JP3569659B2 - Method for recovering fuel nuclei from coated fuel particles and coated fuel particles that can be easily recovered - Google Patents

Method for recovering fuel nuclei from coated fuel particles and coated fuel particles that can be easily recovered Download PDF

Info

Publication number
JP3569659B2
JP3569659B2 JP2000086113A JP2000086113A JP3569659B2 JP 3569659 B2 JP3569659 B2 JP 3569659B2 JP 2000086113 A JP2000086113 A JP 2000086113A JP 2000086113 A JP2000086113 A JP 2000086113A JP 3569659 B2 JP3569659 B2 JP 3569659B2
Authority
JP
Japan
Prior art keywords
fuel
coated
diameter
core
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000086113A
Other languages
Japanese (ja)
Other versions
JP2001272496A (en
Inventor
秀治 吉牟田
智生 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2000086113A priority Critical patent/JP3569659B2/en
Publication of JP2001272496A publication Critical patent/JP2001272496A/en
Application granted granted Critical
Publication of JP3569659B2 publication Critical patent/JP3569659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高温ガス炉等で使用する被覆燃料粒子、特に製造工程あるいは使用済み燃料の被覆燃料粒子から燃料核を回収する方法ならびに同回収を行うに際し、回収の容易な被覆燃料粒子の基本構造に関するものである。
【0002】
【従来の技術】
製造工程あるいは使用済み燃料から燃料核を回収することは資源の有効利用のために重要であり、とりわけ増殖を目的とした高温ガス炉燃料では燃料回収技術は非常に重要となる。
そこで被覆燃料粒子の被覆層の破砕を容易にすることにより被覆燃料粒子が内包する燃料核からウランあるいはプルトニウム等の回収、再処理を容易にすることが考慮されている。
【0003】
高温ガス炉は冷却材であるヘリウムガスを約700℃〜950℃に加熱して発電又は化学プラント等で熱利用することを目的とした原子炉であり、燃料が高温に曝されるため炭素、セラミックス等でウラン化合物を被覆した被覆燃料粒子を用いている。
【0004】
一般的な水炉やナトリウム冷却炉はウラン、プルトニウム等の化合物をペレット状にしてジルコニウム、ステンレス等の被覆管に挿入しており、この被覆管が核分裂生成物(以下、FPと称する)の保持機能を有しているが、上記の被覆燃料粒子においては、そのFP保持機能は被覆層が有している。
【0005】
図1はこの種被覆燃料粒子の1例を示しており、図において、直径350〜600μmの燃料核1の周囲に内側より順次第1層〜第4層の計4層2,3,4,5の被覆を施している。
このうち、最内側の第1層2は密度約1g/cmの低密度熱分解炭素でガス状FPのプレナムあるいは照射時の燃料核1のスウェリング吸収域の機能を有する。このため、第1層2には機械的拘束力、強度あるいは気密等は期待されておらず、オープンポアで構成しなければならない。これらの機能から第1層2はバッファ層と称される。
【0006】
次に第1層2の外側の第2層3は密度約1.8g/cmの高密度熱分解炭素でガス状FPの保持機能を有している。また、第3層4は密度3.2g/cmの炭化珪素(SiC)で固体FPの保持機能を有すると共に、被覆層の主要な強度部材である。
更に第4層5は第2層3と同様の密度約1.8g/cmの高密度熱分解炭素でガス炉FPの保持機能を有すると共に第3層4の保護層としての機能も有している。
【0007】
ところで、上記の如き被覆燃料粒子は一般的に次のような工程を経て製造される。即ち、先ず燃料核1は内部でゲル化法又は外部ゲル化法によって造粒する。
この燃料核1を流動床に装荷し、被覆ガスを熱分解して被覆を施す。第1層2の低密度熱分解炭素の場合は約1400℃でアセチレン(C)を熱分解する。
第2,第4層3,5の高密度熱分解炭素の場合は約1400℃でプロピレン(C)を熱分解する。また、第3層4のSiCの場合は約1600℃でメチルトリクロロシラン(CHSiCl)を熱分解する。
そして、上述の工程で得られた被覆燃料粒子6は、図2に示すように、これを黒鉛マトリックス材7中に保持した球状(イ)、中空円筒状(ロ)あるいは円柱状(ハ)の燃料要素8として、原子炉に装荷して使用する。
なお、上記燃料要素8は一般的に被覆燃料粒子6に粉末あるいはピッチ状の黒鉛マトリックス材7をオーバーコートあるいは混合してプレスすることにより、球型あるいは円筒型などに成型し、最終的に約1700℃〜1800℃で焼成して燃料要素8として製造される。
【0008】
一般的な高温ガス炉は通常、上述のようにして得られた燃料要素を使用するが、燃料要素を使用しない場合もある。例えば被覆燃料粒子を耐熱材料でパッキングして被覆燃料粒子自身を冷却材のヘリウムガスで直冷するような高温ガス炉もある。
また材料についても、燃料核はウラン酸化物の場合が多いが、炭化物あるいは窒化物等もある。更にウランにプルトニウムや超ウラン元素のTRU(Np,Am,Cm等)を混合する場合、又は単独で用いる場合もある。
被覆管は熱分解炭素とSiCで4層に被覆する場合が多いが、ZrCやTiN等を被覆する場合もある。またこれらの材料を組み合わせて5層、6層に被覆する場合もある。
ところで、上述のような燃料要素あるいは被覆燃料粒子において前述した資源の有効利用のため、製造工程あるいは使用済み燃料から燃料核を回収することが行われている。
【0009】
図3は現在行われている上記燃料要素あるいは被覆燃料粒子から燃料核を回収する場合のフロー図であり、一般的な図1の被覆燃料粒子の場合、第3層がSiC層であるため耐酸化性能が優れており、空気中で焙焼するだけでは燃料核を回収することが出来ない。このため機械的に耐酸化層であるSiC層を少なくとも破砕する必要がある。
【0010】
図2に示す燃料要素の場合、空気中、約900℃で焙焼することにより黒鉛マトリックス材は主としてCOとなって除去されるので、被覆燃料粒子を取り出すことが出来る。この場合、被覆燃料粒子の最外層が熱分解炭素であればこれも同時に除去できる。
【0011】
そして、次に粉砕機を使用してSiC層を破砕する。さらにこれを再度空気中、約900℃で焙焼することによって、SiC層の内側の熱分解炭素層を除去する。このとき燃料核の材質がUOであれば、再度の焙焼によってUとなる。この段階での残留物は粉末状UとSiC片と若干の炭素、黒鉛のアッシュである。
これらの残留物を酸侵出させることにより、粉末状Uを溶解して硝酸ウラニルとする。最終的に濾過して固液分離することによりSiC片等を除去し、この濾液を精製してウランを回収する。
なお、図3のフロー図は、製造時のスクラップや使用済み燃料からのウラン、プルトニウム等の回収にも適用でき、濾液から例えばPUREX法により、ウラン、プルトニウムを回収することが出来る。
【0012】
しかして従来、上述の如き燃料製造時の回収工程において被覆層を破砕する場合、粉砕機としてはジェット粉砕機やロータリープレード粉砕機を使用していた。ジェット粉砕機は超高速の気流で被覆燃料粒子を加速して、壁面あるいは粒子同士を衝突させて粉砕するものである。
ロータリーフレード粉砕機は高速回転する超硬回転刃で粒子を粉砕するものである。しかし、これらの方法の問題点は、先ず、被覆燃料粒子全量を確実に粉砕することが出来ないことである。特に使用済み燃料を回収・再処理する場合、被覆燃料粒子の数量が膨大であるため、例えば日本の高温工学試験研究炉「HTTR」の被覆燃料粒子数は1炉心分で約9億個であるため、粉砕効率が悪い場合の未粉砕粒子数は無視できない量となる。更に、これらの方法は、衝突エネルギーを利用して粉砕する方法であるため、多くの燃料核も同時に粉砕され、この燃料核粉砕屑が設備の汚染拡大、MUFの増加の原因となっていた。
【0013】
また、更に上記以外の粉砕手段として図4に示すロータリーディスク粉砕機があり、これは回転するディスクで被覆燃料粒子を機械的に粉砕する方法である。
しかしながら、従来のこのロータリーディスク粉砕機は被覆層の粉砕と同時に燃料核も粉砕されていたため燃料核粉砕屑が設備の汚染拡大、MUFの増加の原因となっていた。
【0014】
【発明が解決しようとする課題】
本発明は上述の如き従来の状況に鑑み、製造時あるいは使用済みの高温ガス燃料である燃料要素あるいは被覆燃料粒子から燃料核を回収するに際し、燃料核を粉砕することなく、被覆層だけを破砕することができる方法を見出すことを課題とし、特に効率的な粉砕手段を見出すことにより確実に被覆層だけを破砕し、粉砕機の消費動力の抑制と共に設備の汚染拡大の規制、MUFの低減をはかることを目的とするものである。
【0015】
【課題を解決するための手段】
即ち、上記目的に適合する本発明の特徴とするところは、被覆燃料粒子を対向する一対のロータリーディスク間の隙間で粉砕し、燃料核を回収せしめるにあたり、上記一対のロータリーディスク間の隙間を燃料核の直径の公差を考慮したときに燃料核の直径が最大となる値より大きく、被覆燃料粒子を構成する最内側被覆層の厚さと燃料核の直径の公差を考慮したときに燃料核に最内側被覆第1層が被覆された被覆燃料粒子の直径が最小となる値より小さく設定して粉砕することにある。
なお、一対のロータリーディスク間の隙間を燃料核の直径の公差を考慮したときに燃料核の直径が最大となる値以上で、かつ、被覆燃料粒子を構成する被覆層の厚さと燃料核の直径の公差を考慮したときに耐酸化性能を有する被覆層のうちの最内側被覆層(図1の場合では被覆第3層)が被覆された被覆燃料粒子の直径が最小となる値以下に設定して粉砕することも場合により実施される。
【0016】
また、本発明は上記粉砕による回収にあたり、被覆燃料粒子自体を回収し易い構成とすることも他の特徴であり、ウランまたはプルトニウム、その他超ウラン元素を単独あるいは混合し、酸化物、炭化物、窒化物の化合物となっている燃料核の周囲を熱分解炭素,SiC,ZrC,TiNより選ばれた複数の被覆層で被覆してなる被覆燃料粒子において、被覆燃料粒子を構成する最内側被覆層の厚さと燃料核の直径の公差を考慮したときに燃料核に最内側被覆第1層が被覆された被覆燃料粒子の直径が最小となる値を燃料核の直径が最大となる値より大きく設定せしめたことを特徴とする。
【0017】
【作用】
上記本発明回収方法を適用することにより、確実に被覆層のみが粉砕され、燃料核は粉砕されることがないため、燃料核の回収効率が良好となり、粉砕機の消費動力の抑制、設備の汚染拡大の抑制、MUFの低減が達成できる。
【0018】
【発明の実施の形態】
以下、更に添付図面を参照し、本発明の具体的態様を説明する。
【0019】
本発明は前述した如く被覆燃料粒子の被覆層を粉砕する方法であり、同粉砕に好適な被覆燃料粒子である。
被覆燃料粒子は前記した如く通常、図1に示すように燃料核1の周囲に内側より順次低密度熱分解炭素被覆第1層2、高密度熱分解炭素被覆第2層3,SiC被覆第3層4及び高密度熱分解炭素被覆第4層5の4層の被覆を施して被覆燃料粒子6として構成されており、第1層2はバッファ層と称され、第3層4は耐酸化層である。
そして、上記被覆燃料粒子6は図2に示すように該被覆燃料粒子6を黒鉛マトリックス材7中に保持した球型、円筒形、円柱形などの燃料要素8に成形し、原子炉に装荷して使用される。
【0020】
本発明は上記の如き被覆燃料粒子6あるいは燃料要素8を使用後、粉砕して被覆層2〜5内部の燃料核1を回収する点に特徴を有している。
被覆燃料粒子6の被覆層を確実に粉砕する点からは図4に示すようなロータリーディスク粉砕が好ましい手段として使用される。
ここでは一対のロータリーディスク9,10の円周上で被覆燃料粒子6を粉砕し粉砕片6′とする方式となっているが、この他に一対のロータリーディスクの平面が対向している方式であってもよい。
【0021】
そして、粉砕機の消費動力の抑制、設備の汚染拡大の抑制、MUFの低減の観点からは、被覆燃料粒子6の少なくとも耐酸化層のSiC層4を、望ましくは全ての被覆層2〜5だけを確実に破砕して、内包する燃料核1は粉砕されない方が望ましい。
このためロータリーディスク9,10のディスク間ギャップLを少なくともSiC層4の外径より、望ましくは被覆第1層2の外径より小さく、かつ燃料核1の直径より大きく設定する。
これにより確実に被覆層だけが破砕され、燃料核は粉砕されないため、粉砕機の消費動力の抑制、設備の汚染拡大の抑制、MUFの低減を達成できる。
ただ、ギャップLがSiC層4の外径より小さいが、第1層外径より大きい場合は、SiC層4がギャップL内で圧迫された場合、固有の弾性により変形するのみで破壊には至らないケースが生じることもある。
そこで、上述の燃料核の回収のため被覆層の粉砕を容易にするためには、図5に示す被覆燃料粒子がギャップを設定する上で望ましい。
【0022】
被覆燃料粒子の燃料核直径及び被覆層厚さには、必ず製造公差が設定してある。このため次の条件を満足するような被覆燃料粒子であれば上記粉砕機を使用して燃料核を粉砕せず被覆層破砕だけをより確実に可能にすることができる。
即ち、燃料核直径をDとし、被覆第1層外径をdとすると、Dmax<dminである。但し、maxは公差を考慮した最大、minは公差を考慮した最小である。
【0023】
【実施例】
以下、本発明の実施例を説明する。
【0024】
外部ゲル化法により直径500μmの燃料核とした。即ち、硝酸ウラニルに高分子化合物等の増粘材を添加してアンモニア水中に滴下して、重ウラン酸アンモニウムの粒子とした。これを洗浄、乾燥させた後、空気中500℃で焙焼してUO粒子とし、最終的に水素中、1500℃で還元・焼結して密度97%T.D.のUO燃料核とした。
【0025】
次に流動床を用いて上記燃料核の周囲に熱分解炭素とSiCを下記4層に被覆した。
第1層は1400℃でアセチレンを熱分解させ、密度1.0g/cmの低密度熱分解炭素を90μm被覆した。
第2層は1500℃でプロピレンを熱分解させ、密度1.8g/cmの高密度熱分解炭素を30μm被覆した。
【0026】
第3層は1600℃でメチルトリクロロシランを熱分解させ、密度3.2g/cmのSiCを30μm被覆した。この層は耐酸化層となる。
第4層は1500℃でプロピレンを熱分解させ、密度1.8g/cmの高密度熱分解炭素を40μm被覆した。
ここで上記被覆燃料粒子の製造仕様は表1の通りである。
【0027】
【表1】

Figure 0003569659
【0028】
引続き、表1の被覆燃料粒子を使用して、図4に示すロータリーディスク粉砕機による被覆層破砕試験を行った。
ロータリーディスクの直径はφ300mm、材質はSUS316、ロータリーディスク回転数は20rpmである。
ロータリーディスク粉砕機に投入した被覆燃料粒子6は3.5kg−U、被覆燃料粒子数に換算して約500万個である。
【0029】
ディスク間ギャップLを燃料核直径の公差を考慮した最大値より大きく、第1層外径の公差を考慮した最小値より小さい場合、
燃料核の直径の公差を考慮した最大値が525μm
燃料核の直径の公差を考慮した最小値が475μm
第1層厚さの公差を考慮した最小値が70μm
525μm≦ディスク間ギャップ≦(475+2×70)μm……(1)
ここでディスク間ギャップLを550μmに設定した場合、燃料核をほとんど壊さずに、被覆層だけを100%粉砕することが出来た。
【0030】
また、ディスク間ギャップLを燃料核直径の公差を考慮した最大値より大きく、耐酸化層の第3層外径の公差を考慮した最小値より小さい場合、
燃料核の直径の公差を考慮した最大値が525μm
燃料核の直径の公差を考慮した最小値が475μm
第1層厚さの公差を考慮した最小値が70μm
第2層厚さの公差を考慮した最小値が25μm
第3層厚さの公差を考慮した最小値が25μm
525μm≦ディスク間ギャップ≦{475+2×(70+25+25)}μm……(2)
ディスク間ギャップLを715μmに設定した場合、燃料核を壊さなかったが、被覆層粉砕率は83.6%であった。
【0031】
ディスク間ギャップLをバラメータとして、同様の粉砕試験を行った結果を表2に示す。
前述の(1)式の条件を満足すれば、燃料核を殆ど粉砕することなく、被覆層だけを100%破砕できることが分かった。
【0032】
【表2】
Figure 0003569659
【0033】
【発明の効果】
本発明は以上のように対向する一対のロータリーディスクよりなる粉砕機により被覆燃料粒子を粉砕するにあたり、ロータリーディスク間の隙間を燃料核の直径の公差を考慮した最大値以上、かつ耐酸化性能を有する被覆層のうちの最内側被覆層(図1の場合は被覆第3層)外径または被覆第1層外径の公差を考慮した最小値以下に設定するものであり、上記設定した隙間に被覆燃料粒子を供給して粉砕することにより、製造時及び使用済み燃料の被覆燃料粒子から、燃料核を回収するに際し、燃料核を粉砕することなく、被覆層だけを破砕することが出来る。
即ち、ロータリーディスク方式の粉砕機によって、機械的に粉砕するとき、ロータリーディスクのディスク間ギャップを燃料核の直径の公差を考慮した最大値より大きく、且つ少なくとも耐酸化性能を有する被覆層のうちの最内側被覆層(図1の場合は被覆第3層)の、望ましくは第1層外径の公差を考慮した最小値より小さく設定することにより、確実に被覆層だけが破砕され、燃料核は粉砕されることがないため、粉砕機の消費動力の抑制、設備の汚染拡大の抑制、MUFの低減を達成できる効果を有する。
また、このようにギャップが設定できるためには被覆燃料粒子を設計する際に、第1層外径の公差を考慮した最小値が、燃料核の直径の公差を考慮した最大値より大きく設定することにより、前述の被覆層破砕が容易な被覆燃料粒子とすることができる。
【図面の簡単な説明】
【図1】本発明における被覆燃料粒子の1例を示す断面図である。
【図2】被覆燃料粒子を用いた燃料要素の形状の各例を示し、(イ)は球状、(ロ)は中空円筒状、(ハ)は円柱状である。
【図3】燃料核回収のフロー図である。
【図4】ロータリーディスク粉砕機による粉砕状況を示す説明図である。
【図5】被覆層破砕を容易にした被覆燃料粒子の1例を示す断面図である。
【符号の説明】
1 燃料核
2 被覆第1層
3 被覆第2層
4 被覆第3層
5 被覆第4層
6 被覆燃料粒子
7 黒鉛マトリックス
8 燃料要素
9,10 ロータリーディスク
L ディスク間の隙間
D 燃料核直径
d 被覆第1層外径[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for recovering fuel nuclei from coated fuel particles used in a high-temperature gas furnace or the like, in particular, from a manufacturing process or from coated fuel particles of spent fuel, and to the basic structure of the coated fuel particles which can be easily recovered in the recovery. Things.
[0002]
[Prior art]
Recovery of fuel cores from the manufacturing process or spent fuel is important for effective use of resources, and fuel recovery technology is very important especially for high temperature gas-cooled reactor fuels for breeding purposes.
Therefore, consideration has been given to facilitating the recovery and reprocessing of uranium or plutonium from the fuel core contained in the coated fuel particles by facilitating the crushing of the coating layer of the coated fuel particles.
[0003]
The high-temperature gas reactor is a nuclear reactor for heating helium gas, which is a coolant, to about 700 ° C. to 950 ° C. and utilizing heat in power generation or a chemical plant. Coated fuel particles coated with a uranium compound with ceramics or the like are used.
[0004]
In general water reactors and sodium-cooled reactors, compounds such as uranium and plutonium are pelletized and inserted into a cladding tube made of zirconium, stainless steel, etc., and this cladding tube holds fission products (hereinafter referred to as FP). Although it has a function, in the above coated fuel particles, the coating layer has the FP holding function.
[0005]
FIG. 1 shows an example of this kind of coated fuel particles. In the figure, a first to fourth layers, a total of four layers 2, 3, 4, from the inner side around a fuel core 1 having a diameter of 350 to 600 μm, are shown. 5 coatings.
Of these, the innermost first layer 2 is a low-density pyrolytic carbon having a density of about 1 g / cm 3 and has a function of a plenum of gaseous FP or a swelling absorption region of the fuel core 1 at the time of irradiation. For this reason, the first layer 2 is not expected to have a mechanical binding force, strength, airtightness, or the like, and must be formed of open pores. From these functions, the first layer 2 is called a buffer layer.
[0006]
Next, the second layer 3 outside the first layer 2 is made of high-density pyrolytic carbon having a density of about 1.8 g / cm 3 and has a function of retaining gaseous FP. The third layer 4 is made of silicon carbide (SiC) having a density of 3.2 g / cm 3 and has a solid FP holding function, and is a main strength member of the coating layer.
Further, the fourth layer 5 is a high-density pyrolytic carbon having a density of about 1.8 g / cm 3 similar to the second layer 3 and has a function of holding the gas furnace FP and also has a function as a protective layer of the third layer 4. ing.
[0007]
Incidentally, the coated fuel particles as described above are generally produced through the following steps. That is, first, the fuel core 1 is internally granulated by a gelling method or an external gelling method.
The fuel core 1 is loaded on a fluidized bed, and the coating gas is thermally decomposed to apply the coating. In the case of the low-density pyrolytic carbon of the first layer 2, acetylene (C 2 H 2 ) is pyrolyzed at about 1400 ° C.
In the case of the high-density pyrolytic carbon of the second and fourth layers 3 and 5, propylene (C 3 H 6 ) is thermally decomposed at about 1400 ° C. In the case of SiC of the third layer 4, methyl trichlorosilane (CH 3 SiCl 3 ) is thermally decomposed at about 1600 ° C.
Then, as shown in FIG. 2, the coated fuel particles 6 obtained in the above-described step have a spherical shape (a), a hollow cylindrical shape (b) or a cylindrical shape (c) in which the coated fuel particles 6 are held in a graphite matrix material 7. The fuel element 8 is used by loading it into a nuclear reactor.
The fuel element 8 is generally formed into a spherical or cylindrical shape by overcoating or mixing the powdered or pitch-shaped graphite matrix material 7 with the coated fuel particles 6 and pressing the resultant. It is fired at 1700 ° C. to 1800 ° C. to produce the fuel element 8.
[0008]
A typical high temperature gas furnace usually uses the fuel element obtained as described above, but may not use the fuel element. For example, there is a high-temperature gas furnace in which the coated fuel particles are packed with a heat-resistant material and the coated fuel particles themselves are directly cooled by helium gas as a coolant.
Also, as for the material, the fuel core is often uranium oxide, but also includes carbide or nitride. Further, there may be a case where plutonium or a transuranium element TRU (Np, Am, Cm, etc.) is mixed with uranium or used alone.
The cladding tube is often coated with four layers of pyrolytic carbon and SiC, but may be coated with ZrC, TiN, or the like. In some cases, these materials are combined to cover five or six layers.
By the way, in order to effectively use the above-mentioned resources in the fuel element or the coated fuel particles as described above, the recovery of the fuel core from the manufacturing process or the spent fuel is performed.
[0009]
FIG. 3 is a flow chart in the case where fuel nuclei are currently recovered from the above-mentioned fuel element or coated fuel particles. In the case of the general coated fuel particles shown in FIG. 1, since the third layer is a SiC layer, it is resistant to acid. The fuel core is excellent, and it is not possible to recover the fuel core only by roasting in air. For this reason, it is necessary to mechanically crush at least the SiC layer which is an oxidation-resistant layer.
[0010]
In the case of the fuel element shown in FIG. 2, the graphite matrix material is mainly removed as CO 2 by roasting in air at about 900 ° C., so that the coated fuel particles can be taken out. In this case, if the outermost layer of the coated fuel particles is pyrolytic carbon, it can be removed at the same time.
[0011]
Then, the SiC layer is crushed using a crusher. Further, this is roasted again at about 900 ° C. in the air to remove the pyrolytic carbon layer inside the SiC layer. At this time, if the material of the fuel core is UO 2 , it becomes U 3 O 8 by roasting again. The residue at this stage is ash of powdered U 3 O 8 , SiC pieces and some carbon and graphite.
These residues are acid leached to dissolve powdery U 3 O 8 to form uranyl nitrate. Finally, SiC pieces and the like are removed by filtration and solid-liquid separation, and the filtrate is purified to recover uranium.
The flow chart of FIG. 3 can also be applied to the recovery of uranium, plutonium and the like from scrap and spent fuel at the time of production, and uranium and plutonium can be recovered from the filtrate by, for example, the PUREX method.
[0012]
Conventionally, when the coating layer is crushed in the above-described recovery step in the production of fuel, a jet crusher or a rotary blade crusher has been used as a crusher. The jet crusher accelerates the coated fuel particles by an ultra-high-speed air flow, and crushes the walls by colliding the particles or the particles.
The rotary blade crusher crushes particles with a high-speed rotating carbide blade. However, a problem with these methods is that, first of all, the whole amount of the coated fuel particles cannot be reliably pulverized. Especially when collecting and reprocessing spent fuel, the number of coated fuel particles is enormous. For example, the number of coated fuel particles in Japan's high-temperature engineering test research reactor "HTTR" is about 900 million per core. Therefore, the number of unmilled particles when the grinding efficiency is low is an amount that cannot be ignored. Furthermore, since these methods are methods of pulverization using collision energy, many fuel nuclei are also pulverized at the same time, and the debris of the fuel nuclei causes an increase in contamination of equipment and an increase in MUF.
[0013]
Further, as another pulverizing means other than the above, there is a rotary disk pulverizer shown in FIG. 4, which is a method of mechanically pulverizing coated fuel particles with a rotating disk.
However, in this conventional rotary disk pulverizer, the fuel core is also pulverized at the same time as the pulverization of the coating layer, so that the pulverized fuel core causes contamination of equipment and an increase in MUF.
[0014]
[Problems to be solved by the invention]
In view of the conventional situation as described above, the present invention crushes only the coating layer without pulverizing the fuel nucleus at the time of manufacturing or recovering the fuel nucleus from the fuel element or the coated fuel particle which is a used high temperature gas fuel. The purpose of this study is to find a method that can reduce the power consumption of the pulverizer, reduce the power consumption of the pulverizer, and reduce the MUF. It is intended to measure.
[0015]
[Means for Solving the Problems]
That is, the feature of the present invention that meets the above-mentioned object is that the coated fuel particles are pulverized in a gap between a pair of opposed rotary disks and a fuel core is recovered when the fuel core is recovered. The diameter of the fuel nucleus is larger than the maximum value when the tolerance of the diameter of the nucleus is considered. The purpose of the present invention is to pulverize by setting the diameter of the coated fuel particles coated with the first inner coating layer smaller than the minimum value.
Note that the gap between the pair of rotary disks is equal to or greater than the value at which the diameter of the fuel core is maximized when the tolerance of the diameter of the fuel core is considered , and the thickness of the coating layer and the diameter of the fuel core constituting the coated fuel particles. The diameter of the coated fuel particles coated with the innermost coating layer (the coating third layer in the case of FIG. 1) of the coating layers having oxidation resistance when the tolerance of Crushing is optionally performed.
[0016]
The present invention also Upon recovery by above pulverization is other features also be recovered easily configure the coated fuel particles themselves, uranium or plutonium, other transuranium elemental alone or mixed oxides, carbides, pyrolytic carbon around the fuel core has a compound nitride, SiC, ZrC, in coated fuel particles formed by coating a plurality of coating layers selected from Ti N, innermost coating constituting the coated fuel particles greater than the value a value that the diameter of the coated fuel particles innermost coating first layer the kernels are coated is the minimum diameter of the kernels is at a maximum when considering the tolerances of the diameter of the thickness of the fuel core layer It is characterized by having been set.
[0017]
[Action]
By applying the recovery method of the present invention, only the coating layer is reliably pulverized, and the fuel core is not pulverized, so that the recovery efficiency of the fuel core is improved, the power consumption of the pulverizer is reduced, Suppression of contamination expansion and reduction of MUF can be achieved.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings.
[0019]
The present invention is a method for pulverizing a coating layer of coated fuel particles as described above, and is a coated fuel particle suitable for the pulverization.
As described above, the coated fuel particles are usually formed around the fuel core 1 from the inside in the order of low density pyrolytic carbon coating first layer 2, high density pyrolytic carbon coating second layer 3, SiC coating third layer as shown in FIG. Layer 4 and high-density pyrolytic carbon-coated fourth layer 5 are coated to form coated fuel particles 6. First layer 2 is called a buffer layer, and third layer 4 is an oxidation-resistant layer. It is.
As shown in FIG. 2, the coated fuel particles 6 are formed into a spherical, cylindrical, or cylindrical fuel element 8 holding the coated fuel particles 6 in a graphite matrix material 7 and loaded into a nuclear reactor. Used.
[0020]
The present invention is characterized in that after using the coated fuel particles 6 or the fuel elements 8 as described above, the fuel cores 1 in the coating layers 2 to 5 are recovered by pulverization.
From the viewpoint of reliably pulverizing the coating layer of the coated fuel particles 6, rotary disk pulverization as shown in FIG. 4 is used as a preferable means.
Here, the coated fuel particles 6 are crushed on the circumference of the pair of rotary disks 9 and 10 to form crushed pieces 6 ′. In addition, a method is used in which the planes of the pair of rotary disks face each other. There may be.
[0021]
Then, from the viewpoint of suppressing the power consumption of the crusher, suppressing the expansion of the contamination of the equipment, and reducing the MUF, at least the SiC layer 4 of the oxidation-resistant layer of the coated fuel particles 6 is desirably provided only in all of the coating layers 2 to 5. Is desirably crushed so that the contained fuel core 1 is not crushed.
Therefore, the disc gap L between the rotary discs 9 and 10 is set to be at least smaller than the outer diameter of the SiC layer 4, preferably smaller than the outer diameter of the coating first layer 2, and larger than the diameter of the fuel core 1.
As a result, only the coating layer is reliably crushed, and the fuel core is not crushed, so that it is possible to suppress the power consumption of the crusher, suppress the expansion of the contamination of the equipment, and reduce the MUF.
However, when the gap L is smaller than the outer diameter of the SiC layer 4 but larger than the first layer outer diameter, when the SiC layer 4 is pressed in the gap L, it is only deformed by the inherent elasticity, leading to destruction. In some cases, there may not be.
Therefore, in order to facilitate the pulverization of the cladding layer for collecting the above-mentioned fuel core, the cladding fuel particles shown in FIG. 5 are desirable in setting the gap.
[0022]
Manufacturing tolerances are always set for the fuel core diameter and the coating layer thickness of the coated fuel particles. Therefore, if the coated fuel particles satisfy the following conditions, only the coating layer crushing can be more reliably enabled without crushing the fuel core using the above-mentioned pulverizer.
That is, when the fuel core diameter is D and the outer diameter of the first coating layer is d, Dmax <dmin. Here, max is the maximum value in consideration of the tolerance, and min is the minimum value in consideration of the tolerance.
[0023]
【Example】
Hereinafter, examples of the present invention will be described.
[0024]
A fuel core having a diameter of 500 μm was obtained by an external gelation method. That is, a thickener such as a polymer compound was added to uranyl nitrate and dropped into aqueous ammonia to obtain ammonium biuranate particles. After washing and drying, it is roasted at 500 ° C. in air to form UO 3 particles, and finally reduced and sintered at 1500 ° C. in hydrogen to obtain a 97% T.D. D. UO 2 fuel core.
[0025]
Next, the following four layers were coated with pyrolytic carbon and SiC around the fuel core using a fluidized bed.
The first layer was obtained by thermally decomposing acetylene at 1400 ° C., and covered 90 μm of low-density pyrolytic carbon having a density of 1.0 g / cm 3 .
The second layer was formed by thermally decomposing propylene at 1500 ° C. and coated with 30 μm of high-density pyrolytic carbon having a density of 1.8 g / cm 3 .
[0026]
The third layer was formed by thermally decomposing methyltrichlorosilane at 1600 ° C., and coated with 30 μm of SiC having a density of 3.2 g / cm 3 . This layer becomes an oxidation resistant layer.
The fourth layer was formed by thermally decomposing propylene at 1500 ° C. and coated with high-density pyrolytic carbon having a density of 1.8 g / cm 3 by 40 μm.
Here, the production specifications of the coated fuel particles are as shown in Table 1.
[0027]
[Table 1]
Figure 0003569659
[0028]
Subsequently, using the coated fuel particles shown in Table 1, a coating layer crushing test was performed by a rotary disk crusher shown in FIG.
The diameter of the rotary disk is φ300 mm, the material is SUS316, and the rotation speed of the rotary disk is 20 rpm.
The amount of the coated fuel particles 6 introduced into the rotary disk pulverizer is 3.5 kg-U, which is about 5 million in terms of the number of coated fuel particles.
[0029]
When the gap L between the disks is larger than the maximum value in consideration of the tolerance of the diameter of the fuel core and smaller than the minimum value in consideration of the tolerance of the outer diameter of the first layer,
The maximum value considering the tolerance of the diameter of the fuel core is 525 μm
The minimum value considering the tolerance of the diameter of the fuel core is 475 μm
The minimum value considering the tolerance of the thickness of the first layer is 70 μm.
525 μm ≦ gap between disks ≦ (475 + 2 × 70) μm (1)
Here, when the gap L between the disks was set to 550 μm, it was possible to pulverize only the coating layer by 100% without substantially breaking the fuel core.
[0030]
When the gap L between the disks is larger than the maximum value in consideration of the tolerance of the diameter of the fuel core and smaller than the minimum value in consideration of the tolerance of the outer diameter of the third layer of the oxidation-resistant layer,
The maximum value considering the tolerance of the diameter of the fuel core is 525 μm
The minimum value considering the tolerance of the diameter of the fuel core is 475 μm
The minimum value considering the tolerance of the thickness of the first layer is 70 μm.
The minimum value considering the tolerance of the thickness of the second layer is 25 μm
The minimum value considering the thickness tolerance of the third layer is 25 μm
525 μm ≦ disc gap ≦ {475 + 2 × (70 + 25 + 25)} μm (2)
When the gap L between disks was set to 715 μm, the fuel nuclei were not broken, but the crushing rate of the coating layer was 83.6%.
[0031]
Table 2 shows the results of the same pulverization test using the inter-disk gap L as a parameter.
It was found that if the condition of the above-mentioned formula (1) is satisfied, 100% of the coating layer alone can be crushed without almost crushing the fuel core.
[0032]
[Table 2]
Figure 0003569659
[0033]
【The invention's effect】
The present invention, when pulverizing the coated fuel particles by a pulverizer comprising a pair of rotary disks opposed to each other as described above, the gap between the rotary disks is not less than the maximum value in consideration of the tolerance of the diameter of the fuel core, and the oxidation resistance performance. The inner diameter of the innermost coating layer (the third layer in the case of FIG. 1) of the coating layers having the outer diameter or the minimum value in consideration of the tolerance of the outer diameter of the first coating layer is set to be equal to or smaller than the minimum value. By supplying and pulverizing the coated fuel particles, it is possible to crush only the coating layer without pulverizing the fuel nuclei at the time of manufacturing and recovering the fuel nuclei from the coated fuel particles of the spent fuel.
That is, when mechanically pulverized by a rotary disk type pulverizer, the inter-disk gap of the rotary disk is larger than the maximum value in consideration of the tolerance of the diameter of the fuel core, and at least the coating layer having oxidation resistance. By setting the innermost coating layer (the third coating layer in FIG. 1) preferably smaller than the minimum value in consideration of the tolerance of the outer diameter of the first layer, only the coating layer is reliably crushed, and the fuel core is Since pulverization is not performed, the power consumption of the pulverizer can be suppressed, the contamination of the equipment can be prevented from spreading, and the MUF can be reduced.
In order to set the gap in this way, when designing the coated fuel particles, the minimum value in consideration of the tolerance of the outer diameter of the first layer is set to be larger than the maximum value in consideration of the tolerance of the diameter of the fuel core. This makes it possible to obtain coated fuel particles that can be easily crushed as described above.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one example of a coated fuel particle in the present invention.
FIG. 2 shows examples of the shape of a fuel element using coated fuel particles. (A) is spherical, (B) is a hollow cylinder, and (C) is a column.
FIG. 3 is a flowchart of fuel nuclear recovery.
FIG. 4 is an explanatory view showing a pulverization state by a rotary disk pulverizer.
FIG. 5 is a cross-sectional view showing one example of a coated fuel particle that facilitates crushing of a coated layer.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 fuel core 2 coating first layer 3 coating second layer 4 coating third layer 5 coating fourth layer 6 coated fuel particles 7 graphite matrix 8 fuel element 9, 10 rotary disk L gap between disks D fuel core diameter d coating One layer outer diameter

Claims (3)

被覆燃料粒子を対向する一対のロータリーディスク間の隙間で粉砕し、燃料核を回収せしめるにあたり、上記一対のロータリーディスク間の隙間を燃料核の直径の公差を考慮したときに燃料核の直径が最大となる値より大きく、被覆燃料粒子を構成する最内側被覆層の厚さと燃料核の直径の公差を考慮したときに燃料核に最内側被覆第1層が被覆された被覆燃料粒子の直径が最小となる値より小さく設定して粉砕することを特徴とする被覆燃料粒子より燃料核を回収する方法。When the coated fuel particles are pulverized in a gap between a pair of opposed rotary disks and the fuel core is recovered, the diameter of the fuel core is maximized when the gap between the pair of rotary disks is considered in consideration of the tolerance of the diameter of the fuel core. When the thickness of the innermost coating layer constituting the coated fuel particle and the tolerance of the diameter of the fuel core are considered, the diameter of the coated fuel particle in which the innermost coating first layer is coated on the fuel core is the smallest. process for the recovery of fuel kernels from coated fuel particles, characterized in that grinding is set smaller than the value serving. 一対のロータリーディスク間の隙間を燃料核の直径の公差を考慮したときに燃料核の直径が最大となる値以上で、かつ、被覆燃料粒子を構成する被覆層の厚さと燃料核の直径の公差を考慮したときに耐酸化性能を有する被覆層のうちの最内側被覆層が被覆された被覆燃料粒子の直径が最小となる値以下に設定して粉砕する請求項1記載の被覆燃料粒子より燃料核を回収する方法。The gap between the pair of rotary disks is equal to or larger than the value at which the diameter of the fuel core is the largest when the tolerance of the diameter of the fuel core is considered , and the thickness tolerance of the coating layer constituting the coated fuel particles and the tolerance of the diameter of the fuel core. 2. The fuel from the coated fuel particles according to claim 1, wherein the diameter of the coated fuel particles coated with the innermost coating layer out of the coating layers having oxidation resistance is set to a value equal to or smaller than a minimum value in consideration of the above. How to recover nuclei. ウランまたはプルトニウム、その他超ウラン元素を単独あるいは混合し、酸化物、炭化物、窒化物の化合物となっている燃料核の周囲を熱分解炭素,SiC,ZrC,TiNより選ばれた複数の被覆層で被覆してなる被覆燃料粒子において、被覆燃料粒子を構成する最内側被覆層の厚さと燃料核の直径の公差を考慮したときに燃料核に最内側被覆第1層が被覆された被覆燃料粒子の直径が最小となる値を燃料核の直径が最大となる値より大きく設定せしめたことを特徴とする回収容易な被覆燃料粒子。Uranium or plutonium, other transuranium elemental alone or mixed oxides, carbides, pyrolytic carbon around the fuel core has a compound nitride, SiC, ZrC, a plurality of coating selected from Ti N Coated fuel particles in which the innermost coating first layer is coated on the fuel core in consideration of the thickness of the innermost coating layer constituting the coated fuel particle and the tolerance of the diameter of the fuel core. An easily recoverable coated fuel particle, characterized in that the value at which the diameter of the particle is minimum is set larger than the value at which the diameter of the fuel core is maximum .
JP2000086113A 2000-03-27 2000-03-27 Method for recovering fuel nuclei from coated fuel particles and coated fuel particles that can be easily recovered Expired - Fee Related JP3569659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000086113A JP3569659B2 (en) 2000-03-27 2000-03-27 Method for recovering fuel nuclei from coated fuel particles and coated fuel particles that can be easily recovered

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000086113A JP3569659B2 (en) 2000-03-27 2000-03-27 Method for recovering fuel nuclei from coated fuel particles and coated fuel particles that can be easily recovered

Publications (2)

Publication Number Publication Date
JP2001272496A JP2001272496A (en) 2001-10-05
JP3569659B2 true JP3569659B2 (en) 2004-09-22

Family

ID=18602330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000086113A Expired - Fee Related JP3569659B2 (en) 2000-03-27 2000-03-27 Method for recovering fuel nuclei from coated fuel particles and coated fuel particles that can be easily recovered

Country Status (1)

Country Link
JP (1) JP3569659B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065206A (en) * 2018-07-25 2018-12-21 清华大学 The head end processing method of reactor fuel element based on electrochemical intercalation oxidizing process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697938B2 (en) * 2005-04-04 2011-06-08 原子燃料工業株式会社 Method for producing coated fuel particles for HTGR
JP4689573B2 (en) * 2005-10-18 2011-05-25 原子燃料工業株式会社 Fuel compact
US8599993B2 (en) 2005-10-18 2013-12-03 Nuclear Fuel Industries, Ltd. Fuel compact
JP2017072480A (en) * 2015-10-07 2017-04-13 株式会社東芝 Fuel pellet, nuclear fuel rod, fuel assembly and fuel pellet manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065206A (en) * 2018-07-25 2018-12-21 清华大学 The head end processing method of reactor fuel element based on electrochemical intercalation oxidizing process

Also Published As

Publication number Publication date
JP2001272496A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
JP7287742B2 (en) Composite Moderator for Reactor Systems
KR101571083B1 (en) Particulate metal fuels used in power generation, recycling systems, and small modular reactors
Lee et al. Nuclear applications for ultra‐high temperature ceramics and MAX phases
JP2014500496A (en) Fully ceramic nuclear fuel and related methods
CA3017974A1 (en) Enhancing toughness in microencapsulated nuclear fuel
JP2000302444A (en) Production method comprising converting uranium alloy to uo2 powder and pellet
US5805657A (en) Nuclear fuel elements made from nanophase materials
JP3569659B2 (en) Method for recovering fuel nuclei from coated fuel particles and coated fuel particles that can be easily recovered
Ganguly Sol-gel microsphere pelletization: A powder-free advanced process for fabrication of ceramic nuclear fuel pellets
Burkes et al. A US perspective on fast reactor fuel fabrication technology and experience. Part II: Ceramic fuels
US3140151A (en) Method of reprocessing uo2 reactor fuel
Ganguly et al. Sol-gel microsphere pelletisation process for fabrication of (U, Pu) O2,(U, Pu) C and (U, Pu) N fuel pellets for the prototype fast breeder reactor in India
JPS6351517B2 (en)
US5419886A (en) Method for generation of finely divided reactive plutonium oxide powder
EP3743926B1 (en) Composite moderator for nuclear reactor systems
Fernandez et al. Overview of past and current activities on fuels for fast reactors at the Institute for Transuranium Elements
GB2065955A (en) Production of Tritium in a Nuclear Reactor
JP3930406B2 (en) Method for reprocessing coated particulate fuel
US3453090A (en) Method of and apparatus for the treatment of graphite-coated particles for nuclear reactors and the like
Sawa et al. Study on storage and reprocessing concept of the high temperature engineering test reactor (HTTR) fuel
Kitcher A White Paper: Disposition Options for a High-Temperature Gas-Cooled Reactor
Lee et al. Current Status of TRISO Fuel Head-End Treatment
Masson et al. HTGR spent fuel processing; The CEA investigation program
KR101586877B1 (en) The particle type metallic fuel pellet and a method of manufacture thereof
Kim et al. Alternative Methods for Treatment of TRISO Fuels

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees