JP3569102B2 - Molding machine - Google Patents

Molding machine Download PDF

Info

Publication number
JP3569102B2
JP3569102B2 JP10045097A JP10045097A JP3569102B2 JP 3569102 B2 JP3569102 B2 JP 3569102B2 JP 10045097 A JP10045097 A JP 10045097A JP 10045097 A JP10045097 A JP 10045097A JP 3569102 B2 JP3569102 B2 JP 3569102B2
Authority
JP
Japan
Prior art keywords
eject
region
limit position
deceleration
stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10045097A
Other languages
Japanese (ja)
Other versions
JPH10286857A (en
Inventor
宏 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP10045097A priority Critical patent/JP3569102B2/en
Publication of JPH10286857A publication Critical patent/JPH10286857A/en
Application granted granted Critical
Publication of JP3569102B2 publication Critical patent/JP3569102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7626Measuring, controlling or regulating the ejection or removal of moulded articles

Description

【0001】
【発明の属する技術分野】
本発明は、射出成形機やダイカストマシン等の成形機に係り、特に、ハイサイクル成形が要求される際に適用して好適な成形機のエジェクト制御にかかわる技術に関する。
【0002】
【従来の技術】
射出成形機等の成形機においては、金型に被着した成形品を、金型から分離して突き出すためのエジェクト動作が必要であり、このエジェクト動作においては、一般的には、突き出し部材の突き出し量や、突き出し部材の前進限位置や、突き出し部材の前進速度や、突き出し部材の後退速度や、突き出し部材の後退限位置(戻り位置)の制御が必要となる。
【0003】
図4は、従来のエジェクト動作(突き出し部材の動作)の1例を示す制御特性図で、縦軸は前進速度と後退速度を表し、横軸は時間を表している。
【0004】
エジェクト動作が開始されると、突き出し部材がエジェクト駆動源によって前進駆動される前進行程に入り、この前進行程の初期領域において突き出し部材は加速制御され(前進加速領域Aa)、次に、前進一定速の領域を経て(前進一定速領域Ac)、突き出し部材は減速制御される(前進減速領域Ar)。この後、突き出し部材は所定期間だけ前進限位置に停止され(前進限停止領域S)、続いて、突き出し部材がエジェクト駆動源によって後退駆動される後退行程に入る。この後退領域の初期領域において突き出し部材は加速制御され(後退加速領域Ba)、次に、後退一定速の領域を経て(後退一定速領域Bc)、突き出し部材は減速制御され(後退減速領域Br)、後退限位置(戻り位置)に至ると1サイクルのエジェクト動作は終了する。
【0005】
なお、前進加速領域Aa、前進減速領域Ar、後退加速領域Ba、後退減速領域Brにおける速度特性線の傾斜は、位置精度が確保可能なように(過度の加減速でオーバーシュートが出ないように)、ある程度緩やかものに設定されており、総べて同一の傾きの速度特性線とされている。
【0006】
上記のように、前進減速領域Arにおける減速度合いをある程度緩やかにし、後退減速領域Brにおける減速度合いをある程度緩やかにすることによって、突き出し部材の前進限位置および後退限位置(戻り位置)の精度が確保できる。
【0007】
【発明が解決しようとする課題】
ところで、エジェクト動作の基本的な目的は、成形品の金型からの離型にあるが、成形品によっては、突き出し部材の前進限位置の正確な位置決めが要求されるものや、単純に成形品を振り落せばよいもの(突き出し部材の前進限位置は多少ばらついても許容されるもの)など、要求される仕様の範囲が広い。
【0008】
例えば、1成形サイクルが10sec程度のハイサイクル成形においては、エジェクト動作に求められる優先課題はエジェクトの時間短縮であり、突き出し部材の前進限位置は多少ばらついても許容されるケースが多い。しかしながら、例えハイサイクル成形であっても、突き出し部材の後退限位置(戻り位置)の精度の確保は必要で、突き出し部材の後退限位置にばらつきが生じると、エジェクトピンの先端は金型のキャビティ外形の一部を形成するものであるので、成形品精度に悪影響を及ぼす。
【0009】
この観点に立って、図4の従来のエジェクト動作の制御特性を考察すると、突き出し部材の後退限位置(戻り位置)の精度確保のためには、後退減速領域Brにおける減速度合いをある程度緩やかにする必要があり、後退減速領域Brの時間短縮は難しいが、要求されるエジェクトの仕様として単純に成形品を振り落せばよいものでは(突き出し部材の前進限位置がある程度ばらついても許容されるものでは)、エジェクトの時間短縮を図る上で、改善の余地のあるものであった。
【0010】
本発明は上記の点に鑑みなされたもので、その目的とするところは、突き出し部材の後退限位置(戻り位置)の精度の維持を図りつつ、エジェクト動作の時間短縮を可能とすることにある。
【0011】
【課題を解決するための手段】
本発明は上記した目的を達成するため、金型から成形品を突き出すための突き出し部材と、該突き出し部材を装着したエジェクトプレートと、該エジェクトプレートを前後進駆動させるためのエジェクト駆動軸と、該エジェクト駆動軸を駆動する駆動源と、該駆動源を制御する制御手段とを備え、かつ、上記エジェクトプレートは上記エジェクト駆動軸に連結されることにより、上記突き出し部材は後退時もエジェクト駆動軸により駆動されて後退する成形機において、突き出し部材が前進限位置に前進する行程における終期領域の減速の速度特性線、および、突き出し部材が前進限位置から後退する行程における初期領域における加速の速度特性線を、突き出し部材が最終的に後退限位置に後退する行程における終期領域の減速の速度特性線に比して、急峻となるように制御する。また、突き出し部材を前進限位置で停止させない速度指令パターンによって、駆動制御する。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を用いて説明する。
図1は、本発明の1実施形態に係る射出成形機におけるエジェクトメカニズムおよびエジェクト制御系の構成図である。同図において、1は固定ダイプレート、2は固定ダイプレート1に取り付けられた固定側金型、2aは固定側金型2のスプルー形成部材、2a−1はスプルー形成部材2aに設けられたスプルー、2a−2はスプルー形成部材2aに設けられた樹脂注入口で、この樹脂注入口2a−2には、図示せぬ射出メカニズムのノズルが押し付けられる。
【0013】
3は可動ダイプレートで、適宜の型開閉駆動源(例えば、型締めモータ)と型開閉メカニズム(例えば、トグルリンク機構等)によって、固定ダイプレート1に対して前後進可能とされている。4は、金型支持部材5を介して可動ダイプレート3に取り付けられた可動側金型で、図示していないが、型締め状態においては、可動側金型4は固定側金型2に密着し、この両金型2,4によって成形品形成用空間たるキャビティが形づくられるようになっている。
【0014】
6は、可動ダイプレート3に前後進可能であるように搭載されたエジェクト駆動軸で、その先端には、同じく可動ダイプレート3に前後進可能であるように搭載されたエジェクトプレート7が連結されており、エジェクトプレート7には複数本のエジェクトピン(突き出し部材)8が植設されている。そして、型締め状態においては、エジェクトピン8は後退限位置(戻り位置)におかれて、エジェクトピン8の先端面は前記キャビティの壁面の一部を形成するようになっている。また、型開き完了後もしくは型開き途上時に、エジェクトピン8は前進駆動されて、可動側金型4に被着された成形品9を突き出し・離型させるようになっている。
【0015】
10は、可動ダイプレート3に搭載されたエジェクト駆動源たるエジェクト用サーボモータ(以下、サーボモータ10と称す)、11は同じく可動ダイプレート3に設けられた回転−直線運動変換メカニズム(例えば、公知のボールネジとナット体を用いた、回転運動を直線運動に変換するメカニズム)で、サーボモータ10の回転は、回転−直線運動変換メカニズム11によって直線運動に変換され、この直線運動は、エジェクト駆動軸6に適宜連結部材を介して伝達されるようになっている。
【0016】
12は、マシン(射出成形機)全体の制御を司るシステムコントローラで、予め作成された各種動作制御プログラムと各種設定データ等に基づき、マシンの各部の動作制御を行なう。13は、サーボモータ10を駆動制御するサーボアンプ14をコントロールするサーボ制御部で、システムコントローラ12が、自身に内蔵した設定条件値格納部12aに格納したエジェクト制御条件データに基づく指令を、サーボ制御部13に与えることによって、サーボ制御部13はサーボアンプ14を介してサーボモータ10を駆動制御する。10aはサーボモータ10の回転位置情報を検出するエンコーダで、このエンコーダ10aからの検出情報に基づき、サーボ制御部13はエジェクトピン8の位置を認知し、この位置情報に応じた速度指令値をサーボアンプ14に与え、サーボアンプ14は、速度指令値とエンコーダ10aからの検出情報に基づく実測速度値とを対比することにより、サーボモータ10を速度フィードバック制御する。
【0017】
なお、15はキーボード装置等よりなる入力操作手段で、この入力操作手段15を操作することにより、システムコントローラ12に与える制御条件データ(設定データ)の変更や、運転開始/停止の指示等を行なうようになっている。
【0018】
次に、本実施形態のエジェクト動作について説明する。図2は、本実施形態のエジェクト動作(エジェクトピン8の動作)の1例を示す制御特性図であり、縦軸は前進速度と後退速度を表し、横軸は時間を表している。
【0019】
エジェクト動作が開始されると、エジェクトピン8がサーボモータ10によって前進駆動される前進行程に入る。この前進行程の初期領域においてエジェクトピン8は加速制御され(前進加速領域Aa)、次に、前進一定速の領域を経て(前進一定速領域Ac)、エジェクトピン8は減速制御される(前進減速領域Ar)。エジェクトピン8が前進限位置に至ると、すなわち、エジェクトピン8の前進減速領域Arが終了すると、直ちに、エジェクトピン8がサーボモータ10によって後退駆動される後退行程に入る。この後退領域の初期領域においてエジェクトピン8は加速制御され(後退加速領域Ba)、次に、後退一定速の領域を経て(後退一定速領域Bc)、エジェクトピン8は減速制御され(後退減速領域Br)、後退限位置(戻り位置)に至ると、1サイクルのエジェクト動作が終了とさせられる。
【0020】
ここで、本実施形態においては、前進減速領域Arにおける速度特性線の傾斜角θ1、および、後退加速領域Baにおける速度特性線の傾斜角θ1は、後退減速領域Br(エジェクトピン8が次の成形サイクルに備えて(最終的に)後退限位置に戻るための後退行程における終期領域)の速度特性線の傾斜角θ2に比して、急峻なもの(θ1>θ2)に設定してあり、図4に示した従来技術よりも、急激な前進減速および後退加速を行なうようにしてある。したがって、本実施形態の前進減速領域Arの時間TArは、図4に示した従来技術における前進減速領域Arの時間TAr’よりも短いものとなり、本実施形態の後退加速領域Baの時間TBaも、図4に示した従来技術における後退加速領域Baの時間TBa’よりも短いものとなっている。さらに、本実施形態においては、エジェクトピン8を前進限位置で停止させない速度指令パターンによって、駆動制御するようにしているので、図4に示した従来技術における前記した前進限停止領域Sがなくなり、この前進限停止領域Sの時間T もなくなるようになっている。
【0021】
すなわち、図2に示すような制御手法をとると、図4に示した従来技術に較べて、エジェクト動作の1サイクル時間を、
{(TAr’−TAr)+(TBa’−TBa)+T
だけ短くすることができ、エジェクト動作時間の短縮に多いに寄与する。
【0022】
ただし、上述したような制御を行なうと、エジェクトピン8の前進限位置はばらつくが、ハイサイクル成形では、単純に成形品を振り落せばよいケースが大部分であるので、この場合には、エジェクトピン8の前進限位置のばらつくは、実用上許容されることになる。なお、後退減速領域Br(エジェクトピン8が次の成形サイクルに備えて(最終的に)後退限位置に戻るための後退行程における終期領域)の速度特性線の傾きは、従来と同様にしてあるので、エジェクトピン8の後退限位置(戻り位置)の位置精度は充分に確保される。
【0023】
なお、ここで、図2に示した前進加速領域Aaにおける速度特性線の傾斜(すなわち、前進加速の度合い)は、メカニズムや成形品種別に応じた適正値に選定され、ここでは図4に示した従来技術と同等のものとされているが、場合によってはこれよりも急峻な速度特性線とすることも可能である。
【0024】
図3は、本実施形態のエジェクト動作(エジェクトピン8の動作)の他の1例を示す制御特性図であり、縦軸は前進速度と後退速度を表し、横軸は時間を表している。図3に示した本例においては、エジェクト動作の1サイクルで、エジェクトピン8が複数回前進限位置に達するように、エジェクトピン8を複数回だけ往復駆動するようにしている。
【0025】
すなわち、エジェクト動作が開始されると、エジェクトピン8が前進駆動される前進行程▲1▼に入り、この前進行程▲1▼の初期領域においてエジェクトピン8は加速制御され(前進加速領域Aa−1)、次に、前進一定速の領域を経て(前進一定速領域Ac−1)、エジェクトピン8は減速制御される(前進減速領域Ar−1)。エジェクトピン8が前進限位置に至ると、直ちに、エジェクトピン8が後退駆動される後退行程▲1▼に入る。この後退行程▲1▼の初期領域においてエジェクトピン8は加速制御され(後退加速領域Ba−1)、次に、後退一定速の領域を経て(後退一定速領域Bc−1)、エジェクトピン8は減速制御される(後退減速領域Br−1)。
【0026】
上記の後退行程▲1▼においては、エジェクトピン8は後退限位置までは戻らず、後退限位置の手前まで戻される。そして、エジェクトピン8が後退限位置の手前の所定位置まで後退すると(後退減速領域Br−1が終了すると)、直ちに、エジェクトピン8が前進駆動される前進行程▲2▼に入る。この前進行程▲2▼の初期領域においてエジェクトピン8は加速制御され(前進加速領域Aa−2)、次に、前進一定速の領域を経て(前進一定速領域Ac−2)、エジェクトピン8は減速制御される(前進減速領域Ar−2)。
【0027】
そして、エジェクトピン8が前進限位置に至ると、直ちに、エジェクトピン8が後退駆動される後退行程▲2▼に入る。この後退行程▲2▼の初期領域においてエジェクトピン8は加速制御され(後退加速領域Ba−2)、次に、後退一定速の領域を経て(後退一定速領域Bc−2)、エジェクトピン8は減速制御される(後退減速領域Br−2)。この後退行程▲2▼は、先の後退行程▲1▼と全く同様の動作であり、エジェクトピン8は後退限位置までは戻らず、後退限位置の手前まで戻される。エジェクトピン8が後退限位置の手前の所定位置まで後退すると(後退減速領域Br−2が終了すると)、直ちに、エジェクトピン8が前進駆動される前進行程▲3▼に入る。この前進行程▲3▼の初期領域においてエジェクトピン8は加速制御され(前進加速領域Aa−3)、次に、前進一定速の領域を経て(前進一定速領域Ac−3)、エジェクトピン8は減速制御される(前進減速領域Ar−3)。この前進行程▲3▼は、先の前進行程▲2▼と全く同様の動作である。
【0028】
そして、エジェクトピン8が前進限位置に至ると、直ちに、エジェクトピン8が後退駆動される後退行程▲3▼に入る。この後退行程▲3▼の初期領域においてエジェクトピン8は加速制御され(後退加速領域Ba−3)、次に、後退一定速の領域を経て(後退一定速領域Bc−3)、エジェクトピン8は減速制御され(後退減速領域Br−3)、後退限位置(戻り位置)に至ると、1サイクルのエジェクト動作が終了とさせられる。なお、この後退行程▲3▼は、図2に示した後退行程と全く同様の動作である。
【0029】
上述した図3に示した本例においては、前進行程▲1▼の前進減速領域Ar−1、後退行程▲1▼の後退加速領域Ba−1並びに後退減速領域Br−1、前進行程▲2▼の前進加速領域Aa−2並びに前進減速領域Ar−2、後退行程▲2▼の後退加速領域Ba−2並びに後退減速領域Br−2、前進行程▲3▼の前進加速領域Aa−3並びに前進減速領域Ar−3、後退行程▲3▼の後退加速領域Ba−3の、それぞれにおける速度特性線の傾斜角θ1は、後退行程▲3▼の後退減速領域Br−3(エジェクトピン8が次の成形サイクルに備えて(最終的に)後退限位置に戻るための後退行程における終期領域)の速度特性線の傾斜角θ2に比して、急峻なもの(θ1>θ2)に設定してある。したがって、図3に示した本例においても、すなわち、エジェクトピン8を複数回だけ往復駆動する場合においても、エジェクト動作の時間短縮が可能となり、しかも、エジェクトピン8の後退限位置(戻り位置)の精度は維持できる。
【0030】
【発明の効果】
以上のように本発明によれば、突き出し部材の後退限位置(戻り位置)の精度の維持を図りつつ、エジェクト動作の時間短縮が可能となり、特に、ハイサイクル成形で単純に成形品を振り落せばよい場合等に適用して、成形サイクルの短縮化に多いに寄与する。
【図面の簡単な説明】
【図1】本発明の1実施形態に係る射出成形機におけるエジェクトメカニズムおよびエジェクト制御系の構成図である。
【図2】本発明の1実施形態に係る射出成形機におけるエジェクト動作の1例を示す制御特性図である。
【図3】本発明の1実施形態に係る射出成形機におけるエジェクト動作の他の1例を示す制御特性図である。
【図4】従来のエジェクト動作の1例を示す制御特性図である。
【符号の説明】
1 固定ダイプレート
2 固定側金型
2a スプルー形成部材
2a−1 スプルー
2a−2 樹脂注入口
3 可動ダイプレート
4 可動側金型
5 金型支持部材
6 エジェクト駆動軸
7 エジェクトプレート
8 エジェクトピン(突き出し部材)
9 成形品
10 エジェクト用サーボモータ(サーボモータ)
10a エンコーダ
11 回転−直線運動変換メカニズム
12 システムコントローラ
12a 設定条件値格納部
13 サーボ制御部
14 サーボアンプ
15 入力操作手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a molding machine such as an injection molding machine or a die casting machine, and particularly to a technique relating to eject control of a suitable molding machine is applied when the high-cycle molding is required.
[0002]
[Prior art]
In a molding machine such as an injection molding machine, it is necessary to perform an ejecting operation for separating and ejecting a molded product adhered to a mold from a mold. It is necessary to control the protrusion amount, the forward limit position of the protrusion member, the forward speed of the protrusion member, the retreat speed of the protrusion member, and the retreat limit position (return position) of the protrusion member.
[0003]
FIG. 4 is a control characteristic diagram showing an example of a conventional ejecting operation (operation of a protruding member), in which the vertical axis represents forward speed and backward speed, and the horizontal axis represents time.
[0004]
When the ejecting operation is started, the projecting member enters a pre-progression stage in which the protruding member is driven forward by the eject drive source. In the initial region of the pre-progression process, the protruding member is controlled to be accelerated (progression acceleration region Aa). (The forward constant speed region Ac), the protruding member is decelerated (forward deceleration region Ar). Thereafter, the protruding member is stopped at the forward limit position for a predetermined period (forward limit stop area S), and then enters a retreating stroke in which the ejecting member is driven backward by the eject drive source. In the initial region of the retreat region, the protruding member is acceleration-controlled (retreat acceleration region Ba), and then passes through a region of constant retreat speed (constant reverse speed region Bc), and the protruding member is decelerated (retreat deceleration region Br). When the retreat position (return position) is reached, the eject operation for one cycle ends.
[0005]
The inclination of the speed characteristic line in the forward acceleration region Aa, the forward deceleration region Ar, the backward acceleration region Ba, and the backward deceleration region Br is set so that positional accuracy can be ensured (to prevent overshoot due to excessive acceleration / deceleration. ), Which are set to be moderate to some extent, and are all speed characteristic lines having the same slope.
[0006]
As described above, the accuracy of the forward limit position and the backward limit position (return position) of the protruding member is ensured by making the degree of deceleration in the forward deceleration area Ar somewhat moderate and the degree of deceleration in the reverse deceleration area Br somewhat moderate. it can.
[0007]
[Problems to be solved by the invention]
By the way, the basic purpose of the ejecting operation is to release the molded product from the die. The range of required specifications is wide, such as a configuration in which the protruding member can be shaken down (the forward end position of the protruding member may be slightly varied).
[0008]
For example, in high cycle molding in which one molding cycle is about 10 seconds, the priority task required for the ejecting operation is to shorten the ejection time, and in many cases, the forward end position of the protruding member may be slightly varied. However, even in the high cycle molding, it is necessary to ensure the accuracy of the retreat limit position (return position) of the protruding member, and if the retreat limit position of the protruding member varies, the tip of the eject pin becomes the cavity of the mold. Since it forms a part of the outer shape, it adversely affects the accuracy of the molded product.
[0009]
Considering the control characteristics of the conventional ejecting operation shown in FIG. 4 from this point of view, in order to ensure the accuracy of the retreat limit position (return position) of the protruding member, the degree of deceleration in the retreat deceleration region Br is moderately moderated. Although it is difficult to reduce the time of the backward deceleration region Br, it is difficult to reduce the time of the ejected member as a required eject specification. ), There was room for improvement in shortening the ejection time.
[0010]
The present invention has been made in view of the above points, and an object of the present invention is to make it possible to shorten the ejecting operation time while maintaining the accuracy of the retreat limit position (return position) of the protruding member. .
[0011]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a projecting member for projecting a molded product from a mold, an eject plate to which the projecting member is mounted, an eject drive shaft for driving the eject plate forward and backward, and A drive source for driving the eject drive shaft, and a control unit for controlling the drive source, and the eject plate is connected to the eject drive shaft, so that the projecting member is moved by the eject drive shaft even when the eject member is retracted. In a molding machine that is driven and retracted, a speed characteristic line of deceleration in an end region in a stroke in which the protruding member advances to the forward limit position, and a speed characteristic line of acceleration in an initial region in a stroke in which the ejecting member retreats from the forward limit position. Is the speed characteristic of the deceleration in the end region in the stroke in which the projecting member finally retracts to the retreat limit position. Compared to, controlled to be steeper. Further, drive control is performed by a speed command pattern that does not stop the protruding member at the forward limit position.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an ejection mechanism and an ejection control system in an injection molding machine according to one embodiment of the present invention. In the figure, reference numeral 1 denotes a fixed die plate, 2 denotes a fixed die attached to the fixed die plate 1, 2a denotes a sprue forming member of the fixed die 2, 2a-1 denotes a sprue provided to the sprue forming member 2a. Reference numeral 2a-2 denotes a resin injection port provided in the sprue forming member 2a, and a nozzle of an injection mechanism (not shown) is pressed against the resin injection port 2a-2.
[0013]
Reference numeral 3 denotes a movable die plate, which can be moved back and forth with respect to the fixed die plate 1 by an appropriate mold opening / closing drive source (eg, a mold clamping motor) and a mold opening / closing mechanism (eg, a toggle link mechanism). Reference numeral 4 denotes a movable mold that is attached to the movable die plate 3 via a mold support member 5. Although not shown, the movable mold 4 is in close contact with the fixed mold 2 in a clamped state. The two dies 2 and 4 form a cavity which is a space for forming a molded product.
[0014]
Reference numeral 6 denotes an eject drive shaft mounted on the movable die plate 3 so as to be able to move forward and backward. An eject plate 7 also mounted on the movable die plate 3 so as to be able to move forward and backward is connected to the tip thereof. A plurality of eject pins (projecting members) 8 are implanted in the eject plate 7. In the mold clamping state, the eject pin 8 is located at the retreat limit position (return position), and the tip end surface of the eject pin 8 forms a part of the wall surface of the cavity. After the mold opening is completed or while the mold is being opened, the eject pin 8 is driven forward to eject and release the molded product 9 attached to the movable mold 4.
[0015]
Reference numeral 10 denotes an ejection servomotor (hereinafter, referred to as a servomotor 10) as an ejection drive source mounted on the movable die plate 3, and 11 denotes a rotation-linear motion conversion mechanism (e.g., a well-known mechanism) also provided on the movable die plate 3. ), The rotation of the servo motor 10 is converted to linear motion by a rotation-linear motion conversion mechanism 11, and the linear motion is converted to an eject drive shaft. 6 is transmitted through a connecting member as appropriate.
[0016]
Reference numeral 12 denotes a system controller that controls the entire machine (injection molding machine), and controls the operation of each part of the machine based on various operation control programs and various setting data created in advance. Reference numeral 13 denotes a servo control unit that controls a servo amplifier 14 that drives and controls the servo motor 10. The system controller 12 executes a servo control command based on eject control condition data stored in a set condition value storage unit 12a built therein. The servo control unit 13 controls the drive of the servo motor 10 via the servo amplifier 14 by giving it to the unit 13. Reference numeral 10a denotes an encoder for detecting rotational position information of the servo motor 10. Based on the detection information from the encoder 10a, the servo control unit 13 recognizes the position of the eject pin 8, and servo-controls a speed command value corresponding to the position information. Given to the amplifier 14, the servo amplifier 14 performs speed feedback control of the servo motor 10 by comparing the speed command value with the actually measured speed value based on the detection information from the encoder 10a.
[0017]
Reference numeral 15 denotes an input operation means including a keyboard device or the like. By operating the input operation means 15, the control condition data (setting data) given to the system controller 12 is changed, and the operation start / stop is instructed. It has become.
[0018]
Next, the eject operation of the present embodiment will be described. FIG. 2 is a control characteristic diagram showing an example of the eject operation (the operation of the eject pin 8) of the present embodiment. The vertical axis represents the forward speed and the reverse speed, and the horizontal axis represents time.
[0019]
When the ejecting operation is started, the ejecting pin 8 enters a pre-traveling stage in which the ejecting pin 8 is driven forward by the servomotor 10. The eject pin 8 is controlled to accelerate (forward acceleration region Aa) in the initial region of the forward travel, and then decelerates to control the eject pin 8 through a region of constant forward speed (constant forward speed region Ac) (forward deceleration). Region Ar). As soon as the eject pin 8 reaches the forward limit position, that is, when the forward deceleration region Ar of the eject pin 8 ends, the eject pin 8 enters a retreating stroke in which the eject pin 8 is driven backward by the servo motor 10. In the initial region of the retreat region, the eject pin 8 is controlled to accelerate (retreat acceleration region Ba), and then, through a region of constant retreat (constant reverse region Bc), the eject pin 8 is controlled to decelerate (retreat deceleration region). Br), when reaching the retreat limit position (return position), one cycle of the eject operation is terminated.
[0020]
Here, in the present embodiment, the inclination angle θ1 of the speed characteristic line in the forward deceleration region Ar and the inclination angle θ1 of the speed characteristic line in the reverse acceleration region Ba are determined by the reverse deceleration region Br (when the eject pin 8 It is set to be steeper (θ1> θ2) than the inclination angle θ2 of the speed characteristic line in the retraction stroke (finally in the retraction stroke for returning to the retraction limit position in preparation for the cycle). 4, the forward deceleration and the reverse acceleration are performed more rapidly than in the prior art shown in FIG. Therefore, the time T Ar of the forward deceleration region Ar of the present embodiment is shorter than the time T Ar ′ of the forward deceleration region Ar in the prior art shown in FIG. 4, and the time T Ar of the backward acceleration region Ba of the present embodiment is shorter. Ba is also shorter than the time TBa ′ of the backward acceleration region Ba in the conventional technique shown in FIG. Further, in the present embodiment, since the drive control is performed by a speed command pattern that does not stop the eject pin 8 at the forward limit position, the forward limit stop area S in the related art shown in FIG. time T S of the forward limit stop area S is also adapted to eliminate.
[0021]
That is, when the control method shown in FIG. 2 is employed, one cycle time of the eject operation is reduced as compared with the conventional technique shown in FIG.
{(T Ar '-T Ar ) + (T Ba ' -T Ba ) + T S }
, Which greatly contributes to shortening of the eject operation time.
[0022]
However, when the control described above is performed, the forward end position of the eject pin 8 varies, but in high cycle molding, in most cases, it is sufficient to simply shake off the molded product. Variations in the forward end position of the pin 8 are practically acceptable. Note that the slope of the speed characteristic line in the reverse deceleration region Br (final region in the reverse stroke for the eject pin 8 to return to the retreat limit position (finally) in preparation for the next molding cycle) is the same as the conventional one. Therefore, the position accuracy of the retreat limit position (return position) of the eject pin 8 is sufficiently ensured.
[0023]
Here, the inclination of the speed characteristic line in the forward acceleration region Aa shown in FIG. 2 (that is, the degree of forward acceleration) is selected to be an appropriate value according to the mechanism and the type of molding, and is shown in FIG. Although it is assumed to be equivalent to the prior art, a speed characteristic line steeper than this may be used in some cases.
[0024]
FIG. 3 is a control characteristic diagram showing another example of the eject operation (the operation of the eject pin 8) of the present embodiment, in which the vertical axis represents the forward speed and the reverse speed, and the horizontal axis represents time. In the present example shown in FIG. 3, the eject pin 8 is reciprocated a plurality of times in one cycle of the eject operation so that the eject pin 8 reaches the forward limit position a plurality of times.
[0025]
That is, when the ejecting operation is started, the ejecting pin 8 enters a forward traveling step (1) in which the ejecting pin 8 is driven forward, and in the initial region of the preceding traveling step (1), the ejecting pin 8 is acceleration-controlled (forward acceleration area Aa-1). Then, the eject pin 8 is controlled to decelerate (a forward deceleration region Ar-1) through a region of a constant forward speed (constant forward speed region Ac-1). As soon as the eject pin 8 reaches the forward limit position, the eject pin 8 enters a retreat stroke (1) in which the eject pin 8 is driven to retreat. In the initial region of the backward stroke (1), the eject pin 8 is controlled to accelerate (reverse acceleration region Ba-1), and then passes through a region of constant reverse speed (constant reverse region Bc-1). Deceleration control is performed (reverse deceleration area Br-1).
[0026]
In the retraction stroke (1), the eject pin 8 does not return to the retreat limit position, but returns to just before the retreat limit position. When the eject pin 8 retreats to a predetermined position just before the retreat limit position (when the retreat deceleration area Br-1 ends), the process immediately proceeds to the step (2) before the eject pin 8 is driven forward. In the initial region of the preceding traveling process (2), the eject pin 8 is controlled to accelerate (forward acceleration region Aa-2), and then passes through a region of constant forward speed (constant forward region Ac-2). The deceleration is controlled (forward deceleration area Ar-2).
[0027]
Then, as soon as the eject pin 8 reaches the forward limit position, the eject pin 8 enters a backward stroke (2) in which the eject pin 8 is driven backward. In the initial region of the reverse stroke (2), the eject pin 8 is acceleration-controlled (reverse acceleration region Ba-2), and then passes through the region of constant reverse speed (constant reverse speed region Bc-2). Deceleration control is performed (reverse deceleration area Br-2). This retreat stroke (2) is exactly the same operation as the previous retreat stroke (1), and the eject pin 8 does not return to the retreat limit position, but returns just before the retreat limit position. As soon as the eject pin 8 retreats to a predetermined position before the retreat limit position (when the retreat deceleration area Br-2 ends), the process immediately proceeds to the step (3) before the eject pin 8 is driven forward. In the initial region of the forward traveling step (3), the ejection pin 8 is acceleration-controlled (forward acceleration region Aa-3), and then passes through the region of constant forward speed (constant forward region Ac-3). The deceleration is controlled (forward deceleration area Ar-3). The preceding process (3) is exactly the same as the previous process (2).
[0028]
Then, as soon as the eject pin 8 reaches the forward limit position, the eject pin 8 enters a retreat stroke (3) in which the eject pin 8 is driven to retreat. In the initial region of the reverse stroke (3), the eject pin 8 is controlled to accelerate (reverse acceleration region Ba-3), and then passes through the region of constant reverse speed (constant reverse speed region Bc-3). When the deceleration control is performed (reverse deceleration region Br-3) and the vehicle reaches the retreat limit position (return position), the eject operation for one cycle is completed. The backward stroke (3) is the same operation as the backward stroke shown in FIG.
[0029]
In the example shown in FIG. 3 described above, the forward deceleration area Ar-1 in the forward travel step (1), the reverse acceleration area Ba-1 and the reverse travel deceleration area Br-1 in the reverse travel step (1), and the forward travel step (2). Forward acceleration area Aa-2 and forward deceleration area Ar-2, reverse travel area (2), reverse acceleration area Ba-2 and reverse deceleration area Br-2, forward travel area (3), forward acceleration area Aa-3 and forward deceleration The inclination angle θ1 of the velocity characteristic line in each of the region Ar-3 and the retreating acceleration region Ba-3 in the retreating stroke (3) is determined by the retreating deceleration region Br-3 (in the case where the eject pin 8 is It is set to be steeper (θ1> θ2) than the inclination angle θ2 of the velocity characteristic line in the retreating stroke (final region in the retreating stroke for returning to the retreat limit position) in preparation for the cycle. Therefore, in the present embodiment shown in FIG. 3, that is, even when the eject pin 8 is reciprocated a plurality of times, the time for the eject operation can be reduced, and the eject pin 8 is at the retreat limit position (return position). Accuracy can be maintained.
[0030]
【The invention's effect】
As described above, according to the present invention, it is possible to shorten the ejecting operation time while maintaining the accuracy of the retreat limit position (return position) of the protruding member. It can be applied to cases where it is sufficient to contribute to shortening the molding cycle.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an ejection mechanism and an ejection control system in an injection molding machine according to an embodiment of the present invention.
FIG. 2 is a control characteristic diagram showing one example of an eject operation in the injection molding machine according to one embodiment of the present invention.
FIG. 3 is a control characteristic diagram showing another example of an eject operation in the injection molding machine according to one embodiment of the present invention.
FIG. 4 is a control characteristic diagram showing an example of a conventional eject operation.
[Explanation of symbols]
Reference Signs List 1 fixed die plate 2 fixed mold 2a sprue forming member 2a-1 sprue 2a-2 resin injection port 3 movable die plate 4 movable mold 5 mold support member 6 eject drive shaft 7 eject plate 8 eject pin (projecting member) )
9 Molded product 10 Eject servo motor (servo motor)
10a Encoder 11 Rotation-linear motion conversion mechanism 12 System controller 12a Set condition value storage unit 13 Servo control unit 14 Servo amplifier 15 Input operation means

Claims (4)

金型から成形品を突き出すための突き出し部材と、該突き出し部材を装着したエジェクトプレートと、該エジェクトプレートを前後進駆動させるためのエジェクト駆動軸と、該エジェクト駆動軸を駆動する駆動源と、該駆動源を制御する制御手段とを備え、かつ、上記エジェクトプレートは上記エジェクト駆動軸に連結されることにより、上記突き出し部材は後退時もエジェクト駆動軸により駆動されて後退する成形機において、
上記突き出し部材が前進限位置に前進する行程における終期領域の減速の速度特性線、および、上記突き出し部材が前進限位置から後退する行程における初期領域における加速の速度特性線を、上記突き出し部材が最終的に後退限位置に後退する行程における終期領域の減速の速度特性線に比して、急峻となるように制御する手段を有することを特徴とする成形機。
A projecting member for projecting a molded product from a mold, an eject plate on which the projecting member is mounted, an eject drive shaft for driving the eject plate to move forward and backward, a drive source for driving the eject drive shaft, Control means for controlling a drive source, and the eject plate is connected to the eject drive shaft, the projecting member is also driven by the eject drive shaft even when retracted in a molding machine that retreats ,
The speed characteristic line of deceleration in the final region in the stroke in which the projecting member advances to the forward limit position, and the speed characteristic line of acceleration in the initial region in the stroke in which the projecting member retreats from the forward limit position, are determined by the projecting member. A molding machine having means for controlling so as to be steeper than a speed characteristic line of deceleration in an end region in a stroke of retreating to a retreat limit position.
請求項1記載において、
前記突き出し部材を前進限位置で停止させない速度指令パターンによって、駆動制御するようにしたことを特徴とする成形機。
In claim 1,
A molding machine characterized in that drive control is performed by a speed command pattern that does not stop the protruding member at the forward limit position.
請求項1記載において、
1サイクルのエジェクト動作で、前記突き出し部材を、前進限位置に複数回達するように、複数回往復駆動するようにしたことを特徴とする成形機。
In claim 1,
A molding machine characterized in that the ejecting member is reciprocated a plurality of times so as to reach the forward limit position a plurality of times in one cycle of the ejecting operation.
請求項3記載において、
2回目以降の前記突き出し部材が前進限位置に前進する行程における初期領域の加速の速度特性線、および、最終回以外の前記突き出し部材が後退する行程における終期領域における減速の速度特性線を、前記突き出し部材が最終的に後退限位置に後退する行程における終期領域の減速の速度特性線に比して、急峻となるように制御することを特徴とする成形機。
In claim 3,
The speed characteristic line of the acceleration in the initial region in the stroke in which the projecting member advances to the forward limit position after the second time, and the speed characteristic line of the deceleration in the terminal region in the stroke in which the projecting member retreats other than the last time, A molding machine characterized in that control is performed so as to be steeper than a speed characteristic line of deceleration in an end region in a stroke in which a projecting member finally retreats to a retreat limit position.
JP10045097A 1997-04-17 1997-04-17 Molding machine Expired - Fee Related JP3569102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10045097A JP3569102B2 (en) 1997-04-17 1997-04-17 Molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10045097A JP3569102B2 (en) 1997-04-17 1997-04-17 Molding machine

Publications (2)

Publication Number Publication Date
JPH10286857A JPH10286857A (en) 1998-10-27
JP3569102B2 true JP3569102B2 (en) 2004-09-22

Family

ID=14274259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10045097A Expired - Fee Related JP3569102B2 (en) 1997-04-17 1997-04-17 Molding machine

Country Status (1)

Country Link
JP (1) JP3569102B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581082B2 (en) 2010-03-12 2014-08-27 東芝機械株式会社 Reciprocating device and molding machine using the same
JP2011240602A (en) * 2010-05-18 2011-12-01 Toshiba Mach Co Ltd Injection molding method and device thereof
JP6169634B2 (en) * 2015-03-06 2017-07-26 ファナック株式会社 Injection molding machine provided with ejector and ejector operation method of injection molding machine
CN110919993A (en) * 2019-12-06 2020-03-27 深圳市山龙智控有限公司 Injection molding machine manipulator control method and control device

Also Published As

Publication number Publication date
JPH10286857A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US20060012078A1 (en) Decelerated ejector pin system and method for operating the same
KR0155417B1 (en) Method of ejecting molded products in injection molding machine
JPH0639115B2 (en) Method for removing molded article and apparatus therefor
US5513970A (en) Robot for ejection of an object from between two bodies
JP3569102B2 (en) Molding machine
JP2001347550A (en) Method for controlling screw position in rapid injection and rapid pressure release
JP3222830B2 (en) Gate cutting device and gate cutting method for disk molding device
JP4928283B2 (en) Injection molding machine
JPH04129717A (en) Ejecting method in forming machine
JP3809997B2 (en) Molding machine
JP3252216B2 (en) Injection molding machine removal method
JP3748992B2 (en) Injection molding machine
CN111016101B (en) Control method and control device for glue melting of injection molding machine and injection molding machine
JP3258151B2 (en) Control device for gate cutting pin position of injection molding machine
US10105888B2 (en) Injection molding machine with ejector and ejector operating method for injection molding machine
JPH06226787A (en) Nozzle touch method
KR20240038446A (en) Apparatus of ejecting molded product
JPH0534134B2 (en)
JP2008173823A (en) Injection molding machine
JP3951910B2 (en) Control method of multilayer injection molding apparatus
JP3258196B2 (en) Control device for injection molding machine
JP2992327B2 (en) Injection control device of injection molding machine
JP2000326371A (en) Method for controlling operation of ejector device of injection molding machine
JPH06198583A (en) Robot
JP2798113B2 (en) Method of controlling movable member in molding machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees