2 according to the distance γ ′ (ξ, η) of I get it.
Figure 0003570572
[0011]
(Equation 1)
Figure 0003570572
In equations (9) and (10), ΣΣ is an addition for each value of ξ and η, respectively.
Figure 0003570572
In this way, the delay average τ m and the standard deviation τ rms of the delay at an arbitrary position (x ′, y ′, z ′) in the three-dimensional space viewed from the hologram observation surface 13 are expressed by the following equations (9) and (10). It can be obtained by calculation. The above processing procedure is shown in FIG. The amount of delay wave dispersion is obtained by performing square root calculation in equation (9), but equation (9) may be referred to as delay dispersion.
[0012]
Normal radio wave communication is performed in a finite frequency band. Therefore, in the range of the finite band ω ± Δω, the intensity I ′ (位相, η, ω) and the phase θ ′ (波, η, ω) of each wave source are considered to have a small change. Assuming that θ ′ (ξ, η) and the antenna directivity characteristic is A (ξ, η), the frequency response of the propagation path at an arbitrary position (x ′, y ′, z ′) can be obtained by the following equation.
[0013]
Figure 0003570572
Further, assuming that the frequency band limiting function is B (ω), the time response function g (t) of the propagation path can be expressed by the following equation.
g (t) = ∫G (ω) · B (ω) · exp (jωt) dω
∫ is the integral of the limited frequency range From this time response function, the average delay τ m and the standard deviation τ rms of the delay at an arbitrary position (x ′, y ′, z ′) can be obtained by the following equations. .
[0014]
τ m = ∫t · | g (t) | 2 dt / ∫ | g (t) | 2 dt (12)
τ rms = {(t−τ m ) 2 | g (t) | 2 dt / ∫ | g (t) | 2 dt} (13)
In order to obtain the radio wave hologram (interference data) H (x, y), it is also possible to obtain the radio wave hologram (integration data) in the time domain instead of the spectral domain. An example is shown in FIG. 3 by attaching the same reference numerals to parts corresponding to FIG. The baseband signals from the low-pass filters 29 and 31 are supplied to multipliers 64 and 65. On the other hand, the output of the band-pass filter 25 on the fixed antenna 15 side serving as the reference is multiplied by the multiplier 67 with the output of the local oscillator 28 shifted by π / 2 by the phase shifter 66, and the multiplied output is low-passed. The baseband signal is extracted by the filter 68. Outputs of the low-pass filters 31 and 68 are supplied to multipliers 64 and 65, respectively. That is, the output of the band-pass filter 25 is subjected to quadrature detection. The in-phase component of the detection output and the quadrature component are multiplied by the baseband signal on the scanning antenna 14 side by the multipliers 64 and 65. Each output of the multiplier 64 and 65 is sampled by the clock from the oscillator 34 by the integrator 71 and 72, when after being series digital signals are integrated respectively in the time domain, the real part R e, as an imaginary part I m It is provided to the calculation unit 73. In this example, the radio waves from the fixed wireless device not shown are received by the antennas 14 and 15, and the received electric field strength | S r | obtained by the transceiver 74 for communication with the fixed wireless device is obtained. The data is supplied to the calculation unit 73. The arithmetic unit 73 in R e + jI m = S m · S r * is calculated, this | S r | and divided by, obtaining radio wave hologram H (x, y). Further, in this example, when the transceiver 74 detects the specific ID code received, the outputs of the multipliers 64 and 65 can be supplied to the integrators 71 and 72. Further, the oscillation frequency of the local oscillator 23 is automatically controlled in response to the selection of the received radio wave in the transceiver 74.
[0015]
In this way, by using the radio wave of the operating communication system and obtaining the delay average τ m and the delay standard deviation τ rms of each part in the three-dimensional space of the propagation path of the radio wave, the building is installed, demolished, etc. Thus, it is possible to evaluate the deterioration of the communication quality based on the change in the radio wave environment.
[0016]
【The invention's effect】
As described above, according to the present invention, interference data is observed, its wave source image is reproduced, and this is rearranged in a three-dimensional space. Since the delay average τ m and the delay standard deviation τ rms are obtained by calculating the attenuation and the delay corresponding to the distance, it is easier and faster than the conventional technology in which the receiver is moved to each position and measured. It can be determined, and requires no special modulation, and can be measured in a narrow band to isolate short delays.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration example for obtaining interference data.
FIG. 2 is a diagram showing a processing procedure of a method according to the present invention.
FIG. 3 is a block diagram showing another configuration example for obtaining interference data.

