JP3570337B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP3570337B2
JP3570337B2 JP2000123582A JP2000123582A JP3570337B2 JP 3570337 B2 JP3570337 B2 JP 3570337B2 JP 2000123582 A JP2000123582 A JP 2000123582A JP 2000123582 A JP2000123582 A JP 2000123582A JP 3570337 B2 JP3570337 B2 JP 3570337B2
Authority
JP
Japan
Prior art keywords
molten steel
steel
slab
casting
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000123582A
Other languages
Japanese (ja)
Other versions
JP2001300702A (en
Inventor
正 平城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000123582A priority Critical patent/JP3570337B2/en
Publication of JP2001300702A publication Critical patent/JP2001300702A/en
Application granted granted Critical
Publication of JP3570337B2 publication Critical patent/JP3570337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋳造中に浸漬ノズルに詰まりが発生せず、また鋳片表層部にモールドパウダの巻き込みがなくて表面品質の良好な鋳片が得られる鋼の連続鋳造方法に関し、さらに、その方法を用いて得られた鋳片を熱間圧延することにより、表面品質の良い鋼帯を得るための鋼の連続鋳造方法に関する。
【0002】
【従来の技術】
表面欠陥が少なく、かつ成形性に優れていることが要求される鋼板、たとえば自動車の外装用鋼板などには、極低炭素鋼が用いられている。真空下での脱炭処理後にAl(アルミニウム)による脱酸処理を行った取鍋内の極低炭素鋼の溶鋼中では、その後の連続鋳造が終了するまでの間に、溶鋼中のAlと取鍋内のスラグ中のFeOやMnOなどの低級酸化物とが反応し、Alの酸化物(Al )が生成しやすい。このAlの酸化物は、鋳造中に浸漬ノズルが閉塞する原因となりやすい。
【0003】
浸漬ノズルの閉塞を防止するために、タンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で不活性ガスを溶鋼中に吹き込むことが一般的に行われている。たとえば、特開平2−37948号公報には、浸漬ノズルを通過する溶鋼中に、鋳造速度に応じた吹き込み流量でArガスを吹き込む方法が提案されている。しかし、この方法では、吹き込む不活性ガスの流量が、3〜5リットル/溶鋼tと多く、浸漬ノズルの閉塞防止には効果があるが、鋳片表層部に気泡性欠陥が集積しやすい。
【0004】
特開平2−182359号公報には、取鍋内の溶鋼中の全酸素量と取鍋内のスラグ中のFe量との合計で規定される量以上の不活性ガス量を、浸漬ノズル内を通過する溶鋼中に吹き込む方法が提案されている。しかし、この方法では、取鍋内の溶鋼中の全酸素量の条件によっては、吹き込む不活性ガスの流量が多くなるため、浸漬ノズルの閉塞防止には効果があるが、鋳片表層部に気泡性欠陥が集積しやすい。
【0005】
これらの鋳片表層部の気泡性欠陥は熱間圧延する際に圧着されにくいので、たとえば、その鋳片を素材として鋼帯に熱間圧延する際には、ふくれ疵と称される表面がふくれた欠陥が鋼帯表面に発生しやすい。
【0006】
また、鋳片表層部の気泡性欠陥には、鋳型内の溶鋼表面に添加されたモールドパウダを巻き込んだパウダ性欠陥を含む場合が多く、さらに、溶鋼中の酸化物を捕捉した介在物性欠陥を含むことも多い。鋳片表層部にこれらのパウダ性欠陥および/または介在物性欠陥を含む気泡性欠陥の集積した鋳片を素材として熱間圧延した鋼帯表面には、ふくれ疵に加えてスリバー疵と称する線状の疵が発生しやすい。
【0007】
【発明が解決しようとする課題】
本発明は、鋳造中に浸漬ノズルに詰まりが発生せず、安定した鋳造作業が可能で、さらに、鋳片表層部に気泡性欠陥、パウダ性欠陥および介在物性欠陥の集積のない表面品質の良好な鋳片を得ることができる鋼の連続鋳造方法であって、その方法を用いて得られた鋳片を熱間圧延することにより、表面品質の良い鋼帯を得ることができる鋳片を鋳造するための鋼の連続鋳造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の要旨は、下記(1)〜(4)に示す鋼の連続鋳造方法にある。
(1)断面形状が長方形の鋳片を鋳造する、C含有率が0.003質量%以下の溶鋼の連続鋳造方法であって、タンディッシュ内に注入する溶鋼の全酸素量T.Oを26ppm以下とし、かつ、下記(A)式を満足する条件でタンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で溶鋼中に不活性ガスを吹き込むことにより鋳片表層部の気泡性欠陥の集積を防止し、極低炭素鋼の鋼帯のふくれ疵およびスリバー疵の発生を防止する鋼の連続鋳造方法。
5.56/{(85/T.O)−1.39}≦Q≦3 ・・・(A)
ここで、T.O:溶鋼の全酸素量(ppm)
Q:不活性ガスの吹き込み量(リットル/溶鋼t)
(2)断面形状が長方形の鋳片を鋳造する、C含有率が0.003質量%以下の溶鋼の連続鋳造方法であって、タンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で溶鋼中に不活性ガスを吹き込みつつ鋳片表面から厚さ方向の深さ10mm以内に集積する大きさ40μm以上の球状非金属介在物の個数を100個/鋼−kg以下とすることにより、極低炭素鋼の鋼帯のふくれ疵およびスリバー疵の発生を防止する鋼の連続鋳造方法。
(3)断面形状が長方形の鋳片を鋳造する、C含有率が0.003質量%以下の溶鋼の連続鋳造方法であって、タンディッシュ内に注入する溶鋼の全酸素量T.Oを26ppm以下とし、かつ、下記(A)式を満足する条件でタンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で溶鋼中に不活性ガスを吹き込むことで、鋳片表面から厚さ方向の深さ10mm以内に集積する大きさ40μm以上の球状非金属介在物の個数を100個/鋼−kg以下とすることにより、極低炭素鋼の鋼帯のふくれ疵およびスリバー疵の発生を防止する鋼の連続鋳造方法。
5.56/{(85/T.O)−1.39}≦Q≦3 ・・・(A)
ここで、T.O:溶鋼の全酸素量(ppm)
Q:不活性ガスの吹き込み量(リットル/溶鋼t)
(4)前記連続鋳造における鋳造速度が1.5〜2.0m/分である前記(1) 〜(3)のいずれかに記載の鋼の連続鋳造方法。
【0009】
本発明者は、前述する課題を次により整理し、対策を講じて解決した。
▲1▼自動車の外装用鋼板などに用いられる極低炭素鋼の鋳片を鋳造する際、厚さ250〜270mm程度、幅1600mm程度の大きさの鋳片を、速度1.5〜2m/分程度で鋳造されることが多く、その際、内径が70〜90mm程度の浸漬ノズルが用いられるのが通常である。さらに、鋳片の生産性の確保の観点から、通常、少なくとも4ヒートを連続して鋳造することが求められている。
【0010】
4ヒートを連続して、安定して鋳造を行うには、浸漬ノズルの詰まりの防止が重要である。浸漬ノズルに詰まりが発生すると、鋳造速度を低下せざるを得なくなる。極低炭素鋼などの鋳造では、鋳造速度を低下させると、鋳型内での凝固殻の洗浄効果が少なくなるため、鋳片表層部に非金属介在物が多く集積しやすくなる。そのため、その鋳片を素材として鋼帯に熱間圧延する際、鋼帯表面に前述のスリバー疵が発生しやすい。
【0011】
実生産での浸漬ノズルの詰まり状況を詳細に調査した結果から、4ヒート連続して鋳造した後の浸漬ノズル内部に付着するAlの酸化物などの付着厚さが10mm程度以下であれば、鋳造中に浸漬ノズルに詰まりが発生しないことがわかった。4ヒート連続して鋳造した後の浸漬ノズル内部に、これ以上の厚さでAlの酸化物などが付着している場合には、たとえば、2〜3ヒート目から浸漬ノズルに詰まりが発生し、鋳造速度を低下させて鋳造していることがわかった。
【0012】
浸漬ノズル内部に付着するAlの酸化物などの付着厚さを抑制するために、浸漬ノズルを通過する溶鋼中への不活性ガスの吹き込み量を単に増やすだけでは、前述の通り、鋳片表層部にパウダ性欠陥および/または介在物性欠陥を含む気泡性欠陥が集積しやすく、そのため、その鋳片を素材として熱間圧延した鋼帯表面には、ふくれ疵およびスリバー疵が発生しやすい。
【0013】
▲2▼一方、ふくれ疵およびスリバー疵の発生を防止するには、鋳片表面から厚さ方向の深さ10mm以内に集積する大きさ40μm以上の球状非金属介在物の個数が100個/鋼−kg以下となるように、タンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で溶鋼中に不活性ガスを吹き込めばよいことがわかった。つまり、鋳片表層部に40μm未満の小さな球状非金属介在物が存在しても、その鋳片を素材として熱間圧延した鋼帯の表面品質は良好である。また、40μm以上の球状非金属介在物が集積しても、その集積している個数が上記範囲内であれば、その鋳片を素材として熱間圧延した鋼帯の表面品質は良好である。
【0014】
▲3▼タンディッシュ内に注入する溶鋼の全酸素量T.Oを26ppm以下とし、かつ、前述の(A)式を満足する条件でタンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で溶鋼中に不活性ガスを吹き込むことにより、上記▲1▼に記載する浸漬ノズルの詰まり防止のための条件である4ヒート連続して鋳造した後の浸漬ノズル内部に付着するAlの酸化物などの付着厚さが10mm程度以下の条件とすることができ、さらに、上記▲2▼に記載するふくれ疵およびスリバー疵の発生を防止するための鋳片表層部の球状非金属介在物の集積条件である鋳片表面から厚さ方向の深さ10mm以内に存在する大きさ40μm以上の球状非金属介在物の個数が100個/鋼−kg以下の条件とすることができる。
【0015】
【発明の実施の形態】
図1は、タンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で、溶鋼中に不活性ガスを吹き込む本発明の連続鋳造方法の例を示す図である。取鍋(図示していない)からタンディッシュ1内に注入された溶鋼9は、タンディッシュの溶鋼出口である上ノズル2、溶鋼の流量制御用のスライディングプレート3(図1では、3層プレートの場合を示す)、浸漬ノズル4(図1では、吐出孔が2つのノズルを示す)を経て、鋳型6内に供給される。符号7は溶鋼のメニスカス、符号8はモールドパウダ、符号11は鋳片、符号12は気泡を示す。
【0016】
鋳造時間が長くなると、溶鋼中のAlの酸化物などが浸漬ノズル4の内壁、とくに吐出孔5近傍に付着し、堆積するので、浸漬ノズルを通過できる溶鋼量が鋳造中に減少する。極端な場合には、溶鋼が通過できなくなり、鋳造を継続できなくなる。
【0017】
このような浸漬ノズルの詰まりを防止するために、上ノズル2、スライディングプレート3、または浸漬ノズル4から、Arガスなどの不活性ガスを溶鋼中に吹き込む。その際、不活性ガスの吹き込み口には、多孔質の耐火物または鋼製の細管を耐火物中に多数埋め込んだものなどを用いることができる。図1では、スライディングプレート3に備えた多孔質の耐火物10から不活性ガスを溶鋼中に吹き込む例を示す。
【0018】
本発明の連続鋳造方法は、たとえば、C含有率が0.0020〜0.0050質量%程度の極低炭素鋼に適用するのに好適である。このような極低炭素鋼では、溶製上の特性から溶鋼中にAlの酸化物などが多く、連続鋳造において浸漬ノズルの閉塞が発生しやすい。
【0019】
本発明の連続鋳造方法では、タンディッシュ内に注入する溶鋼の全酸素量T.O(ppm)を26ppm以下とし、かつ、前述の(A)式を満足する条件でタンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で溶鋼中に不活性ガスを吹き込む。その理由を下記に説明する。
【0020】
本発明者は、C含有率が0.0025質量%程度の極低炭素鋼の連続鋳造する前の取鍋内の溶鋼の全酸素量の値を、RH式真空処理装置を用いて種々の値に調整し、厚さ270mm、幅1600mmの長方形の鋳片に鋳造する試験を行った。その際、浸漬ノズルを通過する溶鋼中に、スライデイングゲートに備えた多孔質耐火物から種々の量でArガスを吹き込んだ。ノズル内径は90mmとし、アルミナグラファイト製の浸漬ノズルを用いた。吐出孔は2孔で、それぞれ長方形の吐出孔の大きさは縦90mm、横90mmとした。速度1.5〜1.8m/分を目標鋳造速度とし、1ヒート約300tの溶鋼を4ヒート連続して鋳造した。
【0021】
鋳造速度など鋳造作業が安定した後、直径30mm、長さ100mmの容量の溶鋼試料をボンブ法によりタンディッシュ内の溶鋼から採取し、得られたサンプルの全酸素量を分析した。また、4ヒート鋳造後に浸漬ノズルを回収し、長さ中央の横断面を切断して観察することにより、ノズル内壁の詰まり状況を調査した。Alの酸化物などが詰まっている場合には、空間部の内径を測定した。その際に、空間部の断面形状が楕円状になっている場合には、平均的な円形に換算して内径を求めた。鋳造試験前の内径との比較により、付着物の成長速度を求めた。
【0022】
さらに、得られた鋳片から横断面サンプルを採取し、鋳片表面から厚さ方向に深さ10mm以内に存在する40μm以上の球状非金属介在物の個数を調査した。その方法は次の通りである。
【0023】
鋳片横断面で、鋳片長辺の幅の1/4、1/2、3/4の各位置の鋳片表面から厚さ10mm、幅90mmで鋳造方向に120mm(約0.85kg)のサンプルを採取し、電解法(スライム抽出法)により球状非金属介在物を抽出し、40μm以上の大きさの球状非金属介在物の個数を調査した。3カ所の個数を平均し、さらに、その平均個数を鋳片1kg当たりの球状非金属介在物の個数に換算して、その球状非金属介在物の集積状況を評価した。鋳造試験の結果、次のことがわかった。
【0024】
(イ)浸漬ノズル内部に付着するAlの酸化物などの付着物の成長速度は、タンディッシュ内に注入する溶鋼の全酸素量およびタンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で溶鋼中に吹き込む不活性ガスの量との間に、下記(B)式で示す相関関係がある。つまり、タンディッシュ内に注入する溶鋼の全酸素量が多いと、溶鋼中にAlの酸化物などが増加し、浸漬ノズル内部に付着する付着物の成長速度は速くなる。また、不活性ガスの吹き込み量が多いと、付着物の成長速度は遅くなる。
H={(5.56/Q)+1.39}×10−3×T.O・・・(B)
ここで、H:付着物の成長速度(mm/分)
Q:不活性ガスの吹き込み量(リットル/溶鋼t)
T.O:溶鋼の全酸素量(ppm)
ところで、4ヒート連続して鋳造した後の浸漬ノズル内部に付着するAlの酸化物などの付着厚さが10mm程度以下であれば、鋳造中に浸漬ノズルに詰まりが発生しないことから、許容される付着物の成長速度Hは、次のように求まる。すなわち、極低炭素鋼の連続鋳造では、一般的に、前述のとおり、2ストランドの連続鋳造機を用い、厚さ250〜270mm、幅1600mm程度の鋳片を速度1.5〜2m/分で鋳造されている。また、1ヒート約300tの溶鋼を4ヒート連続して鋳造するのが一般的である。この鋳造条件では、浸漬ノズル1本当たりの溶鋼の通過量は約5t/分に相当し、約120分間鋳造することとなる。したがって、許容される浸漬ノズル内部への付着物の成長速度Hは約0.085mm/分となる。
【0025】
この許容される浸漬ノズル内部への付着物の成長速度H=0.085mm/分の値を上記(B)式に用いることにより、下記(C)式が得られる。
Q=5.56/{(85/T.O)−1.39}・・・(C)
ここで、Q:不活性ガスの吹き込み量(リットル/溶鋼t)
T.O:溶鋼の全酸素量(ppm)
したがって、4ヒート連続して鋳造した後の浸漬ノズル内部に付着するAlの酸化物などの付着厚さを10mm以下とするために、不活性ガスの吹き込み量を、タンディッシュ内に注入する溶鋼の全酸素量に応じて、上記(C)式から求まるQの値以上とする。上記(C)式から求まるQの値以上とすることは、前述の(A)式の左辺を満足することを意味する。
【0026】
(ロ)一方、鋳片表面から厚さ方向の深さ10mm以内に存在する球状非金属介在物の個数は、タンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で溶鋼中に吹き込む不活性ガスの量と相関関係があることがわかった。
【0027】
図2は、鋳片表面から厚さ方向に深さ10mm以内に存在する40μm以上の球状非金属介在物の個数とArガスの吹き込み量との関係を示す図である。タンディッシュ内に注入する溶鋼の全酸素量が13〜20ppmの条件での試験結果を示す。不活性ガスの吹き込み量を3リットル/溶鋼t以下とすることにより、鋳片表面から厚さ方向に深さ10mm以内に存在する40μm以上の球状非金属介在物の個数を100個/鋼−kg以下とすることができることがわかる。このことは、前述の(A)式の右辺を満足することを意味する。
【0028】
(ハ)許容される浸漬ノズル内部への付着物の成長速度が0.085mm/分であり、また、最大の不活性ガスの吹き込み量を3リットル/溶鋼tとするので、前述の(B)式から、許容されるタンディッシュ内に注入する溶鋼の全酸素量の上限値は26ppmとなる。したがって、タンディッシュ内に注入する溶鋼の全酸素量を26ppm以下とする。
【0029】
発明の連続鋳造方法により得られた鋳片を熱間圧延して鋼帯を製造する際に、鋳片の加熱温度、在炉時間、および圧延時の仕上げ温度などは、通常の鋳片を熱間圧延する場合と同じ条件で構わない。ふくれ疵およびスリバー疵のない表面品質の良好な鋼帯が得られる。
【0030】
【実施例】
垂直部長さが3mで、2ストランドを有する垂直曲げ連続鋳造機を用いて、表1に示す化学組成の極低炭素鋼を、厚さ270mm、幅1600mmの鋳片に鋳造した。
【0031】
【表1】

Figure 0003570337
連続鋳造する前の取鍋内の溶鋼を、RH式真空処理装置を用いて脱炭処理した後、Alによる脱酸処理を行った。また、上記RH装置でのAl脱酸後の溶鋼の清浄化処理時間を変えて、取鍋内の溶鋼の全酸素量の値を種々に調整した。
【0032】
用いた浸漬ノズルは、内径90mmで、アルミナグラファイト製とした。吐出孔は2孔で、それぞれ長方形の吐出孔の大きさは、縦90mm、横90mmとした。鋳造速度は1.5〜1.8m/分とし、1ヒート約300tの溶鋼を4ヒート(目標)連続して鋳造した。スライデイングゲートに備えた多孔質耐火物を用いて浸漬ノズルを通過する溶鋼中に種々の量のArガスを吹き込んだ。
【0033】
鋳造速度など鋳造作業が安定した後、直径30mm、長さ100mmの容量の溶鋼試料を、ボンブ法によりタンディッシュ内の溶鋼から採取し、得られたサンプルの全酸素量を分析した。各ヒート毎に溶鋼試料を採取し、その平均値を求めた。
【0034】
鋳造終了後、浸漬ノズルを回収し、長さ中央の横断面を切断することにより、ノズル内壁の詰まり状況を調査した。Alの酸化物などが詰まっている場合には、空間部の内径を測定した。その際に、空間部の断面形状が楕円状になっている場合には、平均的な円形に換算して内径を求めた。
【0035】
さらに、鋳片横断面で、鋳片長辺の幅の1/4、1/2、3/4の各位置の鋳片表面から厚さ10mm、幅90mmで鋳造方向に120mm(約0.85kg)のサンプルを採取し、電解法(スライム抽出法)により球状非金属介在物を抽出し、鋳片表面から厚さ方向に深さ10mm以内に集積する40μm以上の大きさの球状非金属介在物の個数を調査した。3カ所の平均個数を鋳片1kg当たりの球状非金属介在物の個数に換算した。
【0036】
また、得られた鋳片を素材として厚さ2.5mmの鋼帯に熱間圧延してコイル状に巻き取った。鋳片の加熱温度は1180〜1240℃、鋼帯の圧延仕上げ温度は880〜950℃とした。コイルを酸洗した後、コイルの表面欠陥発生率を調査した。ここで、表面欠陥発生率は、欠陥が発生した対象コイルの重量(t)を、検査した対象コイルの全重量(t)で除し、%表示した値である。表2に試験条件と試験結果を示す。
【0037】
【表2】
Figure 0003570337
試験No.1〜No.3ではタンディッシュ内の溶鋼中の全酸素量を12.2〜23.5ppmとした。また、Arガスの吹き込み量を1.0〜2.5リットル/溶鋼tとした。これらの値は本発明で規定する条件の範囲内である。これらの試験では120分間で4ヒートを連続して鋳造することができた。鋳造後の浸漬ノズルの内径は鋳造前と同じ90mmであり、浸漬ノズル内部には付着物はほとんどなかった。また、鋳片表面から厚さ方向に深さ10mm以内に存在する40μm以上の球状介在物の個数は10〜74個程度と少なく良好であった。さらに、これらの鋳片を素材とした鋼帯の表面欠陥発生率は0.02〜0.16%と少なく良好な成績であった。
【0038】
試験No.4ではタンディッシュ内の溶鋼中の全酸素量は30.0ppmであった。この値は本発明で規定する条件の上限を外れた高い値である。また、Arガスの吹き込み量は1.3リットル/溶鋼tであった。この値は本発明で規定する条件の下限を外れて少ない流量である。タンディッシュ内の溶鋼中の全酸素量が多いにもかかわらず、Arガスの吹き込み量が少なかったので、鋳造途中で浸漬ノズルの詰まりが発生した。2ヒート目の途中で、浸漬ノズルの詰まりが激しくなり、鋳造試験を2ヒートで中止した。浸漬ノズル内部には付着物が多く付着しており、2ヒート鋳造後のノズルの内径は約60mm程度にまで小さくなっていた。これらの鋳片を素材とした鋼帯の表面欠陥発生率は0.22%で、少し高い程度であった。
【0039】
試験No.5ではタンディッシュ内の溶鋼中の全酸素量は22.0ppmであった。この値は本発明で規定する条件の範囲内である。しかし、Arガスの吹き込み量は3.9リットル/溶鋼tとした。この値は本発明で規定する条件の上限を外れた多い流量である。Arガスの吹き込み量が多かったので、浸漬ノズルの詰まりは発生しなかったが、鋳片表層部に球状非金属介在物が多く集積していた。鋳片表面から厚さ方向に深さ10mm以内に存在する40μm以上の球状非金属介在物の個数は135個と多かった。そのため、これらの鋳片を素材とした鋼帯の表面欠陥発生率は2.6%と高く悪かった。
【0040】
試験No.6ではタンディッシュ内の溶鋼中の全酸素量は30.0ppmであった。この値は本発明で規定する条件の上限を外れた高い値である。また、Arガスの吹き込み量は4.2リットル/溶鋼tとした。この値は本発明で規定する条件の上限より多い流量である。タンディッシュ内の溶鋼中の全酸素量が多かったが、Arガスの吹き込み量が多かったので、鋳造後の浸漬ノズルの内径は80mmであり、浸漬ノズルの詰まりの発生はわずかであった。しかし、鋳片表層部に球状非金属介在物が著しく多く発生した。鋳片表面から厚さ方向に深さ10mm以内に存在する40μm以上の球状介在物の個数は185個と多かった。そのため、これらの鋳片を素材とした鋼帯の表面欠陥発生率は3.6%で著しく悪かった。
【0041】
【発明の効果】
本発明の連続鋳造方法の適用により、鋳造中に浸漬ノズルに詰まりが発生せず、安定した鋳造作業が可能で、さらに、鋳片表層部に気泡性欠陥、パウダ性欠陥、介在物性欠陥などの集積のない表面品質の良好な鋳片を得ることができる。さらに、上記の鋳片を熱間圧延することにより、表面品質の良い鋼帯を得ることができる。
【図面の簡単な説明】
【図1】タンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で、溶鋼中に不活性ガスを吹き込む本発明の連続鋳造方法の例を示す図である。
【図2】鋳片表面から厚さ方向に深さ10mm以内に存在する40μm以上の球状非金属介在物の個数とArガスの吹き込み量との関係を示す図である。
【符号の説明】
1:タンディッシュ 2:上ノズル
3:スライディングプレート 4:浸漬ノズル
5:吐出孔 6:鋳型
7:溶鋼のメニスカス 8:モールドパウダ
9:溶鋼 10:多孔質の耐火物
11:鋳片 12:気泡[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous casting method for steel in which a submerged nozzle is not clogged during casting, and a slab of good surface quality is obtained without entanglement of mold powder in the surface layer of the slab. by hot rolling the cast slab obtained by using, relates to a continuous casting method for producing the steel for obtaining a good surface quality strip.
[0002]
[Prior art]
BACKGROUND ART Ultra-low carbon steel is used for steel sheets that are required to have few surface defects and excellent formability, for example, steel sheets for exteriors of automobiles. In the molten steel of the ultra-low carbon steel in the ladle that has been deoxidized with Al (aluminum) after the decarburization treatment under vacuum, the Al and aluminum in the molten steel are removed until the subsequent continuous casting is completed. It reacts with lower oxides such as FeO and MnO in the slag in the pot, and Al oxide (Al 2 O 3 ) is easily generated. This oxide of Al tends to be a cause of clogging of the immersion nozzle during casting.
[0003]
In order to prevent clogging of the immersion nozzle, it is common practice to blow an inert gas into the molten steel from a molten steel outlet of the tundish to a discharge hole of the immersion nozzle. For example, Japanese Patent Laying-Open No. 2-37948 proposes a method in which Ar gas is blown into molten steel passing through a dipping nozzle at a blowing flow rate according to a casting speed. However, according to this method, the flow rate of the inert gas to be blown is as large as 3 to 5 liters / t of molten steel, which is effective in preventing clogging of the immersion nozzle. However, bubble defects easily accumulate on the surface layer of the slab.
[0004]
Japanese Patent Laid-Open No. 2-182359 discloses that an inert gas amount equal to or more than the total amount of the total oxygen amount in the molten steel in the ladle and the amount of Fe in the slag in the ladle is passed through the immersion nozzle. A method of injecting into the passing molten steel has been proposed. However, this method is effective in preventing the clogging of the immersion nozzle because the flow rate of the inert gas to be blown increases depending on the condition of the total oxygen content in the molten steel in the ladle. Easy to accumulate sexual defects.
[0005]
Since the porosity defects in the surface layer of these slabs are not easily pressed during hot rolling, for example, when the slab is hot rolled into a steel strip using a slab, a surface called a bulging flaw is formed. Defects easily occur on the steel strip surface.
[0006]
In addition, the porosity defects on the surface layer of the slab often include powder defects involving the mold powder added to the surface of the molten steel in the mold, and further include inclusion defects that trap oxides in the molten steel. Often includes. The surface of the slab is hot-rolled from a slab in which these porosity defects and / or porosity defects including inclusion defects are accumulated on the surface of the slab. Flaws are likely to occur.
[0007]
[Problems to be solved by the invention]
INDUSTRIAL APPLICABILITY The present invention is capable of performing a stable casting operation without clogging of the immersion nozzle during casting, and has a good surface quality without accumulation of bubble defects, powder defects and inclusion defects on the surface layer of the slab. Is a continuous casting method of steel that can obtain a simple slab, by hot rolling the slab obtained by using the method , cast a slab that can obtain a steel strip with good surface quality and to provide a continuous casting method for producing steel for.
[0008]
[Means for Solving the Problems]
Gist of the present invention is the following (1) Continuous casting how the steel shown to (4).
(1) A continuous casting method of molten steel having a C content of 0.003% by mass or less for casting a slab having a rectangular cross section, wherein the total oxygen content T. By injecting an inert gas into the molten steel from the molten steel outlet of the tundish to the discharge port of the immersion nozzle under the condition that the O content is 26 ppm or less and the following formula (A) is satisfied, the porosity of the surface layer of the slab is increased. A continuous casting method of steel that prevents accumulation of defects and prevents the occurrence of blisters and sliver flaws in ultra low carbon steel strip .
5.56 / {(85 / TO) -1.39} ≦ Q ≦ 3 (A)
Here, T. O: Total oxygen content of molten steel (ppm)
Q: Inert gas blowing amount (liter / molten steel t)
(2) A continuous casting method of molten steel having a C content of 0.003% by mass or less for casting a slab having a rectangular cross section, wherein the molten steel is provided between a molten steel outlet of a tundish and a discharge hole of an immersion nozzle. The number of spherical non-metallic inclusions having a size of 40 μm or more that accumulate within a depth of 10 mm from the slab surface while blowing an inert gas into the inside is set to 100 pieces / steel-kg or less, so that extremely low A continuous casting method for steel that prevents the occurrence of swelling and sliver flaws in a carbon steel strip.
(3) A continuous casting method of molten steel having a C content of 0.003% by mass or less for casting a slab having a rectangular cross section, wherein the total oxygen content T. By injecting an inert gas into the molten steel from the molten steel outlet of the tundish to the discharge hole of the immersion nozzle under the condition that O is set to 26 ppm or less and the following formula (A) is satisfied, the thickness from the surface of the slab is reduced. By setting the number of spherical nonmetallic inclusions having a size of 40 μm or more to be accumulated within a depth of 10 mm in the direction to 100 pieces / steel-kg or less, the occurrence of blistering scratches and sliver scratches on the steel strip of ultra-low carbon steel can be reduced. Continuous casting method of steel to prevent.
5.56 / {(85 / TO) -1.39} ≦ Q ≦ 3 ... (A)
Here, T. O: Total oxygen content of molten steel (ppm)
Q: Inert gas blowing amount (liter / molten steel t)
(4) The continuous casting method for steel according to any one of (1) to (3), wherein a casting speed in the continuous casting is 1.5 to 2.0 m / min .
[0009]
The present inventor has arranged the above-mentioned problems as follows, and has taken measures to solve the problems.
{Circle around (1)} When casting a slab of ultra-low carbon steel used for an exterior steel plate of an automobile, a slab having a thickness of about 250 to 270 mm and a width of about 1600 mm is formed at a speed of 1.5 to 2 m / min. In many cases, an immersion nozzle having an inner diameter of about 70 to 90 mm is used. Further, from the viewpoint of ensuring the productivity of the slab, it is usually required to continuously cast at least four heats.
[0010]
It is important to prevent clogging of the immersion nozzle in order to continuously perform four heats and perform stable casting. If the immersion nozzle is clogged, the casting speed must be reduced. In the casting of ultra-low carbon steel or the like, if the casting speed is reduced, the effect of washing the solidified shell in the mold is reduced, so that a large amount of nonmetallic inclusions easily accumulate in the surface layer of the slab. Therefore, when the cast slab is used as a raw material and hot-rolled into a steel strip, the aforementioned sliver flaws are likely to occur on the steel strip surface.
[0011]
From the result of detailed investigation of the clogging condition of the immersion nozzle in actual production, if the thickness of the Al oxide or the like adhered to the inside of the immersion nozzle after continuous casting for 4 heats is about 10 mm or less, the casting is performed. It was found that no clogging occurred in the immersion nozzle. If Al oxide or the like is adhered to the inside of the immersion nozzle after being continuously cast for 4 heats, the immersion nozzle will be clogged from the second to third heats, for example. It was found that casting was performed at a reduced casting speed.
[0012]
As described above, simply increasing the amount of the inert gas blown into the molten steel passing through the immersion nozzle to suppress the thickness of the Al oxide or the like that adheres to the inside of the immersion nozzle is limited as described above. Bubble defects including powder defects and / or inclusion defects are likely to accumulate in the steel strip, and therefore, swelling scratches and sliver scratches are likely to occur on the surface of the steel strip hot-rolled using the slab.
[0013]
{Circle over (2)} On the other hand, in order to prevent the occurrence of blistering and sliver flaws, 100 pieces of spherical non-metallic inclusions having a size of 40 μm or more that accumulate within a depth of 10 mm in the thickness direction from the slab surface are 100 pieces / steel. It was found that the inert gas should be blown into the molten steel from the molten steel outlet of the tundish to the discharge hole of the immersion nozzle so that the pressure becomes −kg or less. That is, even if small spherical non-metallic inclusions of less than 40 μm exist in the surface layer of the slab, the surface quality of the steel strip hot rolled using the slab as a raw material is good. Further, even if spherical non-metallic inclusions of 40 μm or more accumulate, if the number of the accumulated non-metallic inclusions is within the above range, the surface quality of the hot-rolled steel strip using the slab as a raw material is good.
[0014]
{Circle around (3)} The total oxygen content of molten steel injected into the tundish. By injecting an inert gas into the molten steel from the molten steel outlet of the tundish to the discharge hole of the immersion nozzle under the condition that the O content is 26 ppm or less and the condition (A) is satisfied, The condition for preventing the clogging of the immersion nozzle to be described can be such that the adhesion thickness of Al oxide and the like adhered to the inside of the immersion nozzle after continuous casting of 4 heats is about 10 mm or less. It exists within a depth of 10 mm in the thickness direction from the surface of the slab, which is the condition for accumulating spherical non-metallic inclusions on the surface layer of the slab to prevent the occurrence of blisters and slivers described in (2) above. The conditions may be such that the number of spherical nonmetallic inclusions having a size of 40 μm or more is 100 / steel-kg or less.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a view showing an example of the continuous casting method of the present invention in which an inert gas is blown into molten steel from a molten steel outlet of a tundish to a discharge hole of a dipping nozzle. Molten steel 9 injected into a tundish 1 from a ladle (not shown) is supplied to an upper nozzle 2 which is a molten steel outlet of the tundish, a sliding plate 3 for controlling a flow rate of the molten steel (in FIG. 1, a three-layer plate). This is supplied to the inside of the mold 6 through the immersion nozzle 4 (in FIG. 1, two discharge nozzles are shown). Reference numeral 7 denotes a meniscus of molten steel, reference numeral 8 denotes a mold powder, reference numeral 11 denotes a slab, and reference numeral 12 denotes a bubble.
[0016]
If the casting time is prolonged, Al oxide and the like in the molten steel adhere and deposit on the inner wall of the immersion nozzle 4, especially near the discharge hole 5, so that the amount of molten steel that can pass through the immersion nozzle decreases during casting. In an extreme case, the molten steel cannot pass through and casting cannot be continued.
[0017]
In order to prevent such clogging of the immersion nozzle, an inert gas such as Ar gas is blown into the molten steel from the upper nozzle 2, the sliding plate 3, or the immersion nozzle 4. At this time, a porous refractory or a material in which a number of thin steel tubes are embedded in the refractory can be used as the inert gas blowing port. FIG. 1 shows an example in which an inert gas is blown into molten steel from a porous refractory 10 provided on a sliding plate 3.
[0018]
The continuous casting method of the present invention is suitable for application to, for example, ultra-low carbon steel having a C content of about 0.0020 to 0.0050 mass%. In such an ultra-low carbon steel, there are many oxides of Al and the like in the molten steel due to the characteristics in smelting, and the clogging of the immersion nozzle is likely to occur in continuous casting.
[0019]
In the continuous casting method of the present invention, the total oxygen content T. of molten steel injected into the tundish. Inert gas is blown into the molten steel from the molten steel outlet of the tundish to the discharge hole of the immersion nozzle under the condition that the O (ppm) is 26 ppm or less and the condition (A) is satisfied. The reason will be described below.
[0020]
The inventor of the present invention determined various values of the total oxygen content of molten steel in a ladle before continuous casting of ultra-low carbon steel having a C content of about 0.0025 mass% using an RH type vacuum processing apparatus. 270 mm in thickness and 1600 mm in width. At that time, Ar gas was blown in various amounts from the porous refractory provided in the sliding gate into the molten steel passing through the immersion nozzle. The nozzle inner diameter was 90 mm, and an immersion nozzle made of alumina graphite was used. There were two discharge holes, and the size of each rectangular discharge hole was 90 mm long and 90 mm wide. The speed was set to 1.5 to 1.8 m / min as a target casting speed, and molten steel of about 300 t per heat was continuously cast for 4 heats.
[0021]
After the casting operation such as the casting speed was stabilized, a molten steel sample having a diameter of 30 mm and a length of 100 mm was collected from the molten steel in the tundish by a bomb method, and the total oxygen content of the obtained sample was analyzed. Further, the immersion nozzle was collected after the four heat casting, and the clogging state of the nozzle inner wall was investigated by cutting and observing the cross section at the center of the length. When the oxide of Al was clogged, the inner diameter of the space was measured. At this time, when the cross-sectional shape of the space was elliptical, the inner diameter was determined by converting the space into an average circle. The growth rate of the deposit was determined by comparison with the inner diameter before the casting test.
[0022]
Further, a cross-sectional sample was obtained from the obtained slab, and the number of spherical nonmetallic inclusions of 40 μm or more existing within a depth of 10 mm in the thickness direction from the slab surface was examined. The method is as follows.
[0023]
A sample with a thickness of 10 mm, a width of 90 mm, and a width of 120 mm (approximately 0.85 kg) in the casting direction from the slab surface at 1 /, 2, and / of the width of the long side of the slab in the cross section of the slab. Was collected, and spherical nonmetallic inclusions were extracted by an electrolytic method (slime extraction method), and the number of spherical nonmetallic inclusions having a size of 40 μm or more was examined. The number of the three places was averaged, and the average number was converted to the number of spherical nonmetallic inclusions per 1 kg of slab to evaluate the state of accumulation of the spherical nonmetallic inclusions. As a result of the casting test, the following was found.
[0024]
(A) The growth rate of deposits such as oxides of Al adhering to the inside of the immersion nozzle depends on the total oxygen content of the molten steel injected into the tundish and the molten steel between the molten steel outlet of the tundish and the discharge hole of the immersion nozzle. There is a correlation shown by the following equation (B) between the amount of the inert gas blown into the inside. That is, when the total oxygen content of the molten steel injected into the tundish is large, oxides of Al and the like increase in the molten steel, and the growth rate of the deposit attached to the inside of the immersion nozzle increases. In addition, if the amount of the inert gas blown is large, the growth rate of the deposits becomes slow.
H = {(5.56 / Q) +1.39} × 10 −3 × T. O ... (B)
Here, H: growth rate of the deposit (mm / min)
Q: Inert gas blowing amount (liter / molten steel t)
T. O: Total oxygen content of molten steel (ppm)
By the way, if the adhesion thickness of Al oxide or the like adhering to the inside of the immersion nozzle after continuous casting for 4 heats is about 10 mm or less, it is acceptable because the immersion nozzle does not clog during casting. The growth rate H of the deposit is obtained as follows. That is, in continuous casting of ultra-low carbon steel, as described above, a two-strand continuous casting machine is generally used to cast a slab having a thickness of about 250 to 270 mm and a width of about 1600 mm at a speed of 1.5 to 2 m / min. Has been cast. Generally, molten steel of about 300 t per heat is continuously cast for 4 heats. Under these casting conditions, the flow rate of molten steel per one immersion nozzle is equivalent to about 5 t / min, and the casting is performed for about 120 minutes. Therefore, the allowable growth rate H of the deposit inside the immersion nozzle is about 0.085 mm / min.
[0025]
By using the allowable growth rate H of the deposits inside the immersion nozzle H = 0.085 mm / min in the above equation (B), the following equation (C) is obtained.
Q = 5.56 / {(85 / TO) -1.39} (C)
Here, Q: amount of inert gas blown (liter / molten steel t)
T. O: Total oxygen content of molten steel (ppm)
Therefore, in order to reduce the adhesion thickness of oxides of Al and the like adhering to the inside of the immersion nozzle after continuous casting for 4 heats to 10 mm or less, the blowing amount of the inert gas is set to the amount of molten steel injected into the tundish. According to the total oxygen amount, the value is set to be equal to or more than the value of Q obtained from the above equation (C). The value equal to or larger than the value of Q obtained from the above equation (C) means that the left side of the above equation (A) is satisfied.
[0026]
(B) On the other hand, the number of spherical nonmetallic inclusions existing within a depth of 10 mm in the thickness direction from the surface of the slab is determined by the inertness that blows into the molten steel from the molten steel outlet of the tundish to the discharge hole of the immersion nozzle. It was found that there was a correlation with the amount of gas.
[0027]
FIG. 2 is a diagram showing the relationship between the number of spherical nonmetallic inclusions of 40 μm or more existing within a depth of 10 mm in the thickness direction from the slab surface and the blowing amount of Ar gas. The test result under the condition that the total oxygen content of the molten steel injected into the tundish is 13 to 20 ppm is shown. By setting the flow rate of the inert gas to 3 liters / t or less of molten steel, the number of spherical non-metallic inclusions of 40 μm or more existing within a depth of 10 mm in the thickness direction from the slab surface is 100 pieces / steel-kg. It can be seen that the following can be performed. This means that the right side of equation (A) is satisfied.
[0028]
(C) Since the allowable growth rate of deposits inside the immersion nozzle is 0.085 mm / min, and the maximum inert gas blowing rate is 3 liters / t molten steel, the above-mentioned (B) From the formula, the upper limit of the total oxygen content of the molten steel to be injected into the tundish is 26 ppm. Therefore, the total oxygen content of the molten steel injected into the tundish is set to 26 ppm or less.
[0029]
When hot rolling the cast slab obtained by the continuous casting method of the present invention to produce a steel strip , the heating temperature of the cast slab, furnace time, and finishing temperature during rolling, etc., the normal cast slab The same conditions as in the case of hot rolling may be used. A steel strip with good surface quality free of blisters and sliver flaws can be obtained.
[0030]
【Example】
Using a vertical bending continuous casting machine having a vertical length of 3 m and two strands, an ultra-low carbon steel having the chemical composition shown in Table 1 was cast into a slab having a thickness of 270 mm and a width of 1600 mm.
[0031]
[Table 1]
Figure 0003570337
The molten steel in the ladle before continuous casting was decarburized using an RH-type vacuum processing device, and then deoxidized with Al. Further, the value of the total oxygen content of the molten steel in the ladle was variously adjusted by changing the cleaning time of the molten steel after Al deoxidation in the RH apparatus.
[0032]
The immersion nozzle used had an inner diameter of 90 mm and was made of alumina graphite. There were two discharge holes, and the size of each rectangular discharge hole was 90 mm in length and 90 mm in width. The casting speed was 1.5 to 1.8 m / min, and molten steel of about 300 t per heat was continuously cast for 4 heats (target). Various amounts of Ar gas were blown into the molten steel passing through the immersion nozzle using the porous refractory provided in the sliding gate.
[0033]
After the casting operation such as the casting speed was stabilized, a molten steel sample having a diameter of 30 mm and a length of 100 mm was collected from the molten steel in the tundish by the bomb method, and the total oxygen content of the obtained sample was analyzed. A molten steel sample was taken for each heat, and the average value was determined.
[0034]
After completion of the casting, the immersion nozzle was recovered, and a cross section at the center of the length was cut to investigate the state of clogging of the nozzle inner wall. When the oxide of Al was clogged, the inner diameter of the space was measured. At this time, when the cross-sectional shape of the space was elliptical, the inner diameter was determined by converting the space into an average circle.
[0035]
Furthermore, in the slab cross section, the thickness is 10 mm, the width is 90 mm, and the casting direction is 120 mm (about 0.85 kg) from the slab surface at each position of 1/4, 1/2, and 3/4 of the width of the long side of the slab. Of the non-metallic inclusions having a size of 40 μm or more that are collected within a depth of 10 mm in the thickness direction from the slab surface by extracting the non-metallic inclusions by the electrolytic method (slime extraction method). The number was investigated. The average number of the three locations was converted to the number of spherical nonmetallic inclusions per kg of slab.
[0036]
The obtained slab was hot rolled into a steel strip having a thickness of 2.5 mm as a raw material and wound into a coil. The heating temperature of the slab was 1180-1240 ° C, and the rolling finish temperature of the steel strip was 880-950 ° C. After pickling the coil, the incidence of surface defects on the coil was investigated. Here, the surface defect occurrence rate is a value expressed in% by dividing the weight (t) of the target coil where the defect has occurred by the total weight (t) of the inspected target coil. Table 2 shows test conditions and test results.
[0037]
[Table 2]
Figure 0003570337
Test No. 1 to No. In No. 3, the total oxygen content in the molten steel in the tundish was set to 12.2 to 23.5 ppm. Further, the blowing amount of Ar gas was set to 1.0 to 2.5 l / t of molten steel. These values are within the range defined by the present invention. In these tests, four heats could be continuously cast in 120 minutes. The inner diameter of the immersion nozzle after casting was 90 mm, the same as before casting, and there was almost no deposit inside the immersion nozzle. Further, the number of spherical inclusions of 40 μm or more existing within a depth of 10 mm in the thickness direction from the slab surface was as small as about 10 to 74, which was favorable. Further, the rate of occurrence of surface defects of the steel strip using these slabs as a raw material was as low as 0.02 to 0.16%, which was a good result.
[0038]
Test No. In No. 4, the total oxygen content in the molten steel in the tundish was 30.0 ppm. This value is a high value outside the upper limit of the condition specified in the present invention. The amount of Ar gas blown was 1.3 liters / t of molten steel. This value is a small flow rate which is out of the lower limit of the condition specified in the present invention. Despite the large amount of total oxygen in the molten steel in the tundish, the amount of Ar gas blown was small, so the clogging of the immersion nozzle occurred during casting. During the second heat, the clogging of the immersion nozzle became severe, and the casting test was stopped at the second heat. Many deposits adhered inside the immersion nozzle, and the inner diameter of the nozzle after the two heat casting was reduced to about 60 mm. The rate of occurrence of surface defects of the steel strip using these slabs was 0.22%, which was a little higher.
[0039]
Test No. In No. 5, the total oxygen content in the molten steel in the tundish was 22.0 ppm. This value is within the range defined by the present invention. However, the injection amount of Ar gas was 3.9 liters / t molten steel. This value is a large flow rate which is out of the upper limit of the condition specified in the present invention. Since the amount of Ar gas blown was large, clogging of the immersion nozzle did not occur, but a large amount of spherical nonmetallic inclusions accumulated on the surface layer of the slab. The number of spherical nonmetallic inclusions of 40 μm or more existing within a depth of 10 mm in the thickness direction from the slab surface was as large as 135. Therefore, the rate of occurrence of surface defects of the steel strip using these slabs as a raw material was as high as 2.6%, which was bad.
[0040]
Test No. In No. 6, the total oxygen content in the molten steel in the tundish was 30.0 ppm. This value is a high value outside the upper limit of the condition specified in the present invention. The amount of Ar gas blown was 4.2 liters / t molten steel. This value is a flow rate larger than the upper limit of the condition specified in the present invention. Although the total amount of oxygen in the molten steel in the tundish was large, the amount of Ar gas blown was large, so that the inner diameter of the immersion nozzle after casting was 80 mm, and the occurrence of clogging of the immersion nozzle was slight. However, spherical nonmetallic inclusions were significantly increased in the surface layer of the slab. The number of spherical inclusions of 40 μm or more existing within a depth of 10 mm in the thickness direction from the slab surface was as large as 185. Therefore, the rate of occurrence of surface defects of the steel strip using these slabs as the raw material was remarkably poor at 3.6%.
[0041]
【The invention's effect】
By applying the continuous casting method of the present invention, clogging of the immersion nozzle does not occur during casting, stable casting operation is possible, and furthermore, foam defects, powder defects, inclusion defects, etc. A slab with good surface quality without accumulation can be obtained. Further, by hot rolling the above slab, a steel strip having good surface quality can be obtained.
[Brief description of the drawings]
FIG. 1 is a view showing an example of a continuous casting method of the present invention in which an inert gas is blown into molten steel from a molten steel outlet of a tundish to a discharge hole of an immersion nozzle.
FIG. 2 is a diagram showing a relationship between the number of spherical nonmetallic inclusions having a size of 40 μm or more existing within a depth of 10 mm from a slab surface in a thickness direction and the amount of Ar gas blown.
[Explanation of symbols]
1: Tundish 2: Upper nozzle 3: Sliding plate 4: Dipping nozzle 5: Discharge hole 6: Mold 7: Meniscus of molten steel 8: Mold powder 9: Molten steel 10: Porous refractory 11: Cast piece 12: Air bubble

Claims (4)

断面形状が長方形の鋳片を鋳造する、C含有率が0.003質量%以下の溶鋼の連続鋳造方法であって、タンディッシュ内に注入する溶鋼の全酸素量T.Oを26ppm以下とし、かつ、下記(A)式を満足する条件でタンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で溶鋼中に不活性ガスを吹き込むことにより鋳片表層部の気泡性欠陥の集積を防止し、極低炭素鋼の鋼帯のふくれ疵およびスリバー疵の発生を防止することを特徴とする鋼の連続鋳造方法。
5.56/{(85/T.O)−1.39}≦Q≦3 ・・・(A)
ここで、T.O:溶鋼の全酸素量(ppm)
Q:不活性ガスの吹き込み量(リットル/溶鋼t)
A method of continuously casting molten steel having a C content of 0.003% by mass or less for casting a slab having a rectangular cross-sectional shape, wherein the total oxygen content of molten steel T.O. By injecting an inert gas into the molten steel between the molten steel outlet of the tundish and the discharge hole of the immersion nozzle under a condition that the O content is 26 ppm or less and the following formula (A) is satisfied, the porosity of the surface layer of the slab is increased. A continuous casting method of steel, wherein accumulation of defects is prevented, and occurrence of bulges and slivers of a steel strip of ultra-low carbon steel is prevented .
5.56 / {(85 / TO) -1.39} ≦ Q ≦ 3 (A)
Here, T. O: Total oxygen content of molten steel (ppm)
Q: Inert gas blowing volume (liter / t of molten steel)
断面形状が長方形の鋳片を鋳造する、C含有率が0.003質量%以下の溶鋼の連続鋳造方法であって、タンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で溶鋼中に不活性ガスを吹き込みつつ鋳片表面から厚さ方向の深さ10mm以内に集積する大きさ40μm以上の球状非金属介在物の個数を100個/鋼−kg以下とすることにより、極低炭素鋼の鋼帯のふくれ疵およびスリバー疵の発生を防止することを特徴とする鋼の連続鋳造方法。A method for continuously casting molten steel having a C content of 0.003 mass% or less, in which a slab having a rectangular cross section is cast, wherein no molten steel exists between the molten steel outlet of a tundish and the discharge hole of a dipping nozzle. By making the number of spherical non-metallic inclusions having a size of 40 μm or more that accumulate within a depth of 10 mm from the slab surface within a depth of 10 mm from the slab surface while blowing active gas into 100 pieces / steel-kg or less, extremely low carbon steel A continuous casting method for steel, which prevents the occurrence of swelling and sliver flaws in a steel strip. 断面形状が長方形の鋳片を鋳造する、C含有率が0.003質量%以下の溶鋼の連続鋳造方法であって、タンディッシュ内に注入する溶鋼の全酸素量T.Oを26ppm以下とし、かつ、下記(A)式を満足する条件でタンディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間で溶鋼中に不活性ガスを吹き込むことで、鋳片表面から厚さ方向の深さ10mm以内に集積する大きさ40μm以上の球状非金属介在物の個数を100個/鋼−kg以下とすることにより、極低炭素鋼の鋼帯のふくれ疵およびスリバー疵の発生を防止することを特徴とする鋼の連続鋳造方法。A method of continuously casting molten steel having a C content of 0.003% by mass or less for casting a slab having a rectangular cross-sectional shape, wherein the total oxygen content of molten steel T.O. By injecting an inert gas into the molten steel between the molten steel outlet of the tundish and the discharge hole of the immersion nozzle under the condition that O is set to 26 ppm or less and the following formula (A) is satisfied, the thickness from the surface of the slab is reduced. By making the number of spherical nonmetallic inclusions having a size of 40 μm or more that accumulate within a depth of 10 mm in the direction 100 or less / steel-kg or less, the occurrence of blistering scratches and sliver scratches on the steel strip of ultra-low carbon steel can be reduced. A continuous casting method for steel, characterized in that it is prevented.
5.56/{(85/T.O)−1.39}≦Q≦35.56 / {(85 / TO) -1.39} ≦ Q ≦ 3 ・・・(A)... (A)
ここで、T.O:溶鋼の全酸素量(ppm)Here, T. O: Total oxygen content of molten steel (ppm)
Q:不活性ガスの吹き込み量(リットル/溶鋼t)Q: Inert gas blowing volume (liter / t of molten steel)
前記連続鋳造における鋳造速度が1.5〜1.8m/分であることを特徴とする請求項1〜3のいずれかに記載の鋼の連続鋳造方法。The continuous casting method for steel according to any one of claims 1 to 3, wherein a casting speed in the continuous casting is 1.5 to 1.8 m / min.
JP2000123582A 2000-04-25 2000-04-25 Steel continuous casting method Expired - Fee Related JP3570337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000123582A JP3570337B2 (en) 2000-04-25 2000-04-25 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000123582A JP3570337B2 (en) 2000-04-25 2000-04-25 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2001300702A JP2001300702A (en) 2001-10-30
JP3570337B2 true JP3570337B2 (en) 2004-09-29

Family

ID=18633864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000123582A Expired - Fee Related JP3570337B2 (en) 2000-04-25 2000-04-25 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP3570337B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117666B (en) * 2014-07-22 2016-01-20 莱芜钢铁集团有限公司 Square parison casting submersed nozzle and arrangement thereof

Also Published As

Publication number Publication date
JP2001300702A (en) 2001-10-30

Similar Documents

Publication Publication Date Title
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
EP2308617B1 (en) Method for processing molten steel
JP3570337B2 (en) Steel continuous casting method
JP2001113347A (en) Molten metal supplying device and method for continuously casting steel
JP6821993B2 (en) Manufacturing method of low carbon steel thin wall slab
JP3365362B2 (en) Continuous casting method
JP3124469B2 (en) Method for producing slabs with few inclusion defects
JP6825507B2 (en) Manufacturing method of low carbon steel thin wall slab and manufacturing method of low carbon steel thin wall slab and low carbon steel thin steel sheet
JP2891757B2 (en) Immersion nozzle
JP4932985B2 (en) Steel continuous casting method
JPH02247052A (en) Method for continuously casting cast slab for steel strip
CN114985691B (en) Control method of surface grain boundary network cementite of continuous casting billet for medium-high carbon steel wire rod
JP4409167B2 (en) Continuous casting method
JP3395749B2 (en) Steel continuous casting method
JP3375862B2 (en) Method for producing ultra-low carbon steel without blowholes
JP2000202603A (en) Method for continuously casting molten steel
JP3391607B2 (en) Continuous casting of ultra low carbon Al-less Ti deoxidized steel
JP3460687B2 (en) Steel continuous casting method
JP3238090B2 (en) Continuous casting method of steel slab
US20230287543A1 (en) Method for producing ultra-low carbon steel product
JP3714190B2 (en) Method of deoxidizing thin steel sheet and molten steel for thin steel sheet
JP4256733B2 (en) Continuous casting method of steel, continuous cast slab and cold rolled steel sheet
JP3391606B2 (en) Continuous casting of ultra low carbon Al-less Ti deoxidized steel
JP2005074460A (en) Continuous casting method of slab of extremely low carbon steel
JPH06179056A (en) Immersion nozzle for continuous casting

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3570337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees