JP3568260B2 - Quantitative injection valve for fixing injection particle size in quantitative injection of injection fluid using liquefied high-pressure gas as a propellant, injector and injection device using this valve - Google Patents

Quantitative injection valve for fixing injection particle size in quantitative injection of injection fluid using liquefied high-pressure gas as a propellant, injector and injection device using this valve Download PDF

Info

Publication number
JP3568260B2
JP3568260B2 JP31274394A JP31274394A JP3568260B2 JP 3568260 B2 JP3568260 B2 JP 3568260B2 JP 31274394 A JP31274394 A JP 31274394A JP 31274394 A JP31274394 A JP 31274394A JP 3568260 B2 JP3568260 B2 JP 3568260B2
Authority
JP
Japan
Prior art keywords
valve
injection
path
pin
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31274394A
Other languages
Japanese (ja)
Other versions
JPH08141450A (en
Inventor
一朗 文野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tansan Gas Co Ltd
Original Assignee
Nippon Tansan Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tansan Gas Co Ltd filed Critical Nippon Tansan Gas Co Ltd
Priority to JP31274394A priority Critical patent/JP3568260B2/en
Publication of JPH08141450A publication Critical patent/JPH08141450A/en
Application granted granted Critical
Publication of JP3568260B2 publication Critical patent/JP3568260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Nozzles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は液化高圧ガスをプロペラントとした噴射流体の定量噴射の際の噴射粒径固定用の定量噴射弁及びこの弁を用いた噴射器と噴射装置にかかる。
【0002】
【従来の技術】
本件出願人が先に出願した特願平6−85236号に液化炭酸ガスの定量噴射弁及びこの弁を用いた噴射器と噴射装置が開示されている。
【0003】
【発明が解決しようとする課題】
一般に高圧の液化ガスを噴射する際、できるだけ装置内で減圧せずに高圧のまま開放してやると、噴射された液化高圧ガスは高い圧力のまま大気と接触するので、非常に細かい粒径の噴霧となる。これに反し、開放前に減圧して噴射を行うと、粒径はその減圧量に従って拡大していく。開閉弁を開くときの操作の仕方、即ち、開閉弁の開き始めから全開に至る過程に動作の一様性がなかったり、時間差があったりすると、弁開度が固定され、開閉弁部分で減圧することになるため、粒径の大きさが変化する。
【0004】
通常の噴射装置は噴射量が多く、開閉弁を開き切った時点から液化ガスは高圧の状態で放出されるので、この開閉弁の開き始めの特性は問題になることは少ない。しかしながら、小容量の定量噴射の場合は、全体の噴射量に対しこの開き始めの噴射量が無視できない程大きく影響して来るので、その特性の影響をいかにして少なくするかが課題となっている。
【0005】
また、液化ガスの場合、その種類によって蒸気圧が決まっており、開閉弁が開き切った時点から大気中に放出されるこの液化ガスの粒径はほぼ一定で、最も小さくなる。ところが、噴霧対象によっては粒径が小さければよいとは限らない。例えば、吸入療法で呼吸器系への薬剤投与の場合、それぞれの治療目的に応じて薬剤を投与するべき部位が有り、気管支から肺胞の場合は3〜5μm程度、耳鼻咽喉科領域及び上気道には10〜30μm程度が好ましい等、それぞれに適した粒径がある。
【0006】
そこで、使用目的に応じた粒径の液化ガスの噴霧を如何にしたら行えるかという課題も存在している。本発明はこれらの課題を解決することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明にかかる、被噴射剤をプロペラント用の液化ガスに添加した噴射流体の定量噴射の際の噴射粒径固定用の定量噴射弁は、弁匣と、連動する第一及び第二の弁と、該両弁間で該弁匣に形成された計量室を有している。該弁匣は軸線上にガスの流出路が貫通している。該両弁は該流出路の上流側と下流側に位置し、それぞれ弁ピンと環状パッキンを有している。該両弁ピンは軸方向へ移動自在に該流出路に嵌合してそれぞれ閉止部、開放部及び両部を結ぶ傾斜部を有する。そして、該閉止部の断面積は第二の弁の弁ピンの方が第一の弁の弁ピンより大となっている。該環状パッキンは該流出路の周壁に該各弁ピンの閉止部、傾斜部及び開放部と係脱自在に配設される。
【0008】
そして、該両弁は第一の弁の閉止時に第二の弁が計量室を下流側へ連通し、第一の弁の開放時に第二の弁が閉止して計量室を上流側へ連通させる位置関係となっている。ガス圧だけでは弁ピンの戻りが不充分な場合、弁ピンと弁匣間に弁ピン戻し用のスプリングを介装してもよい。
【0009】
該第二の弁の弁ピンの該閉止部が該流出路と摺嵌する間隙は絞り部を形成している。該弁匣の側壁に自身の内端が該流出路と連通する噴射路が穿たれ、該噴射路内に外気導入路の開口端が突入している。
【0010】
本発明にかかる、被噴射剤をプロペラント用の液化高圧ガスに添加した噴射流体の定量噴射の際の噴射粒径固定用の定量噴射器は、前記構成の定量噴射弁を、小型噴射流体容器の開口部に密接に嵌装し、吐出口を有するキャップを該容器に該噴射弁を覆って摺嵌し、該キャップの該吐出口に向う内壁面を第二の弁の弁ピンの頭部に係合させる。
【0011】
該第二の弁の弁ピンの該閉止部が該流出路と摺嵌する間隙は絞り部を形成している。該弁匣の側壁に該流出路を該吐出口と連通する噴射路が穿たれ、該キャップに外気導入路が設けられてその開口端が該噴射路より下流側でその流路に関し突入している。該内壁面と該第二の弁の弁ピンの頭部との係合が該弁匣に摺嵌する圧子を介してなされ、該圧子が該内壁面に弾性座を介して支持されている。
【0012】
本発明にかかる、被噴射剤をプロペラント用の液化高圧ガスに添加した噴射流体の定量噴射の際の噴射粒径固定用の定量噴射装置は、既記構成の定量噴射弁の第一の弁に連通してその上流側に小型噴射流体容器のカット装置を設ける。そして、吐出口を有するキャップを該弁匣に該定量噴射弁を覆って摺嵌し、該キャップの該吐出口に向う内壁面を第二の弁の弁ピンの頭部に係合させる。
【0013】
該第二の弁の弁ピンの該閉止部が該流出路と摺嵌する間隙は絞り部を形成している。該弁匣の側壁に該流出路を該吐出口と連通する噴射路が穿たれ、該キャップに外気導入路が設けられたその開口端が該噴射路より下流側でその流路に関し突入している。該内壁面と該第二の弁の弁ピンの頭部との係合が該弁匣に摺嵌する圧子を介してなされ、該圧子が該内壁面に弾性座を介して支持されている。
【0014】
既記の液化ガスの例としては液化炭酸ガス、液化窒素ガス、液体酸素、液化天然ガスがある。また被噴射剤としては、種々の薬剤、消臭剤、塗料等がある。更に添加の態様としては懸濁状態、溶融状態等がある。また、既記の第一及び第二の弁の弁ピンは一体状の構成としてもよいが、単なる当接構成としてもよい。
【0015】
【作用】
定量噴射弁の場合、弁匣の流出路の第一の弁側を噴射流体の供給側に導結する。スプリングやガス圧で弁ピンが第一の弁側から第二の弁側へ押され、第一の弁は開放し、第二の弁が閉止している。噴射流体は第一の弁を通って計量室に充満する。
【0016】
ここで第二の弁の弁ピンを押し込んで行く。この押込力は、
[第二の弁の弁ピンの閉止部の断面積]×[内圧](+スプリングの力)
の反力に打ち勝つ大きさとなる。第二の弁の弁ピンの移動と共に第一の弁の弁ピンも移動して先ず第一の弁が閉止する。第二の弁の弁ピンの閉止部が流出路を開放した途端に、
[第一の弁の弁ピンの閉止部の断面積]×[内圧](+スプリングの力)
が反力となり、
{[第一の弁の弁ピンの閉止部の断面積]×[内圧]}−{[第二の弁の弁ピンの閉止部の断面積]×[内圧]}
分の荷重差が発生する。そのため、第一及び第二の弁の弁ピンは急速に押し込まれる。第二の弁における開放過程での絞り効果は実質的に発生せず、しかも第二の弁の弁ピンの閉止部の断面積は第一の弁の弁ピンのそれより大きいので、計量室の所定量のガスが急速に外部へ放出される。
【0017】
第二の弁の弁ピンを釈放すると、第一の弁の弁ピンがガス圧や、スプリングがある場合はその復原力で原位置方向へ押しやられ、第二の弁の弁ピンも連動する。そして、先ず第二の弁が閉止して流出路を遮断し、次いで第一の弁が開放して新たに噴射流体が計量室に充満する。従って、第二の弁の弁ピンの押し込みと釈放の反覆により、定量の噴射流体を反覆してかつ急速に噴射させることができる。この際、噴射流体は放出過程での圧力変動が少ないのでほぼ所定の圧力で大気中に噴出し、その噴霧中の粒子はほぼ所望の粒径を保ち、むらを生じない。
【0018】
該第二の弁の弁ピンの該閉止部が該流出路と摺嵌する間隙が絞り部を形成していると、該絞り部の隙間量を調整することで減圧量、即ち噴射流体の粒径が決まる。
【0019】
該弁匣の側壁に自身の内端が該流出路と連通する噴射路が穿たれ、該噴射路の内に外気導入路の開口端が突入していると、噴射流体がその放出時に該開口端内部を負圧とすることにより自身の流れの中に外気を吸引し、噴射流体は多くの面で大気と接触し、粒径の微細化や流速の緩和につながる。なお、粒径の微細化が可能となり、流速も緩和されると呼吸器吸入用等に最適となる。
【0020】
定量噴射器の場合、小型噴射流体容器に予め被噴射剤を液化ガスに添加した噴射流体が充填されている。キャップを押し込めば第二の弁の弁ピンが押し込まれ、第一の弁の弁ピンもこれに連動し、前記の定量噴射弁の場合と同様に、定量の噴射流体が噴射される。そして、このキャップの押し込みと釈放の反覆により、定量の噴射流体を反覆して噴射させることができる。
【0021】
この定量の噴射器の場合も、該第二の弁の弁ピンの該閉止部が該流出路と摺嵌する間隙が絞り部を形成していると、該絞り部の隙間量を調整することで減圧量、即ち噴射流体の粒径が決まる。
【0022】
該弁匣の側壁に該流出路を該吐出口と連通する噴射路が穿たれ、該キャップに外気導入路が設けられてその開口端が該噴射路より下流側でその流路に関し突入していると、噴射流体はその放出時に該開口端内部を負圧とすることにより自身の流れの中に外気を吸引し、噴射流体は多くの面で大気と接触し、粒径の微細化や流速の緩和につながる。
【0023】
また、該内壁面と該第二の弁の弁ピンの頭部との係合が該弁匣に摺嵌する圧子を介してなされ、該圧子が該内壁面に弾性座を介して支持されていると、キャップの押し込み時、弾性座の変形荷重で両弁ピンを押し込むことになるので、第二の弁の開放速度が高められ、粒径の均一化に役立つ。
【0024】
定量噴射装置の場合、前記の噴射流体が充填されている小型噴射流体容器をこの定量噴射装置のカット装置に取付ける。カット装置により容器の封板がカットされ、内部の噴射流体が第一の弁を通って計量室に充満する。
【0025】
ここでキャップを押し込めば第二の弁の弁ピンが押し込まれ、第一の弁の弁ピンもこれに連動し、前記の定量噴射器の場合と同様にして、定量の噴射流体が急速に外部へ放出される。そして、このキャップの押し込みと釈放の反覆により、定量の噴射流体を反覆してかつ急速に噴射させることができ、粒径も均一となる。
【0026】
この定量噴射装置の場合も、該第二の弁の弁ピンの該閉止部が該流出路と摺嵌する間隙が絞り部を形成していると、該絞り部の隙間量を調整することで減圧量、即ち噴射流体の粒径が決まる。
【0027】
また、該弁匣の側壁に該流出路を該吐出口と連通する噴射路が穿たれ、該キャップに外気導入路が設けられてその開口端が該噴射路より下流側でその流路に関し突入していると、噴射流体がその放出時に該開口端内部を負圧とすることにより自身の流れの中に外気を吸引し、噴射流体は多くの面で大気と接触し、粒径の微細化や流速の緩和につながる。
【0028】
更に、該内壁面と該第二の弁の弁ピンの頭部との係合が該弁匣に摺嵌する圧子を介してなされ、該圧子が該内壁面に弾性座を介して支持されていると、キャップの押し込み時、弾性座の変形荷重で両弁ピンを押し込むことになるので、第二の弁の開放速度が高められ、粒径の一定化に一層役立つ。
【0029】
【実施例】
図面中、同一符号は同一もしくは相応部分を示す。図1で、1は定量噴射弁で、弁匣2、連動する第一の弁3と第二の弁4、及び両弁3と4間で弁匣2に形成された計量室5を有する。弁匣2は軸線6上にガスの流出路7が貫通しており、被噴射剤をプロペラント用の液化高圧ガスに添加した噴射流体は矢印の方向に流れるようになっている。
【0030】
両弁3と4は流出路7の上流側7aと下流側7bに位置し、それぞれ弁ピン8、9と環状パッキン10、11を有している。そして両弁ピン8と9が連動する。図面では弁ピン8と9は別体のものを突き合わせた構成となっているが、一体状に螺合しても、又は一体に成形してもよい。また両弁ピン8と9はステンレス製とするのが移動の円滑性を保てて好ましい。
【0031】
両弁ピン8と9は軸方向へ移動自在に流出路7に嵌合し、それぞれ閉止部12、13、開放部14、15及び両部を結ぶ傾斜部16、17を有している。図示の例で開放部14は開放部15のような軸状をなしておらず空虚状となっているが、軸状としてもよい。そして、閉止部13の断面積は閉止部12の断面積より大となっている。
【0032】
また、環状パッキン10と11は流出路7の周壁に各弁ピン8又は9の閉止部12又は13、傾斜部14又は15及び開放部16又は17と係脱自在に配設される。そして、両弁3と4は、第一の弁3の閉止時に第二の弁4が計量室5を下流側7bと連通し、第一の弁3の開放時に第二の弁4が閉止して計量室5を上流側7aと連通させる位置関係となっている。
【0033】
第二の弁4の弁ピン9の押込力は、
[第二の弁4の弁ピン9の閉止部13の断面積]×[内圧](+スプリング18の力)
の反力に打ち勝つ大きさとなる。第二の弁4の弁ピン9の移動と共に第一の弁3の弁ピン8も移動して先ず第一の弁3が閉止する。
[第一の弁3の弁ピン8の閉止部12の断面積]×[内圧](+スプリング18の力)
が反力となり、
{[第一の弁3の弁ピン8の閉止部12の断面積]×[内圧]}−{[第二の弁4の弁ピン9の閉止部13の断面積]×[内圧]}
分の荷重差が発生する。そのため、第一及び第二の弁3及び4の弁ピン8及び9は急速に押し込まれる。第二の弁4における開放過程での絞り効果は実質的に発生せず、しかも第二の弁4の弁ピン9の閉止部13の断面積は第一の弁3の弁ピン8のそれより大きいので、計量室5の所定量のガスが急速に外部へ放出される。そのため所定圧による所定の粒径で噴霧される。
【0034】
スプリング18は上記の通り弁ピン8を一方向へ移動させるためのもので、弁ピン8のフランジ19と弁匣2の計量室5の端壁間に介装される。また、定量噴射弁1の第二の弁4の弁ピン9の閉止部13が流出路7と摺嵌する間隙7は絞り部を形成している。こうすると、噴霧粒径に応じた減圧量を間隙7の選定によって決められる。
【0035】
また、弁匣2の側壁2に自身の内端が流出路7と連通する噴射路27が穿たれ、この噴射路内に外気導入路28の開口端28が突入している。こうすると、噴射流体により開口端28内部の圧力が下がり、そのため噴射流体は自身の流れの中に外気を吸引するので、粒径の細粒化や、流速の緩和がはかれる。
【0036】
図2は定量噴射器21を示してある。この定量噴射器21で定量噴射弁1は小型噴射流体容器22の開口部23に密接に嵌装する。そして、側方に吐出口24を有するキャップ25をこの容器22に定量噴射弁1を覆って摺嵌し、この吐出口24に向うキャップ25の内壁面26を第二の弁4の弁ピン9の頭部9aに係合させる。
【0037】
図示の定量噴射器21で小型噴射流体容器22には予め被噴射剤を液化高圧ガスに添加した噴射液体Lが充填されている。キャップ25を押し込めば第二の弁4の弁ピン9が押し込まれ、第一の弁3の弁ピン8もこれに連動し、前記の定量噴射弁1の場合と同様に、定量の噴射流体Lが噴射される。そして、このキャップ25の押し込みと釈放の反覆により、定量の噴射液体Lを反覆して噴射させることができる。この場合の第二の弁4の弁ピン9の押込力は[0033]で述べた場合と同じである。
【0038】この定量噴射器21の場合、定量噴射弁1の第二の弁4の弁ピン9の閉止部13が流出路7と摺嵌する間隙7は絞り部を形成している。こうすると、噴霧粒径に応じた減圧量を間隙7の選定によって決められる。
【0039】
また、弁匣2の側壁2に流出路7を吐出口24と連通する噴射路27が穿たれ、キャップ25に外気導入路28が設けられてその開口端28が噴射路27より下流側でその流路に関し突入している。こうすると、噴射流体が自身の流れの中に外気を吸引するので、粒径の細粒化や、流速の緩和がはかれる。
【0040】
また、内壁面26と第二の弁4の弁ピン9の頭部9aとの係合が弁匣2の頂部に設けた凹窩40に摺嵌する圧子29を介してなされ、この圧子29が内壁面26に弾性座30を介して支持されている。こうすると、キャップ25を押し込んだとき、弾性座30が先に変形し、この弾性座30の変形荷重で弁ピン9及び8を押し込むことになる。そのため、第二の弁4の開放度が高められ、粒径の均一化に一層役立つ。
【0041】
図3は定量噴射弁1を用いた定量噴射装置31を示してある定量噴射弁1の第一の弁3に連通して流出路7の上流側7aに小型噴射流体容器32の封板32’をカットするためのカット装置33を設ける。そして、側方に吐出口24を有するキャップ25を弁匣2に定量噴射弁1を覆って摺嵌し、この吐出口24に向う内壁面26を第二の弁4の弁ピン9の頭部9aに係合させる。
【0042】
図示の定量噴射装置31の場合、容器32は首部34にねじの無いものを使用したため、容器32をホルダー35に入れ、このホルダー35の開口部のねじ36をカット装置33の取付ねじ37に螺合して封板32’を穿針38でカットするようになっている。首部34にねじがある場合は容器32を直接カット装置33に取付け、ホルダー35を省くことができる。
【0043】
図示の定量噴射装置31で、容器32をホルダー35に入れ、このホルダー35をカット装置33に取付けて容器32の封板32’を開栓する。容器32内の噴射液体Lは流出し、第一の弁3を通って計量室5に流入する。
【0044】
キャップ25を押し込めば、定量噴射弁1及び定量噴射器21の例で述べた通り、弁ピン9と8が下降し、弁ピン8の閉止部12が環状パッキン10と圧接してガスの流出路7を遮断し、次いで、弁ピン9の開放部15が環状パッキン11と相対する。弁ピン9の閉止部13の断面積が弁ピン8の閉止部12の断面積より大きくかつ第二の弁4の開放が瞬間的に行われるので、計量室5がガス流の下流側と連通すると、計量室5内の噴射液体Lは急速に流出して吐出口24から噴射される。従って、その噴霧中の粒子の直径は始終ほぼ均一となる。
【0045】
また、この場合、第二の弁4の弁ピン9の閉止部13が流出路7と摺嵌する間隙7は絞り部を形成している。こうすると、噴霧粒径に応じた減圧量を間隙7の選定によって決められる。なお、図面で41はOリング押え、42はフィルターである。
【0046】
【発明の効果】
本発明の定量噴射弁によれば、ガス流出路の上流側に第一の弁が位置し下流側に第二の弁が位置し、第二の弁の弁ピンの閉止部の断面積が第一の弁の弁ピンの閉止部の断面積より大きいので、この上流側を液化高圧ガス供給源に導結し、下流側を大気に導結することにより、弁ピンの操作で定量の高圧のガスを急速に取出すことができ、従って、放出過程での圧力変動がほとんどなく、ほぼ所定の圧力で大気中に噴出し、噴霧中の粒子の粒径を所望の値にほぼ固定できる。
【0047】
請求項2によれば、減圧量に応じた粒径を有する噴霧が得られる。
請求項3によれば、噴射流体が外気と多面的に接触するので、粒径の微細化と、流速の緩和が得られる。
【0048】
請求項4の定量噴射器によれば、噴射流体容器を持ってキャップを移動させるだけで噴射を行うことができる。
請求項5によれば、減圧量に応じた粒径を有する噴霧が得られる。
【0049】
請求項6によれば、噴射流体が外気と多面的に接触するので、粒径の微細化と、流速の緩和が得られる。
請求項7によれば、弾性座の変形荷重で弁ピンを押し込むので、第二の弁の開放速度を高めることができ、粒径の均一化に寄与できる。
【0050】
請求項8の定量噴射装置によれば、噴射流体を充填した容器をカット装置に取付けるだけで流体噴射をできる。
請求項9によれば、減圧量に応じた粒径を有する噴霧が得られる。
【0051】
請求項10によれば、噴射流体が外気と多面的に接触するので、粒径の微細化と、流速の緩和が得られる。
請求項11によれば、弾性座の変形荷重で弁ピンを押し込むので、第二の弁の開放速度を高めることができ、粒径の均一化に寄与できる。
【図面の簡単な説明】
【図1】本発明にかかる噴射流体の定量噴射の際の噴射粒径固定用の定量噴射弁の具体例を示す切断側面図である。
【図2】同定量噴射弁を備えた定量噴射器の切断側面図である。
【図3】同定量噴射弁を備えた定量噴射装置の切断側面図である。
【符号の説明】
1 定量噴射弁
2 弁匣
2’ 側壁
3 第一の弁
4 第二の弁
5 計量室
6 軸線
7 流出路
7’ 間隙
7a 上流側
7b 下流側
8 弁ピン
9 弁ピン
9a 頭部
10 環状パッキン
11 環状パッキン
12 閉止部
13 閉止部
14 開放部
15 開放部
16 傾斜部
17 傾斜部
18 スプリング
L 噴射流体
21 定量噴射器
22 小型噴射流体容器
23 開口部
24 吐出口
25 キャップ
26 内壁面
27 噴射器
28 外気導入路
28’開口端
29 圧子
30 弾性座
31 定量噴射装置
32 容器
32’封板
33 カット装置
34 首部
35 ホルダー
36 ねじ
37 取付ねじ
38 穿針
40 凹窩
[0001]
[Industrial applications]
The present invention relates to a fixed-quantity injection valve for fixed injection particle diameter at the time of fixed-quantity injection of an injection fluid using a liquefied high-pressure gas as a propellant, and an injector and an injection device using the valve.
[0002]
[Prior art]
Japanese Patent Application No. 6-85236, filed by the present applicant, discloses a liquefied carbon dioxide gas quantitative injection valve and an injector and an injection device using the valve.
[0003]
[Problems to be solved by the invention]
In general, when injecting a high-pressure liquefied gas, if it is opened at a high pressure without depressurizing inside the device as much as possible, the injected liquefied high-pressure gas will come into contact with the atmosphere at a high pressure. Become. On the other hand, if the injection is performed under reduced pressure before opening, the particle diameter increases according to the reduced pressure amount. When the opening / closing valve is opened, that is, when the opening / closing valve does not operate uniformly during the process from opening to full opening or when there is a time lag, the valve opening is fixed, and the pressure is reduced in the opening / closing valve portion. Therefore, the size of the particle size changes.
[0004]
Since a general injection device has a large injection amount and the liquefied gas is released in a high pressure state from the time when the on-off valve is fully opened, the characteristic of the on-off valve starting to open rarely causes a problem. However, in the case of small-volume fixed-quantity injection, since the injection amount at the beginning of opening greatly affects the entire injection amount, it is an issue how to reduce the influence of the characteristic. I have.
[0005]
In the case of a liquefied gas, the vapor pressure is determined depending on the type of the liquefied gas, and the particle diameter of the liquefied gas released into the atmosphere from the time when the on-off valve is fully opened is almost constant and the smallest. However, depending on the spray target, it is not always necessary to have a small particle size. For example, in the case of drug administration to the respiratory system by inhalation therapy, there is a site to which the drug is to be administered depending on the purpose of each treatment. In the case of bronchial to alveoli, about 3 to 5 μm, ENT and upper respiratory tract Has a particle size suitable for each, such as about 10 to 30 μm.
[0006]
Therefore, there is a problem of how to spray a liquefied gas having a particle size according to the purpose of use. An object of the present invention is to solve these problems.
[0007]
[Means for Solving the Problems]
That written to the present invention, the injection diameter quantitative injection valve for fixing the time of metered dose of fluid jet with the addition of the propellant in the liquefied gas for the propellant, a Benkushige, first and second interlocked And a measuring chamber formed in the valve housing between the two valves. The valve housing has an axis through which a gas outflow passage penetrates. The two valves are located upstream and downstream of the outflow passage and each have a valve pin and an annular packing. The two valve pins are movably fitted in the outflow passage in the axial direction, and each has a closing part, an opening part, and an inclined part connecting the two parts. The cross-sectional area of the closing portion is larger for the valve pin of the second valve than for the valve pin of the first valve. The annular packing is disposed on a peripheral wall of the outflow passage so as to be freely detachable from a closing portion, an inclined portion, and an opening portion of each of the valve pins.
[0008]
When the first valve is closed, the second valve connects the measuring chamber to the downstream side when the first valve is closed, and when the first valve is opened, the second valve closes to connect the measuring chamber to the upstream side. It is a positional relationship. If the return of the valve pin is not sufficient with the gas pressure alone, a spring for returning the valve pin may be interposed between the valve pin and the valve housing.
[0009]
The gap in which the closing portion of the valve pin of the second valve slides into the outflow passage forms a throttle. An injection passage whose inner end communicates with the outflow passage is formed in the side wall of the valve housing, and the open end of the outside air introduction passage protrudes into the injection passage.
[0010]
That written to the present invention, quantitative injector for an injection diameter fixed upon quantitative injection of the injection fluid with the addition of the propellant liquefied propellant for the propellant, a metered dose valve of the structure, a small injection Closely fitted to the opening of the fluid container, a cap having a discharge port is slidably fitted over the injection valve over the container, and the inner wall surface of the cap facing the discharge port is formed of a valve pin of the second valve. Engage with head.
[0011]
The gap in which the closing portion of the valve pin of the second valve slides into the outflow passage forms a throttle. An injection path communicating the outflow path with the discharge port is formed in a side wall of the valve housing, an outside air introduction path is provided in the cap, and an open end of the injection path protrudes downstream of the injection path with respect to the flow path. I have. The engagement between the inner wall surface and the head of the valve pin of the second valve is made via an indenter slidingly fitted to the valve housing, and the indenter is supported on the inner wall surface via an elastic seat.
[0012]
That written to the present invention, quantitative injection device for injection particle size fixed upon quantitative injection of the injection fluid with the addition of the propellant liquefied propellant for the propellant, the first quantitative injection valve handed configuration And a cutting device for a small jet fluid container is provided upstream of the valve. Then, a cap having a discharge port is slidably fitted to the valve housing so as to cover the fixed quantity injection valve, and an inner wall surface of the cap facing the discharge port is engaged with a head of a valve pin of the second valve.
[0013]
The gap in which the closing portion of the valve pin of the second valve slides into the outflow passage forms a throttle. An injection passage communicating the outflow passage with the discharge port is formed in a side wall of the valve housing, and an open end provided with an outside air introduction passage in the cap protrudes with respect to the flow passage downstream of the injection passage. I have. The engagement between the inner wall surface and the head of the valve pin of the second valve is made via an indenter slidingly fitted to the valve housing, and the indenter is supported on the inner wall surface via an elastic seat.
[0014]
Examples of the aforementioned liquefied gas include liquefied carbon dioxide gas, liquefied nitrogen gas, liquid oxygen, and liquefied natural gas. Examples of the propellant include various chemicals, deodorants, paints, and the like. Examples of the mode of addition include a suspended state and a molten state. Further, the valve pins of the first and second valves described above may have an integral structure, but may have a mere contact structure.
[0015]
[Action]
In the case of a fixed injection valve, the first valve side of the outflow path of the valve housing is connected to the supply side of the injection fluid. The valve pin is pushed from the first valve side to the second valve side by a spring or gas pressure, the first valve is opened, and the second valve is closed. The injection fluid fills the metering chamber through the first valve.
[0016]
Now push in the valve pin of the second valve. This pushing force is
[Cross-sectional area of closed part of valve pin of second valve] x [Internal pressure] (+ spring force)
Overcoming the reaction force. With the movement of the valve pin of the second valve, the valve pin of the first valve also moves and the first valve is first closed. As soon as the closing portion of the valve pin of the second valve opens the outflow passage,
[Cross-sectional area of closing portion of valve pin of first valve] x [Internal pressure] (+ spring force)
Becomes a reaction force,
{[Cross-sectional area of closing portion of valve pin of first valve] × [Internal pressure]} − {[Cross-sectional area of closing portion of valve pin of second valve] × [Internal pressure]}
Minute load difference occurs. As a result, the valve pins of the first and second valves are pushed in quickly. Substantially no throttle effect occurs during the opening process in the second valve, and the cross-sectional area of the closing portion of the valve pin of the second valve is larger than that of the valve pin of the first valve. A predetermined amount of gas is rapidly released to the outside.
[0017]
When the valve pin of the second valve is released, the valve pin of the first valve is pushed toward the original position by the gas pressure or the restoring force of a spring, if any, and the valve pin of the second valve also moves. Then, first, the second valve is closed to shut off the outflow path, and then the first valve is opened to newly fill the metering chamber with the injection fluid. Therefore, the repetition of the releasing and pushing of the valve pin of the second valve, Ru can be and rapidly injected by recurring quantification of injection fluid. At this time, since the jet fluid has a small pressure fluctuation during the discharging process, it is jetted into the atmosphere at a substantially predetermined pressure, and the particles in the spray maintain a substantially desired particle size without causing unevenness.
[0018]
If the gap in which the closing portion of the valve pin of the second valve slides with the outflow path forms a throttle, the amount of pressure reduction, that is, the particle size of the ejected fluid, is adjusted by adjusting the amount of the gap in the throttle. The diameter is determined.
[0019]
An injection passage whose inner end communicates with the outflow passage is formed in the side wall of the valve housing, and the opening end of the outside air introduction passage protrudes into the injection passage. By setting the inside of the end to a negative pressure, external air is sucked into its own flow, and the ejected fluid comes into contact with the atmosphere on many surfaces, leading to a reduction in particle size and a reduction in flow velocity. If the particle size can be reduced and the flow rate can be reduced, it becomes optimal for respiratory inhalation and the like.
[0020]
In the case of a fixed-quantity injector, a small injection fluid container is filled with an injection fluid in which a propellant is added to a liquefied gas in advance. When the cap is pushed in, the valve pin of the second valve is pushed in, and the valve pin of the first valve also moves in conjunction with this, and a fixed amount of injection fluid is injected as in the case of the above-described fixed injection valve. Then, by repeating the pushing and releasing of the cap, a fixed amount of the ejected fluid can be ejected repeatedly.
[0021]
In the case of this fixed-quantity injector, if the gap in which the closing portion of the valve pin of the second valve slides with the outflow path forms a throttle portion, the gap amount of the throttle portion is adjusted. Determines the pressure reduction amount, that is, the particle diameter of the ejection fluid.
[0022]
An injection path communicating the outflow path with the discharge port is formed in a side wall of the valve housing, an outside air introduction path is provided in the cap, and an open end of the injection path protrudes downstream of the injection path with respect to the flow path. When ejected, the ejected fluid sucks outside air into its own flow by making the inside of the open end a negative pressure at the time of discharge, and the ejected fluid comes into contact with the atmosphere on many surfaces, reducing the particle size and the flow velocity Leads to relaxation.
[0023]
Further, the engagement between the inner wall surface and the head of the valve pin of the second valve is performed via an indenter slidingly fitted to the valve housing, and the indenter is supported on the inner wall surface via an elastic seat. In this case, when the cap is pushed in, both the valve pins are pushed in by the deformation load of the elastic seat, so that the opening speed of the second valve is increased, which helps to make the particle diameter uniform.
[0024]
In the case of a fixed-quantity ejection device, a small-sized ejection fluid container filled with the ejection fluid is attached to a cutting device of the fixed-quantity ejection device. The sealing plate of the container is cut by the cutting device, and the jet fluid inside fills the metering chamber through the first valve.
[0025]
Here, if the cap is pushed in, the valve pin of the second valve is pushed in, and the valve pin of the first valve is also interlocked with this, and in the same manner as in the case of the above-mentioned fixed quantity injector, a fixed amount of injected fluid is rapidly discharged to the outside. Released to Then, by repeating the pressing and releasing of the cap, a fixed amount of the jetting fluid can be jetted repeatedly and rapidly, and the particle diameter becomes uniform.
[0026]
Also in the case of this fixed-quantity injection device, when the gap where the closing portion of the valve pin of the second valve slides with the outflow path forms a throttle, the gap amount of the throttle is adjusted. The amount of pressure reduction, that is, the particle diameter of the jet fluid is determined.
[0027]
In addition, an injection path connecting the outflow path with the discharge port is formed in a side wall of the valve housing, and an outside air introduction path is provided in the cap, and an open end of the opening enters the downstream side of the injection path with respect to the flow path. When the jetting fluid is discharged, the inside of the open end is made to have a negative pressure when the jetting fluid is discharged, so that the outside air is sucked into its own flow, and the jetting fluid comes into contact with the atmosphere on many surfaces and the particle size is reduced. And the flow velocity is reduced.
[0028]
Further, the engagement between the inner wall surface and the head of the valve pin of the second valve is performed via an indenter slidingly fitted to the valve housing, and the indenter is supported on the inner wall surface via an elastic seat. In this case, when the cap is pushed in, both the valve pins are pushed in by the deformation load of the elastic seat, so that the opening speed of the second valve is increased, which is further useful for stabilizing the particle diameter.
[0029]
【Example】
In the drawings, the same reference numerals indicate the same or corresponding parts. In FIG. 1, reference numeral 1 denotes a fixed injection valve, which has a valve housing 2, a first valve 3 and a second valve 4 to be interlocked, and a measuring chamber 5 formed in the valve housing 2 between the two valves 3 and 4. In the valve housing 2, a gas outflow passage 7 penetrates on an axis 6, and a jet fluid in which a propellant is added to a liquefied high-pressure gas for a propellant flows in a direction of an arrow.
[0030]
The two valves 3 and 4 are located on the upstream side 7a and the downstream side 7b of the outflow passage 7, and have valve pins 8, 9 and annular packings 10, 11, respectively. Then, both valve pins 8 and 9 are linked. In the drawing, the valve pins 8 and 9 have a configuration in which separate components are abutted, but they may be integrally screwed or integrally formed. It is preferable that both the valve pins 8 and 9 are made of stainless steel in order to maintain smooth movement.
[0031]
The two valve pins 8 and 9 are fitted in the outflow passage 7 movably in the axial direction, and have closing parts 12 and 13, opening parts 14 and 15 and inclined parts 16 and 17 connecting the two parts. In the illustrated example, the open portion 14 is not formed in an axial shape like the open portion 15 and is empty, but may be formed in an axial shape. The cross-sectional area of the closing portion 13 is larger than the cross-sectional area of the closing portion 12.
[0032]
Further, the annular packings 10 and 11 are disposed on the peripheral wall of the outflow passage 7 so as to be able to freely engage and disengage with the closing portion 12 or 13, the inclined portion 14 or 15 and the opening portion 16 or 17 of each valve pin 8 or 9. When the first valve 3 is closed, the second valve 4 communicates the measuring chamber 5 with the downstream side 7b, and when the first valve 3 is opened, the second valve 4 closes. Thus, the measuring chamber 5 has a positional relationship of communicating with the upstream side 7a.
[0033]
The pushing force of the valve pin 9 of the second valve 4 is
[Cross-sectional area of closing portion 13 of valve pin 9 of second valve 4] × [internal pressure] (+ force of spring 18)
Overcoming the reaction force. With the movement of the valve pin 9 of the second valve 4, the valve pin 8 of the first valve 3 also moves, and the first valve 3 is first closed.
[Cross-sectional area of closing portion 12 of valve pin 8 of first valve 3] × [internal pressure] (+ force of spring 18)
Becomes a reaction force,
{[Cross-sectional area of closing portion 12 of valve pin 8 of first valve 3] × [internal pressure]} − {[cross-sectional area of closing portion 13 of valve pin 9 of second valve 4] × [internal pressure]}
Minute load difference occurs. As a result, the valve pins 8 and 9 of the first and second valves 3 and 4 are pushed in quickly. The throttle effect of the second valve 4 during the opening process does not substantially occur, and the cross-sectional area of the closing portion 13 of the valve pin 9 of the second valve 4 is larger than that of the valve pin 8 of the first valve 3. Since it is large, a predetermined amount of gas in the measuring chamber 5 is rapidly discharged to the outside. Therefore, the particles are sprayed with a predetermined particle size at a predetermined pressure.
[0034]
The spring 18 is for moving the valve pin 8 in one direction as described above, and is interposed between the flange 19 of the valve pin 8 and the end wall of the measuring chamber 5 of the valve housing 2. Further, the gap 7 in which the closing portion 13 of the valve pin 9 of the second valve 4 of the fixed injection valve 1 is slidably fitted with the outflow passage 7 forms a throttle portion. In this case, the amount of reduced pressure according to the spray particle size is determined by selecting the gap 7.
[0035]
An injection path 27 whose inner end communicates with the outflow path 7 is formed in the side wall 2 of the valve housing 2, and an opening end 28 of the outside air introduction path 28 protrudes into the injection path. As a result, the pressure inside the opening end 28 is reduced by the ejected fluid, and the ejected fluid sucks outside air into its own flow, so that the particle size can be reduced and the flow velocity can be reduced.
[0036]
FIG. 2 shows the metering injector 21. In this fixed-quantity injector 21, the fixed-quantity injection valve 1 is fitted in the opening 23 of the small-sized jet fluid container 22 closely. Then, a cap 25 having a discharge port 24 on the side is slid onto the container 22 so as to cover the fixed quantity injection valve 1, and the inner wall surface 26 of the cap 25 facing the discharge port 24 is fitted to the valve pin 9 of the second valve 4. Is engaged with the head 9a.
[0037]
The small injection fluid container 22 is filled with the injection liquid L in which the propellant is added to the liquefied high-pressure gas in advance in the illustrated fixed injection device 21. When the cap 25 is pushed in, the valve pin 9 of the second valve 4 is pushed in, and the valve pin 8 of the first valve 3 also moves in conjunction with this, so that the fixed amount of the injection fluid L Is injected. Then, by repeating the pushing and releasing of the cap 25, a fixed amount of the ejection liquid L can be ejected in a repeated manner. In this case, the pushing force of the valve pin 9 of the second valve 4 is the same as that described in [0033] .
In the case of the fixed quantity injector 21, the gap 7 in which the closing portion 13 of the valve pin 9 of the second valve 4 of the fixed quantity injection valve 1 is slidably fitted with the outflow path 7 forms a throttle. In this case, the amount of reduced pressure according to the spray particle size is determined by selecting the gap 7.
[0039]
In addition, an injection path 27 that communicates the outflow path 7 with the discharge port 24 is formed in the side wall 2 of the valve housing 2, and an outside air introduction path 28 is provided in the cap 25, and the open end 28 is located downstream of the injection path 27. It is rushing into the channel. In this case, the jet fluid sucks the outside air into its own flow, so that the particle size can be reduced and the flow velocity can be reduced.
[0040]
Further, the engagement between the inner wall surface 26 and the head 9a of the valve pin 9 of the second valve 4 is performed via an indenter 29 which slides into a concave 40 provided at the top of the valve housing 2, and this indenter 29 is It is supported on the inner wall surface 26 via an elastic seat 30. Then, when the cap 25 is pushed in, the elastic seat 30 is deformed first, and the valve pins 9 and 8 are pushed in by the deformation load of the elastic seat 30. Therefore, the degree of opening of the second valve 4 is increased, which further contributes to uniformity of the particle diameter.
[0041]
FIG. 3 shows a fixed injection device 31 using the fixed injection valve 1 . A cutting device 33 for cutting the sealing plate 32 ′ of the small injection fluid container 32 is provided on the upstream side 7 a of the outflow passage 7 in communication with the first valve 3 of the fixed injection valve 1. Then, a cap 25 having a discharge port 24 on the side is slidably fitted on the valve housing 2 so as to cover the fixed quantity injection valve 1, and the inner wall surface 26 facing the discharge port 24 is a head of the valve pin 9 of the second valve 4. 9a.
[0042]
In the case of the metering device 31 shown in the figure, since the container 32 used had no screw in the neck 34, the container 32 was put in a holder 35, and the screw 36 in the opening of the holder 35 was screwed into the mounting screw 37 of the cutting device 33. In combination, the sealing plate 32 ' is cut with a needle 38. If the neck 34 has a screw, the container 32 can be directly attached to the cutting device 33 and the holder 35 can be omitted.
[0043]
The container 32 is placed in the holder 35 by the metering device 31 shown, and the holder 35 is attached to the cutting device 33 to open the sealing plate 32 ′ of the container 32 . The jet liquid L in the container 32 flows out and flows into the measuring chamber 5 through the first valve 3.
[0044]
When the cap 25 is pushed in, the valve pins 9 and 8 are lowered as described in the example of the fixed quantity injection valve 1 and the fixed quantity injector 21, and the closing portion 12 of the valve pin 8 is pressed against the annular packing 10 so that the gas flows out. 7 is shut off, and then the opening 15 of the valve pin 9 faces the annular packing 11. Since the cross-sectional area of the closing portion 13 of the valve pin 9 is larger than the cross-sectional area of the closing portion 12 of the valve pin 8 and the second valve 4 is instantaneously opened, the measuring chamber 5 communicates with the downstream side of the gas flow. Then, the ejection liquid L in the measuring chamber 5 quickly flows out and is ejected from the discharge port 24 . Therefore, the diameter of the particles during the spraying becomes almost uniform throughout.
[0045]
In this case, the gap 7 in which the closing portion 13 of the valve pin 9 of the second valve 4 is slidably fitted with the outflow passage 7 forms a throttle portion. In this case, the amount of reduced pressure according to the spray particle size is determined by selecting the gap 7. In the drawing, reference numeral 41 denotes an O-ring presser, and reference numeral 42 denotes a filter.
[0046]
【The invention's effect】
According to the quantitative injection valve of the present invention, the first valve is located on the upstream side of the gas outflow passage, the second valve is located on the downstream side, and the cross-sectional area of the closing portion of the valve pin of the second valve is the second. Since the cross-sectional area of the valve pin of the one valve is larger than the cross-sectional area, the upstream side is connected to a liquefied high-pressure gas supply source, and the downstream side is connected to the atmosphere. The gas can be taken out rapidly, so that there is almost no pressure fluctuation during the discharging process and the gas can be ejected into the atmosphere at a substantially predetermined pressure, and the particle size of the particles being sprayed can be substantially fixed at a desired value.
[0047]
According to the second aspect, a spray having a particle size corresponding to the reduced pressure amount is obtained.
According to the third aspect, since the jet fluid comes into contact with the outside air in a multifaceted manner, the particle size can be reduced and the flow velocity can be reduced.
[0048]
According to the metering device of the fourth aspect, the injection can be performed only by moving the cap while holding the injection fluid container.
According to the fifth aspect, a spray having a particle size corresponding to the reduced pressure amount can be obtained.
[0049]
According to the sixth aspect, since the jet fluid comes into contact with the outside air in a multifaceted manner, the particle size can be reduced and the flow velocity can be reduced.
According to the seventh aspect, since the valve pin is pushed in by the deformation load of the elastic seat, the opening speed of the second valve can be increased, thereby contributing to uniform particle diameter.
[0050]
According to the quantitative injection device of the eighth aspect, the fluid injection can be performed only by attaching the container filled with the injection fluid to the cutting device.
According to the ninth aspect, a spray having a particle size corresponding to the reduced pressure amount can be obtained.
[0051]
According to the tenth aspect, since the jetting fluid comes into contact with the outside air in a multifaceted manner, the particle size can be reduced and the flow velocity can be reduced.
According to the eleventh aspect, since the valve pin is pushed in by the deformation load of the elastic seat, the opening speed of the second valve can be increased, which can contribute to the uniformization of the particle diameter.
[Brief description of the drawings]
FIG. 1 is a cut-away side view showing a specific example of a fixed-quantity injection valve for fixing an injection particle diameter at the time of fixed-quantity injection of an injection fluid according to the present invention.
FIG. 2 is a cut-away side view of a metering injector having an identified quantity injection valve.
FIG. 3 is a cut-away side view of a fixed-quantity injection device provided with an identification amount injection valve.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 metering injection valve 2 valve housing 2 ′ side wall 3 first valve 4 second valve 5 measuring chamber 6 axis 7 outflow path 7 ′ gap 7 a upstream 7 b downstream 8 valve pin 9 valve pin 9 a head 10 annular packing 11 Annular packing 12 Closing part 13 Closing part 14 Opening part 15 Opening part 16 Inclined part 17 Inclined part 18 Spring L Injected fluid 21 Quantitative ejector 22 Small ejected fluid container 23 Opening 24 Discharge port 25 Cap 26 Inner wall surface 27 Injector 28 Outside air Introducing path 28 'Open end 29 Indenter 30 Elastic seat 31 Container 32' Sealing plate 33 Cutting device 34 Neck 35 Holder 36 Screw 37 Mounting screw 38 Needle punch 40 Depression

Claims (11)

弁匣(2)と、連動する第一及び第二の弁(3,4)と、該両弁(3,4)間で該弁匣(2)に形成された計量室(5)を有し、該弁匣(2)は軸線(6)上にガスの流出路(7)が貫通し、該両弁(3,4)は該流出路(7)の上流側(7a)と下流側(7b)に位置し、それぞれ弁ピン(8,9)と環状パッキン(10,11)を有し、該弁ピン(8,9)は軸方向へ移動自在に該流出路に嵌合してそれぞれ閉止部(12,13)、開放部(14,15)及び両部を結ぶ傾斜部(16,17)を有し、該閉止部(12,13)の断面積は第二の弁(4)の弁ピン(9)の方が第一の弁(3)の弁ピン(8)より大で、該環状パッキン(10,11)は該流出路(7)の周壁に該各弁ピン(8,9)の閉止部(12,13)、傾斜部(16,17)及び開放部(14,15)と係脱自在に配設され、該両弁(3,4)は第一の弁(3)の閉止時に第二の弁(4)が計量室(5)を下流側(7b)と連通し、第一の弁(3)の開放時に第二の弁(4)が閉止して計量室(5)を上流側(7a)と連通させる位置関係となっていることを特徴とする被噴射剤をプロペラント用の液化高圧ガスに添加した噴射流体の定量噴射の際の噴射粒径固定用の定量噴射弁(1)。It has a valve housing (2), interlocking first and second valves (3, 4), and a measuring chamber (5) formed in the valve housing (2) between the two valves (3, 4). The valve housing (2) penetrates the gas outflow path (7) on the axis (6), and the two valves (3, 4) are located on the upstream side (7a) and downstream side of the outflow path (7). (7b), each has a valve pin (8, 9) and an annular packing (10, 11), and the valve pin (8, 9) is fitted to the outflow passage movably in the axial direction. Each has a closing part (12, 13), an opening part (14, 15) and an inclined part (16, 17) connecting the two parts, and the cross-sectional area of the closing part (12, 13) is the second valve (4 ) Is larger than the valve pin (8) of the first valve (3), and the annular packing (10, 11) is provided on the peripheral wall of the outflow passage (7) by each of the valve pins (9). 8, 9) are disposed so as to be freely disengageable from the closing part (12, 13), the inclined part (16, 17) and the opening part (14, 15), and both valves (3, 4) are the first valve. When the (3) is closed, the second valve (4) communicates the measuring chamber (5) with the downstream side (7b), and when the first valve (3) is opened, the second valve (4) is closed. Place the weighing chamber (5) on the upstream side (7 a) a fixed injection valve for fixing the injection particle size at the time of fixed injection of the injection fluid in which the propellant is added to the liquefied high-pressure gas for a propellant, wherein . 該第二の弁(4)の弁ピン(9)の該閉止部(13)が該流出路(7)と摺嵌する間隙(7')は絞り部を形成している請求項1に記載の定量噴射弁(1)。The gap (7 ') in which the closing portion (13) of the valve pin (9) of the second valve (4) slides with the outflow passage (7) forms a throttle portion. Quantitative injection valve (1). 該弁匣(2)の側壁(2')に自身の内端が該流出路(7)と連通する噴射路(27)が穿たれ、該噴射路(27)内に外気導入路(28)の開口端(28')が突入している請求項1又は2に記載の定量噴射弁(1)。An injection path (27) whose inner end communicates with the outflow path (7) is formed in the side wall (2 ') of the valve housing (2), and an outside air introduction path (28) is provided in the injection path (27). 3. The fixed-quantity injection valve (1) according to claim 1, wherein the open end (28 ') of the valve projects. 弁匣(2)と、連動する第一及び第二の弁(3,4)と、該両弁(3,4)間で該弁匣(2)に形成された計量室(5)を有し、該弁匣(2)は軸線(6)上にガスの流出路(7)が貫通し、該両弁(3,4)は該流出路(7)の上流側(7a)と下流側(7b)に位置し、それぞれ弁ピン(8,9)と環状パッキン(10,11)を有し、該弁ピン(8,9)は軸方向へ移動自在に該流出路(7)に嵌合してそれぞれ閉止部(12,13)、開放部(14,15)及び両部を結ぶ傾斜部(16,17)を有し、該閉止部(12,13)の断面積は第二の弁(4)の弁ピン(9)の方が第一の弁(3)の弁ピン(8)より大で、該環状パッキン(10,11)は該流出路(7)の周壁に該各弁ピン(8,9)の閉止部(12,13)、傾斜部(16,17)及び開放部(14,15)と係脱自在に配設され、該両弁(3,4)は第一の弁(3)の閉止時に第二の弁(4)が計量室(5)を下流側(7b)と連通し、第一の弁(3)の開放時に第二の弁(4)が閉止して計量室(5)を上流側(7a)と連通させる位置関係となっている定量噴射弁(1)を小型噴射流体容器(22)の開口部(23)に密接に嵌装し、吐出口(24)を有するキャップ(25)を該容器(22)に該定量噴射弁(1)を覆って摺嵌し、該キャップ(25)の該吐出口(24)に向う内壁面(26)を第二の弁(4)の弁ピン(9)の頭部(9a)に係合させたことを特徴とする被噴射剤をプロペラント用の液化高圧ガスに添加した噴射流体の定量噴射の際の噴射粒径固定用の定量噴射器(21)。It has a valve housing (2), interlocking first and second valves (3, 4), and a measuring chamber (5) formed in the valve housing (2) between the two valves (3, 4). The valve housing (2) penetrates the gas outflow path (7) on the axis (6), and the two valves (3, 4) are located on the upstream side (7a) and downstream side of the outflow path (7). (7b), each having a valve pin (8, 9) and an annular packing (10, 11), and the valve pin (8, 9) is movably fitted in the outflow passage (7) in the axial direction. Each has a closing part (12, 13), an opening part (14, 15) and an inclined part (16, 17) connecting the two parts, and the cross-sectional area of the closing part (12, 13) is the second. The valve pin (9) of the valve (4) is larger than the valve pin (8) of the first valve (3), and the annular packings (10, 11) are provided on the peripheral wall of the outflow passage (7). The closing portions (12, 13), the inclined portions (16, 17), and the opening portions (14, 15) of the valve pins (8, 9) are removably provided with the valves (3, 4). When one valve (3) is closed, the second valve (4) communicates the measuring chamber (5) with the downstream side (7b), and when the first valve (3) is opened, the second valve (4) is opened. Closed and upstream of the weighing chamber (5) A fixed injection valve (1) having a positional relationship to communicate with (7a) is closely fitted to the opening (23) of the small injection fluid container (22), and a cap (25) having a discharge port (24). To the container (22) so as to cover the fixed quantity injection valve (1), and to fit the inner wall surface (26) of the cap (25) facing the discharge port (24) to the valve of the second valve (4). A fixed amount injection for fixing the injection particle size at the time of fixed amount injection of an injection fluid in which a propellant is added to a liquefied high-pressure gas for a propellant, characterized by being engaged with a head (9a) of a pin (9) Vessel (21). 該第二の弁(4)の弁ピン(9)の該閉止部(13)が該流出路(7)と摺嵌する間隙(7')は絞り部を形成している請求項4に記載の定量噴射器(21)。The gap (7 ') in which the closing portion (13) of the valve pin (9) of the second valve (4) slides with the outflow passage (7) forms a throttle portion. Quantitative injector (21). 該弁匣(2)の側壁(2')に該流出路(7)を該吐出口(24)と連通する噴射路(27)が穿たれ、該キャップ(25)に外気導入路(28)が設けられてその開口端(28')が該噴射路(27)より下流側でその流路に関し突入している請求項4又は5に記載の定量噴射器(21)。An injection path (27) communicating the outflow path (7) with the discharge port (24) is formed in a side wall (2 ') of the valve housing (2), and an outside air introduction path (28) is provided in the cap (25). The metering injector (21) according to claim 4 or 5, wherein an opening end (28 ') is provided downstream of the injection path (27) with respect to the flow path. 該内壁面(26)と該第二の弁(4)の弁ピン(9)の頭部(9a)との係合が該弁匣(2)に摺嵌する圧子(29)を介してなされ、該圧子(29)が該内壁面(26)に弾性座(30)を介して支持されている請求項4に記載の定量噴射器(21)。The engagement between the inner wall surface (26) and the head (9a) of the valve pin (9) of the second valve (4) is made via an indenter (29) slidingly fitted to the valve housing (2). The metering injector (21) according to claim 4, wherein the indenter (29) is supported on the inner wall surface (26) via an elastic seat (30). 弁匣(2)と、連動する第一及び第二の弁(3,4)と、該両弁(3,4)間で該弁匣(2)に形成された計量室(5)を有し、該弁匣(2)は軸線(6)上にガスの流出路(7)が貫通し、該両弁(3,4)は該流出路(7)の上流側(7a)と下流側(7b)に位置し、それぞれ弁ピン(8,9)と環状パッキン(10,11)を有し、該弁ピン(8,9)は軸方向へ移動自在に該流出路(7)に嵌合してそれぞれ閉止部(12,13)、開放部(14,15)及び両部を結ぶ傾斜部(16,17)を有し、該閉止部(12,13)の断面積は第二の弁(4)の弁ピン(9)の方が第一の弁(3)の弁ピン(8)より大で、該環状パッキン(10,11)は該流出路(7)の周壁に該各弁ピン(8,9)の閉止部(12,13)、傾斜部(16,17)及び開放部(14,15)と係脱自在に配設され、該両弁(3,4)は第一の弁(3)の閉止時に第二の弁(4)が計量室(5)を下流側(7b)と連通し、第一の弁(3)の開放時に第二の弁(4)が閉止して計量室(5)を上流側(7a)と連通させる位置関係となっている定量噴射弁(1)の第一の弁(3)に連通してその上流側(7a)に小型噴射流体容器(32)のカット装置(33)を設け、かつ吐出口(24)を有するキャップ(25)を該弁匣(2)に該定量噴射弁(1)を覆って摺嵌し、該キャップ(25)の該吐出口(24)に向う内壁面(26)を第二の弁(4)の弁ピン(9)の頭部(9a)に係合させたことを特徴とする被噴射剤をプロペラント用の液化高圧ガスに添加した噴射流体の定量噴射の際の噴射粒径固定用の定量噴射装置(31)。It has a valve housing (2), interlocking first and second valves (3, 4), and a measuring chamber (5) formed in the valve housing (2) between the two valves (3, 4). The valve housing (2) penetrates the gas outflow path (7) on the axis (6), and the two valves (3, 4) are located on the upstream side (7a) and downstream side of the outflow path (7). (7b), each having a valve pin (8, 9) and an annular packing (10, 11), and the valve pin (8, 9) is movably fitted in the outflow passage (7) in the axial direction. Each has a closing part (12, 13), an opening part (14, 15) and an inclined part (16, 17) connecting the two parts, and the cross-sectional area of the closing part (12, 13) is the second. The valve pin (9) of the valve (4) is larger than the valve pin (8) of the first valve (3), and the annular packings (10, 11) are provided on the peripheral wall of the outflow passage (7). The closing portions (12, 13), the inclined portions (16, 17), and the opening portions (14, 15) of the valve pins (8, 9) are removably provided with the valves (3, 4). When one valve (3) is closed, the second valve (4) communicates the measuring chamber (5) with the downstream side (7b), and when the first valve (3) is opened, the second valve (4) is opened. Closed and upstream of the weighing chamber (5) (7a) is connected to the first valve (3) of the fixed quantity injection valve (1) in a positional relationship to communicate with the cutting device (33) of the small injection fluid container (32) on the upstream side (7a) thereof And a cap (25) having a discharge port (24) is slidably fitted over the valve casing (2) so as to cover the fixed quantity injection valve (1), and is fitted to the discharge port (24) of the cap (25). The propellant was added to the liquefied high-pressure gas for propellant, characterized in that the facing inner wall surface (26) was engaged with the head (9a) of the valve pin (9) of the second valve (4). A fixed-quantity ejection device (31) for fixing the ejection particle diameter at the time of constant-injection of the ejection fluid. 該第二の弁(4)の弁ピン(9)の該閉止部(13)が該流出路(7)と摺嵌する間隙(7')は絞り部を形成している請求項8に記載の定量噴射装置(31)。The gap (7 ') in which the closing portion (13) of the valve pin (9) of the second valve (4) slides with the outflow passage (7) forms a throttle portion. Constant-quantity injection device (31). 該弁匣(2)の側壁(2')に該流出路(7)を該吐出口(24)と連通する噴射路(27)が穿たれ、該キャップ(25)に外気導入路(28)が設けられてその開口端(28')が該噴射路(27)より下流側でその流路に関し突入している請求項8又は9に記載の定量噴射装置(31)。An injection path (27) communicating the outflow path (7) with the discharge port (24) is formed in a side wall (2 ') of the valve housing (2), and an outside air introduction path (28) is provided in the cap (25). The fixed quantity injection device (31) according to claim 8 or 9, wherein an opening end (28 ') is provided downstream of the injection path (27) and protrudes with respect to the flow path. 該内壁面(26)と該第二の弁(4)の弁ピン(9)の頭部(9a)との係合が該弁匣(2)に摺嵌する圧子(29)を介してなされ、該圧子(29)が該内壁面(26)に弾性座(30)を介して支持されている請求項8に記載の定量噴射装置(31)。The engagement between the inner wall surface (26) and the head (9a) of the valve pin (9) of the second valve (4) is made via an indenter (29) slidingly fitted to the valve housing (2). The metering device (31) according to claim 8, wherein the indenter (29) is supported on the inner wall surface (26) via an elastic seat (30).
JP31274394A 1994-11-22 1994-11-22 Quantitative injection valve for fixing injection particle size in quantitative injection of injection fluid using liquefied high-pressure gas as a propellant, injector and injection device using this valve Expired - Lifetime JP3568260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31274394A JP3568260B2 (en) 1994-11-22 1994-11-22 Quantitative injection valve for fixing injection particle size in quantitative injection of injection fluid using liquefied high-pressure gas as a propellant, injector and injection device using this valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31274394A JP3568260B2 (en) 1994-11-22 1994-11-22 Quantitative injection valve for fixing injection particle size in quantitative injection of injection fluid using liquefied high-pressure gas as a propellant, injector and injection device using this valve

Publications (2)

Publication Number Publication Date
JPH08141450A JPH08141450A (en) 1996-06-04
JP3568260B2 true JP3568260B2 (en) 2004-09-22

Family

ID=18032891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31274394A Expired - Lifetime JP3568260B2 (en) 1994-11-22 1994-11-22 Quantitative injection valve for fixing injection particle size in quantitative injection of injection fluid using liquefied high-pressure gas as a propellant, injector and injection device using this valve

Country Status (1)

Country Link
JP (1) JP3568260B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3592927B2 (en) 1998-03-20 2004-11-24 株式会社日立ユニシアオートモティブ Gas injection valve
JPH11301759A (en) 1998-04-21 1999-11-02 Unisia Jecs Corp Gas spray valve and charging jig used for charging gas
JP3486383B2 (en) 1999-12-17 2004-01-13 株式会社日立ユニシアオートモティブ Gas injection valve
JP2002331260A (en) 2001-05-10 2002-11-19 Bioactis:Kk Gas spray valve and charging implement used for charging gas
US20110147413A1 (en) 2008-06-27 2011-06-23 Yoji Oozaki Device for injecting mixed gas to which liquid is added

Also Published As

Publication number Publication date
JPH08141450A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
US5653227A (en) Atomizing dispenser
US5370317A (en) Atomizing device for producing a spray from a liquid under pressure
US6308867B1 (en) Media dispenser
US5323936A (en) Media dispenser for dispensing a dosed medium in a gas flow
AU755989B2 (en) Low spray force, low retention atomization system
JP3162487B2 (en) Spray nozzle
US20080053431A1 (en) Device and method for creating aerosols for drug delivery
SK42698A3 (en) Device of miniaturised construction for producing high pressure in a fluid to be atomised
WO1999042752B1 (en) Reagent dispensing valve
CN108348931A (en) Spray nozzle device
JP3568260B2 (en) Quantitative injection valve for fixing injection particle size in quantitative injection of injection fluid using liquefied high-pressure gas as a propellant, injector and injection device using this valve
US4030667A (en) Push-button having a calibrated outlet for a container under pressure
JP5175638B2 (en) Gas injection device with added liquid
US3904124A (en) Pressurized product dispenser
GB830427A (en) Medicament dispensing and administering apparatus
JP2003136011A (en) System for supplying chemical
CN110596363B (en) Forced dispersion type aerosol quantitative release device and use method thereof
CN113613794B (en) Atomizing device
US10618071B2 (en) Discharging device for the discharge of liquid media
JP2567569B2 (en) Injection amount adjusting device for fluid ejector
EP0689878A1 (en) Dispensing apparatus
JP2004148051A (en) Powder spray
JPH08206552A (en) Pressure accumulation type atomizer
WO2009157437A1 (en) Device for ejecting mixed gas to which liquid is added
WO2021260179A1 (en) Inverted nozzle fixture and method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term