Claims (2)

一次波源を見ることができ、かつ推定したい波動場空間を見渡せる位置で上記波動の2次元干渉データを少くとも2周波数で測定し、
上記測定した2次元干渉データを用いて波源像を再生し、
その再生波源像の上記一次波源に対する伝搬遅延時間をその波源の位相から求め、
上記再生波源像、上記伝搬遅延時間、推定したい周波数で観測された波源の位相を用いて各波源を3次元空間中に再配置し、
評価したい受信点から、上記再配置された各波源までの距離に応じた遅延時間と強度減衰量とを求め遅延平均値と遅延の標準偏差とを算出することを特徴とする3次元遅延分散推定方法。
Measuring the two-dimensional interference data of the wave at at least two frequencies at a position where the primary wave source can be seen and the wave field space to be estimated can be seen;
A wave source image is reproduced using the measured two-dimensional interference data,
The propagation delay time of the reproduced wave source image with respect to the primary wave source is obtained from the phase of the wave source,
Using the reproduced wave source image, the propagation delay time, and the phase of the wave source observed at the frequency to be estimated, rearrange each wave source in a three-dimensional space,
3D delay variance estimation, wherein a delay time and an intensity attenuation amount according to a distance from a reception point to be evaluated to each of the rearranged wave sources are obtained, and a delay average value and a standard deviation of delay are calculated. Method.
上記波動の周波数帯域を制限し、その周波数帯域では上記再配置された波源の強度及び位相が一定として、上記距離に応じた強度の減衰量と、遅延とを考慮した伝搬路の周波数応答を求め、その周波数応答関数から時間応答関数を求め、その時間応答関数から上記遅延平均と遅延の標準偏差の算出を行うことを特徴とする請求項1記載の3次元遅延分散推定方法。The frequency band of the wave is limited, and the intensity and phase of the rearranged wave source are constant in the frequency band, and the frequency response of the propagation path is determined in consideration of the attenuation of the intensity according to the distance and the delay. 2. The method according to claim 1, wherein a time response function is obtained from the frequency response function, and the delay average and the standard deviation of the delay are calculated from the time response function.
JP00849795A 1995-01-23 1995-01-23 3D delay dispersion estimation method Expired - Fee Related JP3570572B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP00849795A JP3570572B2 (en) 1995-01-23 1995-01-23 3D delay dispersion estimation method
DE19680108T DE19680108T1 (en) 1995-01-23 1996-01-23 Radio propagation simulation method, wave field strength derivation method and three-dimensional delay control derivation method
US08/716,289 US5752167A (en) 1995-01-23 1996-01-23 Radio propagation simulation method, wave field strength inference method and three-dimensional delay spread inference method
PCT/JP1996/000110 WO1996023363A1 (en) 1995-01-23 1996-01-23 Method for simulating radio wave propagation, method for estimating intensity of wave field, and method for estimating three-dimensional delay dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00849795A JP3570572B2 (en) 1995-01-23 1995-01-23 3D delay dispersion estimation method

Publications (2)

Publication Number Publication Date
JPH08201460A JPH08201460A (en) 1996-08-09
JP3570572B2 true JP3570572B2 (en) 2004-09-29

Family

ID=11694759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00849795A Expired - Fee Related JP3570572B2 (en) 1995-01-23 1995-01-23 3D delay dispersion estimation method

Country Status (1)

Country Link
JP (1) JP3570572B2 (en)

Also Published As

Publication number Publication date
JPH08201460A (en) 1996-08-09

Similar Documents

Publication Publication Date Title
US4888593A (en) Time difference of arrival geolocation method, etc.
US5752167A (en) Radio propagation simulation method, wave field strength inference method and three-dimensional delay spread inference method
US8081111B2 (en) Method and apparatus for locating the source of an unknown signal
JP2013015522A (en) Broad band beam formation device, broad band beam steering device and corresponding method
JP3600459B2 (en) Method and apparatus for estimating direction of arrival of radio wave
KR20000005826A (en) Radio environment analysis apparatus
TW200425658A (en) Signal, interference and noise power measurement
Ellison et al. Combined wireless ranging and frequency transfer for internode coordination in open-loop coherent distributed antenna arrays
WO2016194720A1 (en) Signal processing device and method, information processing device and method, and program
JP4597444B2 (en) Synthetic aperture radar apparatus and image reproduction method in synthetic aperture radar apparatus
Cullen et al. Wide-band measurement and analysis techniques for the mobile radio channel
JP3739078B2 (en) Radio wave source position detection system
JP6928509B2 (en) Power measuring device
JP3570572B2 (en) 3D delay dispersion estimation method
JP3570571B2 (en) Wave field strength estimation method
Zhai et al. An electronic circuit system for time-reversal of ultra-wideband short impulses based on frequency-domain approach
Im et al. Slow modulation behavior of the FMCW radar for wireless channel sounding technology
JPH08204590A (en) Radio propagation simulating method
Amendolare et al. Transactional array reconciliation tomography for precision indoor location
JPH10232252A (en) Hologram observation method of three-dimensional wave source distribution
JP2019045386A (en) Electromagnetic wave processing apparatus, electromagnetic wave processing method and program
JP2958322B2 (en) Transmission time control radar device
RU2797027C1 (en) Device for measuring arrival time and duration of non-coherent sequence of ultra-wideband quasi radio signals of arbitrary form
JP2019120613A (en) Rader system, method of controlling rader system, and program
WO2023152884A1 (en) Image generating device and system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees