JP3567582B2 - Liquid phase oxidation of cyclohexane - Google Patents

Liquid phase oxidation of cyclohexane Download PDF

Info

Publication number
JP3567582B2
JP3567582B2 JP01074696A JP1074696A JP3567582B2 JP 3567582 B2 JP3567582 B2 JP 3567582B2 JP 01074696 A JP01074696 A JP 01074696A JP 1074696 A JP1074696 A JP 1074696A JP 3567582 B2 JP3567582 B2 JP 3567582B2
Authority
JP
Japan
Prior art keywords
oxygen
cyclohexane
gas
oxidizer
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01074696A
Other languages
Japanese (ja)
Other versions
JPH09202742A (en
Inventor
浩幸 浅野
泰基 嶋津
史和 別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP01074696A priority Critical patent/JP3567582B2/en
Publication of JPH09202742A publication Critical patent/JPH09202742A/en
Application granted granted Critical
Publication of JP3567582B2 publication Critical patent/JP3567582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/02Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides
    • C07C409/14Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides the carbon atom belonging to a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はシクロヘキサンの液相酸化方法に係わり、更に詳細には該シクロヘキサンの液相酸化に於いて、使用する酸化器の大きさ(高さや直径)、更には酸化器内に配設されるガス導入管の形状や配設位置に関わりなく安全性に優れ、かつ所望とする酸化生成物の選択率に優れたシクロヘキサンの液相酸化方法に関するものである。
【0002】
【従来の技術】
従来シクロヘキサンを酸素含有ガスで酸化し、シクロヘキシルハイドロパーオキサイド、シクロヘキサノンおよびシクロヘキサノールを製造する方法に於いては、通常酸素濃度約2容量%〜約30容量%の酸素含有ガスを使用して、高温、高圧下、通常反応温度約100℃〜約170℃、圧力約7kg/cm〜約30kg/cmの条件で実施されており、通常転化率2〜6%で選択率ができる限り高くなるよう、酸素含有ガスの吹込み速度、吹込み量等の吹込み条件、或いは酸素含有ガスが反応帯域でシクロヘキサンと接触する気泡形状を特定化する等の種々の方法が提案されている。
【0003】
例えば特公昭40−5697号公報には、シクロヘキサン中に酸素含有ガスを導入する方法として、酸素含有ガスをシクロヘキサン中に孔径1〜10mmの小孔よりレイノルズ数3000〜15000の流速で泡出することを特徴とするシクロヘキサンの酸化方法が開示されている。また特公昭38−15376号公報には、シクロヘキサン中への酸素含有ガスの導入方法として、直径6mmもしくはそれ以上の気泡の形で液相を通過させる方法が開示されている。更に特開昭60−75440号公報にはシクロヘキサン中に酸素含有ガスを導入する方法として、酸素含有ガスを各ガス導入管のノズル開口から0.01〜1m/秒の流出速度で、各ノズル開口当たり0.001〜10リットル/秒の量でシクロヘキサン中に導入する方法が開示されている。
【0004】
しかしながら、周知の如くこれらシクロヘキサンの酸化工程は各社により、その設備の規模、酸化器の構造(高さ、直径、酸素含有ガス吹込みノズルの位置、ノズルの孔径、孔数等)等が異なるため、例え上記開示条件を満たす場合であっても、操業が容易かつ安全で、しかも高い選択率効果を発揮するとは言えない。
【0005】
【発明が解決しようとする課題】
かかる状況下に鑑み、本発明者等は複数の吹出孔を有するガス導入管を持つシクロヘキサンの酸化器に於いて、高さ、直径、酸素含有ガス吹出孔の位置、孔径、孔数等に関わりなく、操業が容易かつ安全で一義的に所望とする酸化生成物の選択率を向上せしめ得る操業因子を見出すべく鋭意検討した結果、シクロヘキサン中に酸素含有ガスを特定条件で吹出し、かつ酸化器より排出される排ガス中の酸素濃度を特定範囲になるよう調節する場合には、酸化器の形状に関わりなく、安全性に優れ、かつ高い選択率で所望とする酸化生成物が得られることを見出し、本発明を完成するに至った。
【0006】
【課題を解決するための手段】
即ち本発明は、酸化器内に配設された複数の吹出孔を有するガス導入管より酸素含有ガスを吹込みシクロヘキサンを液相酸化しシクロヘキシルハイドロパーオキサイド、シクロヘキサノンおよびシクロヘキサノールを製造する方法に於いて、ガス導入管の各吹出孔からのガス吹込み速度が2m/秒〜150m/秒、該酸化器より排出されるガス中の酸素濃度が0.4容量%〜3容量%となる如く酸素含有ガスを吹込むことを特徴とするシクロヘキサンの液相酸化方法を提供するにある。
【0007】
【発明の実施の形態】
以下本発明方法を更に詳細に説明する。
本発明は原料としてシクロヘキサンを用い、これに酸素含有ガスを接触し、液相酸化反応せしめ酸化生成物としてシクロヘキシルハイドロパーオキサイド、シクロヘキサノン、シクロヘキサノールを得ることを目的とするものである。
この酸化反応は反応率(転化率)が高くなると収率が下がり、アジピン酸、グルタール酸、琥珀酸等の高級酸化物である副生成物が多くなるので、転化率は通常3〜7%,好ましくは4〜6%程度を目処として操業を行う。
【0008】
酸化反応に用いる酸素含有ガスは通常酸素濃度約2〜約30容量%であり、反応は温度約100〜約170℃、圧力約7〜約30kg/cmの条件で実施される。
また、酸化反応に供する酸化器としては直立型、水平型のいずれでもよく、これを単独で用いても数基を直列に接続して用いてもよいが、通常直立型酸化器を複数直列に接続して用いるのが有利である。更に該酸化器内は複数段のトレーが配設されているものであってもよい。
【0009】
また本発明の実施に於いて適用する酸化器は、酸化器内に形成される液相内に酸素含有ガス導入管が1段或いは多段に配設されており、該ガス導入管には酸素含有ガスをシクロヘキサン中に導入するための複数の吹出孔が付設されている。液相中への均一なガスの吹込み、並びに操業の容易性の点では均等に配設され複数の吹出孔を有するガス導入管を多段に配設された酸化器の適用が推奨される。
【0010】
酸化器内に於いてガス導入管より液相中に吹込まれた酸素含有ガスは気泡となって反応帯域中に均一に分散され、液相中を気泡相互の集合が無い状態で上昇することが好ましい。かかる状態はガス導入管の吹込孔を液相中の横断面に均等間隔で複数配置した構成とし、より高い効果を望む場合には前記構成を持つとともに更にガス導入管の吹込孔を反応帯の液相中の全容積に略均等間隔で多段に配置した構成とすればよく、各ガス吹込孔からの酸素含有ガスの吹込み速度は約2〜約150m/秒、好ましくは約5〜約50m/秒の範囲内で実施すればよい。ガス導入管の吹込孔は下向きに酸素含有ガスを導入する構造であってもよいし、上向きであってもよい。
【0011】
本発明方法の特徴は酸化器内に複数の吹出孔を有する多段ガス導入管を用い、該ガス導入管の各吹出孔からのガス吹込み速度が約2m/秒〜約150m/秒で、該酸化器より排出されるガス中の酸素濃度が約0.4容量%〜約3容量%、好ましくは約0.5容量%〜約2容量%、より好ましくは約0.7容量%〜約1.5容量%となる如く酸素含有ガスを吹込みシクロヘキサンの液相酸化を行うにある。
かかる方法の場合には、酸化器の形状、大きさ、また酸素含有ガスを導入する吹出孔の孔径に関係なく、酸化器より排出されるガス中の酸素濃度(本発明に於いて排出されるガス中の酸素濃度とは、排出ガス中の窒素、酸素、一酸化炭素および二酸化炭素を総量としこれに占める分子状酸素の体積分率をいう)を約0.4容量%〜約3容量%の範囲になる如く酸素ガスの吹込速度、吹込量を調製することにより、通常所望とするシクロヘキシルハイドロパーオキサイド、シクロヘキサノンおよびシクロヘキサノールよりなる酸化生成物を転化率4〜6%の範囲で、高選択率で得ることができる。
本発明に於いてガスの吹出速度が約2m/秒よりも遅い場合には、操業過程においてガスの吹出孔に重合物が付着し閉塞が生じる場合がある。閉塞を回避する目的で孔径を大きくすることも考えられるが、この場合には気泡が大きくなり、爆燃が生じ、かつこれが伝播する可能性がある等、安全性に問題が生じる場合があり好ましくない。
他方吹出速度が約150m/秒よりも速い場合には供給される酸素含有ガスの圧縮圧力が高くなり、エネルギー損失が大きく製造コストの増加につながり、好ましくない。
また酸化器より排出されるガス中の酸素濃度が約0.4容量%未満の場合には所望とする高い選択率のものが得られず、一方約3容量%を越える場合には酸化生成物の選択率は一定値となり、実質的にそれ以上の増加傾向は認められず、酸素が有効に利用されないため、酸素含有ガスのロスとなる。また、反応が不安定となる可能性が高く、その場合容易に酸素の排ガス中への吹き抜けが起こりシクロヘキサンの爆発雰囲気を形成する場合がある。
【0012】
【発明の効果】
以上詳述した本発明方法によれば、酸化器の形状、大きさ、酸素含有ガス導入管の吹込孔の孔径の大小にかかわらず、単に各ガス導入管の吹込孔からの酸素含有ガス吹出速度を約2〜約150m/秒とし、酸化器より排出されるガス中の酸素濃度を約0.4容量%〜約3容量の範囲内になるよう、酸素ガスの吹き込速度及び吹込み量を調整するという極めて簡単な方法を採用するのみで、安全にかつシクロヘキサンから所望とする酸化生成物を高選択率で製造することを可能としたものであり、その産業上の価値は頗る大なるものである。
【0013】
【実施例】
以下、本発明方法を実施例により更に詳細に説明する。
実施例1
図1示すような底部に、直径0.1mmの吹込孔3個が等間隔で下向きに穿たれた環状の酸素含有ガス導入管2を配設した高さ500mm、直径50mmのSUS製円筒容器を酸化器1として用い、該酸化器1の底部導管3よりオクチル酸コバルトを0.14ppm溶解したシクロヘキサンを105g/時間で供給し、同時に8容量%の酸素含有ガス(残部は窒素)を酸素含有ガス導入管2より16リットル/時間(標準状態換算)で供給し(各吹込孔よりのガス吹込み速度は27m/秒)、反応器上部に設置した液状反応混合物取出管4により排ガスおよび液状反応混合物を取出し(液深130mm;酸化器下部よりの高さ)、冷却器5により冷却した後、分離器6により排ガスと酸化反応生成物に分離し、導出管7より排出される排ガス中の酸素濃度並びに導出管8より導出された酸化反応生成物の組成を測定し、各排ガス中の酸素濃度に於けるシクロヘキサン転化率を5%に換算した時のシクロヘキサン酸化生成物の選択率を求めた。その結果排ガス中の酸素濃度は1.0容量%であり、シクロヘキサン酸化生成物の選択率は80.1モル%であった。
【0014】
比較例1
実施例1と同じ酸化器を用い、導管3よりのシクロヘキサンの供給量を412g/時間、導入管2よりの酸素含有ガス供給量を53リットル/時間(標準状態換算)、各吹込孔よりのガス吹込み速度は85m/秒、液状反応混合物取出管4の取出し位置(液深)を酸化器下部より480mmとして酸化反応を行い、導出管7より排出される排ガス中の酸素濃度並びに導出管8より導出された酸化反応生成物の組成を測定し、各排ガス中の酸素濃度に於けるシクロヘキサン転化率を5%に換算した時のシクロヘキサン酸化生成物の選択率を求めた。その結果排ガス中の酸素濃度は0.2容量%であり、シクロヘキサン酸化生成物の選択率は72.0モル%であった。
【0015】
実施例2
図2示すような底部並びに中央部に、直径0.6mmの吹込孔8個が等間隔で下向きに穿たれた環状の酸素含有ガス導入管2(A)、(B)を配設した高さ1600mm、直径600mmのSUS製円筒容器を酸化器1として用い、該酸化器1の底部導管3よりオクチル酸コバルト0.2重量%溶解したシクロヘキサンを17cc/時間、導管9よりシクロヘキサン195kg/時間を供給し、同時に21容量%の酸素含有ガス(空気)を導入管2(A)、(B)よりガス吹込み速度が10m/秒〜16m/秒で供給し、反応器上部に設置した液状反応混合物取出管4により排ガスおよび液状反応混合物を取り出し、冷却器5により冷却した後、分離器6により排ガスと酸化反応生成物に分離し、各導出管7、8より導出した。
【0016】
この実験に於いて導管2(A)、(B)よりの酸素含有ガスの供給量を8〜12Nm/時間の範囲内で変動させることにより酸化条件を変え、導出管7より排出される排ガス中の酸素濃度並びに導出管8より導出された酸化反応生成物の組成を測定し、各排ガス中の酸素濃度に於けるシクロヘキサン転化率を4%に換算した時のシクロヘキサン酸化生成物の選択率を求めた。その結果を図3に示す。
【図面の簡単な説明】
【図1】実施例1で用いたシクロヘキサンの酸化器の概略図を示す。
【図2】実施例2で用いたシクロヘキサンの酸化器の概略図を示す。
【図3】シクロヘキサン転化率を一定にしたときの排ガス酸素濃度(容量%)とシクロヘキサン酸化生成物の選択率(モル%)の関係を示す図である。
【符号の説明】
1:酸化器
2:酸素含有ガス導入管
2(A):酸素含有ガス導入管
2(B):酸素含有ガス導入管
3:オクチル酸コバルト含有シクロヘキサン供給用底部導管
4:液状反応混合物取出管
5:冷却器
6:分離器
7:排ガス導出管
8:酸化反応生成物
9:シクロヘキサン供給用底部導管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid phase oxidation method of cyclohexane, and more particularly, to the size (height and diameter) of an oxidizer used in the liquid phase oxidation of cyclohexane, and further to a gas disposed in the oxidizer. The present invention relates to a liquid phase oxidation method of cyclohexane which is excellent in safety regardless of the shape and arrangement position of an introduction pipe and has excellent selectivity for a desired oxidation product.
[0002]
[Prior art]
Conventionally, in a method of producing cyclohexyl hydroperoxide, cyclohexanone and cyclohexanol by oxidizing cyclohexane with an oxygen-containing gas, an oxygen-containing gas having an oxygen concentration of about 2% by volume to about 30% by volume is usually used. The reaction is carried out under high pressure, usually at a reaction temperature of about 100 ° C. to about 170 ° C. and a pressure of about 7 kg / cm 2 to about 30 kg / cm 2 , and the selectivity is usually as high as possible at a conversion of 2 to 6%. As described above, various methods have been proposed such as a blowing condition such as a blowing speed and a blowing amount of an oxygen-containing gas, or a method of specifying a bubble shape in which the oxygen-containing gas comes into contact with cyclohexane in a reaction zone.
[0003]
For example, Japanese Patent Publication No. Sho 40-5697 discloses a method of introducing an oxygen-containing gas into cyclohexane by bubbling the oxygen-containing gas into cyclohexane from small holes having a pore diameter of 1 to 10 mm at a flow rate of Reynolds number of 3000 to 15000. A method for oxidizing cyclohexane is disclosed. Japanese Patent Publication No. 38-15376 discloses a method of introducing an oxygen-containing gas into cyclohexane by passing the liquid phase in the form of bubbles having a diameter of 6 mm or more. Japanese Patent Application Laid-Open No. 60-75440 discloses a method for introducing an oxygen-containing gas into cyclohexane by opening the oxygen-containing gas from each nozzle at a flow rate of 0.01 to 1 m / sec from the nozzle opening of each gas introduction pipe. A method of introducing into cyclohexane at a rate of 0.001 to 10 liters / second per mouth is disclosed.
[0004]
However, as is well known, the process of oxidizing cyclohexane varies depending on the company, such as the scale of the equipment, the structure of the oxidizer (height, diameter, position of the oxygen-containing gas injection nozzle, nozzle hole diameter, number of holes, etc.). However, even if the above-mentioned disclosure conditions are satisfied, it cannot be said that the operation is easy and safe, and that a high selectivity effect is not exhibited.
[0005]
[Problems to be solved by the invention]
In view of such circumstances, the present inventors have been concerned with the height, diameter, position of oxygen-containing gas blowing holes, hole diameter, number of holes, etc. in a cyclohexane oxidizer having a gas introduction pipe having a plurality of blowing holes. As a result of intensive studies to find an operating factor that can improve the selectivity of the desired oxidation product easily and safely and uniquely, as a result, an oxygen-containing gas was blown out into cyclohexane under specific conditions, and from the oxidizer. When adjusting the oxygen concentration in the exhaust gas to be discharged to a specific range, it is found that regardless of the shape of the oxidizer, the desired oxidation product can be obtained with excellent safety and high selectivity. Thus, the present invention has been completed.
[0006]
[Means for Solving the Problems]
That is, the present invention relates to a method for producing cyclohexyl hydroperoxide, cyclohexanone, and cyclohexanol by injecting an oxygen-containing gas from a gas inlet pipe having a plurality of outlets provided in an oxidizer and subjecting cyclohexane to liquid phase oxidation. Oxygen at a rate of 2 m / sec to 150 m / sec from each outlet of the gas inlet tube and an oxygen concentration of 0.4% to 3% by volume in the gas discharged from the oxidizer. It is another object of the present invention to provide a method for oxidizing cyclohexane in a liquid phase, which comprises injecting a contained gas.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the method of the present invention will be described in more detail.
An object of the present invention is to use cyclohexane as a raw material, contact it with an oxygen-containing gas, and perform a liquid phase oxidation reaction to obtain cyclohexyl hydroperoxide, cyclohexanone, and cyclohexanol as oxidation products.
In this oxidation reaction, the yield decreases as the reaction rate (conversion rate) increases, and the by-products, which are higher oxides such as adipic acid, glutaric acid, and succinic acid, increase, so that the conversion rate is usually 3 to 7%. The operation is preferably performed with a target of about 4 to 6%.
[0008]
The oxygen-containing gas used for the oxidation reaction usually has an oxygen concentration of about 2 to about 30% by volume, and the reaction is carried out at a temperature of about 100 to about 170 ° C. and a pressure of about 7 to about 30 kg / cm 2 .
The oxidizer to be used for the oxidation reaction may be either an upright type or a horizontal type, and may be used alone or by connecting several units in series. It is advantageous to use it connected. Furthermore, the inside of the oxidizer may be provided with a plurality of trays.
[0009]
In the oxidizer applied in the embodiment of the present invention, an oxygen-containing gas introduction pipe is provided in one or more stages in a liquid phase formed in the oxidizer, and the oxygen-containing gas introduction pipe is provided in the gas introduction pipe. A plurality of blow holes are provided for introducing gas into cyclohexane. From the viewpoint of uniform gas injection into the liquid phase and easiness of operation, it is recommended to use an oxidizer in which gas inlet pipes having a plurality of outlets and which are uniformly arranged are provided in multiple stages.
[0010]
In the oxidizer, the oxygen-containing gas blown into the liquid phase from the gas inlet pipe becomes bubbles and is uniformly dispersed in the reaction zone, and rises in the liquid phase in a state where there is no aggregation of bubbles. preferable. In such a state, a plurality of gas inlet pipe blowing holes are arranged at equal intervals in a cross section in the liquid phase, and if a higher effect is desired, the above structure is provided and the gas inlet pipe blowing hole is further connected to the reaction zone. The structure may be arranged in multiple stages at substantially equal intervals in the entire volume of the liquid phase, and the blowing speed of the oxygen-containing gas from each gas blowing hole is about 2 to about 150 m / sec, preferably about 5 to about 50 m / Second. The blowing hole of the gas introducing pipe may have a structure for introducing the oxygen-containing gas downward, or may have an upward direction.
[0011]
A feature of the method of the present invention is that a multistage gas inlet pipe having a plurality of outlets in an oxidizer is used, and a gas blowing speed from each outlet of the gas inlet pipe is about 2 m / sec to about 150 m / sec. The oxygen concentration in the gas discharged from the oxidizer is about 0.4% to about 3% by volume, preferably about 0.5% to about 2% by volume, more preferably about 0.7% to about 1% by volume. An oxygen-containing gas is blown so as to have a volume ratio of 0.5% by volume to perform liquid phase oxidation of cyclohexane.
In the case of such a method, regardless of the shape and size of the oxidizer and the diameter of the blow-out hole for introducing the oxygen-containing gas, the oxygen concentration in the gas discharged from the oxidizer (exhausted in the present invention) The oxygen concentration in the gas refers to the total volume of nitrogen, oxygen, carbon monoxide and carbon dioxide in the exhaust gas, and refers to the volume fraction of molecular oxygen occupying the total volume) of about 0.4% to about 3% by volume. By adjusting the oxygen gas blowing rate and the blowing rate so as to fall within the range described above, a desired oxidation product consisting of cyclohexyl hydroperoxide, cyclohexanone and cyclohexanol can be selected at a high conversion rate of 4 to 6%. Can be obtained at a rate.
In the present invention, when the gas blowing speed is lower than about 2 m / sec, the polymer may adhere to the gas blowing holes in the operation process and blockage may occur. It is conceivable to increase the hole diameter for the purpose of avoiding blockage, but in this case, bubbles may become large, deflagration may occur, and this may be propagated. .
On the other hand, when the blowing speed is higher than about 150 m / sec, the compression pressure of the supplied oxygen-containing gas increases, which leads to a large energy loss and an increase in manufacturing cost, which is not preferable.
If the oxygen concentration in the gas discharged from the oxidizer is less than about 0.4% by volume, the desired high selectivity cannot be obtained, while if it exceeds about 3% by volume, the oxidation product Has a constant value, and substantially no further increase is observed, and oxygen is not effectively used, resulting in a loss of oxygen-containing gas. In addition, the reaction is highly likely to become unstable, and in such a case, oxygen may easily flow into the exhaust gas to form an explosive atmosphere of cyclohexane.
[0012]
【The invention's effect】
According to the method of the present invention described in detail above, regardless of the shape and size of the oxidizer and the size of the hole of the oxygen-containing gas inlet tube, the oxygen-containing gas blowing speed from each gas inlet tube is simply increased. Is set to about 2 to about 150 m / sec, and the blowing speed and the blowing amount of the oxygen gas are adjusted so that the oxygen concentration in the gas discharged from the oxidizer is in the range of about 0.4% to about 3% by volume. Only by adopting a very simple method of adjustment, it is possible to safely produce the desired oxidation product from cyclohexane with high selectivity, and its industrial value is extremely large It is.
[0013]
【Example】
Hereinafter, the method of the present invention will be described in more detail with reference to examples.
Example 1
A SUS cylindrical container having a height of 500 mm and a diameter of 50 mm provided with an annular oxygen-containing gas introduction pipe 2 in which three blow holes having a diameter of 0.1 mm are drilled downward at equal intervals at the bottom as shown in FIG. The oxidizer 1 was used, and cyclohexane in which 0.14 ppm of cobalt octylate was dissolved was supplied at a rate of 105 g / hour from the bottom conduit 3 of the oxidizer 1, and at the same time, an oxygen-containing gas of 8% by volume (the remainder was nitrogen) was supplied. It is supplied at a rate of 16 liters / hour (converted to a standard state) from the inlet pipe 2 (gas blowing speed from each inlet hole is 27 m / sec), and the exhaust gas and the liquid reaction mixture are discharged through the liquid reaction mixture outlet pipe 4 installed at the upper part of the reactor. After taking out (liquid depth 130 mm; height from the lower part of the oxidizer) and cooling by the cooler 5, the exhaust gas and the oxidation reaction product are separated by the separator 6 and discharged from the outlet pipe 7. The oxygen concentration of the gas and the composition of the oxidation reaction product led out from the outlet pipe 8 were measured, and the selectivity of the cyclohexane oxidation product when the cyclohexane conversion in the oxygen concentration in each exhaust gas was converted to 5% was determined. Was. As a result, the oxygen concentration in the exhaust gas was 1.0% by volume, and the selectivity for oxidation products of cyclohexane was 80.1% by mole.
[0014]
Comparative Example 1
Using the same oxidizer as in Example 1, the supply amount of cyclohexane from the conduit 3 was 412 g / hour, the supply amount of oxygen-containing gas from the introduction tube 2 was 53 liter / hour (converted to the standard state), and the gas from each of the injection holes was used. An oxidation reaction is performed at a blowing speed of 85 m / sec and the take-out position (liquid depth) of the liquid reaction mixture take-out tube 4 is set to 480 mm from the lower part of the oxidizer, and the oxygen concentration in the exhaust gas discharged from the take-out tube 7 and the The composition of the derived oxidation reaction product was measured, and the selectivity of the cyclohexane oxidation product was calculated when the conversion of cyclohexane in the oxygen concentration in each exhaust gas was converted to 5%. As a result, the oxygen concentration in the exhaust gas was 0.2% by volume, and the selectivity for the oxidation product of cyclohexane was 72.0 mol%.
[0015]
Example 2
At the bottom and the center as shown in FIG. 2, annular oxygen-containing gas introduction pipes 2 (A) and (B) in which eight blow holes with a diameter of 0.6 mm are drilled downward at equal intervals are arranged. A SUS cylindrical container having a diameter of 1600 mm and a diameter of 600 mm is used as the oxidizer 1, and 17 cc / hour of cyclohexane containing 0.2% by weight of cobalt octylate dissolved therein is supplied from the bottom conduit 3 of the oxidizer 1, and 195 kg / hour of cyclohexane is supplied from the conduit 9. At the same time, a 21% by volume oxygen-containing gas (air) was supplied from the introduction pipes 2 (A) and 2 (B) at a gas injection speed of 10 m / sec to 16 m / sec, and the liquid reaction was placed at the upper part of the reactor. The exhaust gas and the liquid reaction mixture were taken out through the mixture take-out tube 4, cooled by the cooler 5, separated into the exhaust gas and the oxidation reaction product by the separator 6, and taken out from each of the take-out tubes 7 and 8.
[0016]
In this experiment, the oxidation conditions were changed by changing the supply amount of the oxygen-containing gas from the conduits 2 (A) and (B) within the range of 8 to 12 Nm 3 / hour, and the exhaust gas discharged from the outlet pipe 7 was changed. The concentration of oxygen in the exhaust gas and the composition of the oxidation reaction product led out from the outlet pipe 8 were measured, and the conversion of cyclohexane in the oxygen concentration in each exhaust gas was converted to 4%, and the selectivity of the cyclohexane oxidation product was calculated. I asked. The result is shown in FIG.
[Brief description of the drawings]
FIG. 1 shows a schematic diagram of a cyclohexane oxidizer used in Example 1. FIG.
FIG. 2 shows a schematic diagram of a cyclohexane oxidizer used in Example 2.
FIG. 3 is a graph showing a relationship between an exhaust gas oxygen concentration (volume%) and a selectivity of a cyclohexane oxidation product (mol%) when a cyclohexane conversion rate is fixed.
[Explanation of symbols]
1: Oxidizer 2: Oxygen-containing gas introduction pipe 2 (A): Oxygen-containing gas introduction pipe 2 (B): Oxygen-containing gas introduction pipe 3: Bottom conduit 4 for supplying cyclohexane containing cobalt octylate 4: Liquid reaction mixture extraction pipe 5 : Cooler 6: Separator 7: Exhaust gas discharge pipe 8: Oxidation reaction product 9: Bottom conduit for cyclohexane supply

Claims (3)

酸化器内に配設された複数の吹出孔を有するガス導入管より酸素含有ガスを吹込みシクロヘキサンを液相酸化しシクロヘキシルハイドロパーオキサイド、シクロヘキサノンおよびシクロヘキサノールを製造する方法に於いて、ガス導入管の各吹出孔からのガス吹込み速度が2m/秒〜150m/秒、該酸化器より排出されるガス中の酸素濃度が0.4容量%〜3容量%となる如く酸素含有ガスを吹き込むことを特徴とするシクロヘキサンの液相酸化方法。In a method for producing cyclohexyl hydroperoxide, cyclohexanone and cyclohexanol by injecting an oxygen-containing gas from a gas introduction pipe having a plurality of blowout holes provided in an oxidizer and subjecting cyclohexane to liquid phase oxidation, a gas introduction pipe is provided. Injecting an oxygen-containing gas such that the gas injection speed from each of the outlet holes becomes 2 m / sec to 150 m / sec, and the oxygen concentration in the gas discharged from the oxidizer becomes 0.4% to 3% by volume. A liquid phase oxidation method for cyclohexane, characterized in that: ガス噴出速度が5m/秒〜50m/秒であることを特徴とする請求項1記載のシクロヘキサンの液相酸化方法。The method for oxidizing cyclohexane in a liquid phase according to claim 1, wherein the gas ejection speed is 5 m / sec to 50 m / sec. 排出されるガス中の酸素濃度が0.7容量%〜1.5容量%であることを特徴とする請求項1記載のシクロヘキサンの液相酸化方法。2. The liquid phase oxidation method for cyclohexane according to claim 1, wherein the concentration of oxygen in the discharged gas is 0.7% to 1.5% by volume.
JP01074696A 1996-01-25 1996-01-25 Liquid phase oxidation of cyclohexane Expired - Fee Related JP3567582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01074696A JP3567582B2 (en) 1996-01-25 1996-01-25 Liquid phase oxidation of cyclohexane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01074696A JP3567582B2 (en) 1996-01-25 1996-01-25 Liquid phase oxidation of cyclohexane

Publications (2)

Publication Number Publication Date
JPH09202742A JPH09202742A (en) 1997-08-05
JP3567582B2 true JP3567582B2 (en) 2004-09-22

Family

ID=11758881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01074696A Expired - Fee Related JP3567582B2 (en) 1996-01-25 1996-01-25 Liquid phase oxidation of cyclohexane

Country Status (1)

Country Link
JP (1) JP3567582B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233809A (en) * 1999-12-14 2001-08-28 Sumitomo Chem Co Ltd Method for oxidizing hydrocarbons
DE60002286T2 (en) 1999-12-14 2004-02-19 Daicel Chemical Industries, Ltd., Sakai Process for the production of ketones, alcohols and hydroperoxides
JP2006069977A (en) * 2004-09-03 2006-03-16 Sumitomo Chemical Co Ltd Method for producing cycloalkanol and/or cycloalkanone
JP2008280328A (en) * 2007-04-13 2008-11-20 Sumitomo Chemical Co Ltd Method for producing cycloalkanol and/or cycloalkanone
US7592493B2 (en) * 2007-06-27 2009-09-22 H R D Corporation High shear process for cyclohexanol production
US8088953B2 (en) * 2007-06-27 2012-01-03 H R D Corporation High shear oxidation of cyclohexane
JP5526555B2 (en) * 2009-02-12 2014-06-18 住友化学株式会社 Process for producing cycloalkanol and / or cycloalkanone

Also Published As

Publication number Publication date
JPH09202742A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
US3987100A (en) Cyclohexane oxidation in the presence of binary catalysts
US4908471A (en) Method for the production of benzene carboxylic acids and benzene dicarboxylic acid esters
KR100742842B1 (en) An apparatus for the controlled optimized addition of reactants in continuous flow reaction systems and methods of using the same
US3846079A (en) Vertical reaction vessel for effecting reaction of liquid and gaseous reactants by liquid-gas contact
JPH10330292A (en) Direct oxygen injection to bubble column reactor
US6008415A (en) Cyclohexane oxidation
JP3567582B2 (en) Liquid phase oxidation of cyclohexane
KR20000070165A (en) Method for producing hydrogen peroxide from hydrogen and oxygen
CN109967022B (en) Device and method for oxidizing organic matters
KR20090089346A (en) High-pressure separator
US4587363A (en) Continuous preparation of oxygen-containing compounds
US20160176813A1 (en) Process for the oxidation of cyclohexane
CN105565276B (en) A kind of efficient oxidation method of Hydrogen Peroxide Production
US7786323B2 (en) Method for collecting (meth)acrolein or (meth)acrylic acid and collecting device for the same
US9221737B2 (en) Process for the oxidation of cyclohexane
US7741523B2 (en) Method for oxidizing saturated cyclic hydrocarbons by oxygen
US6075169A (en) Process for preparing oxidation products from cyclohexane in counterflow
KR960016466B1 (en) Method and apparatus for oxydation of hydrocarbons
CN107497374B (en) Cyclohexane oxidation reactor and using method thereof
KR100538191B1 (en) Process for Preparing Oxidation Products from Cyclohexane in Counterflow
US2514041A (en) Manufacture of acetic anhydride
US6657097B1 (en) Fluidized bed reactor
US3546303A (en) Oxidation of cycloalkanes
CN111471004A (en) Preparation method of ethylbenzene hydroperoxide
JPS58216141A (en) Oxidation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees