JP3567304B2 - Modification method of blowing agent - Google Patents

Modification method of blowing agent Download PDF

Info

Publication number
JP3567304B2
JP3567304B2 JP05057198A JP5057198A JP3567304B2 JP 3567304 B2 JP3567304 B2 JP 3567304B2 JP 05057198 A JP05057198 A JP 05057198A JP 5057198 A JP5057198 A JP 5057198A JP 3567304 B2 JP3567304 B2 JP 3567304B2
Authority
JP
Japan
Prior art keywords
agent
foaming agent
coupling agent
blowing agent
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05057198A
Other languages
Japanese (ja)
Other versions
JPH11246844A (en
Inventor
司 前川
伸行 上田
禎文 庄野
良文 舘
茂 住友
Original Assignee
大塚化学ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学ホールディングス株式会社 filed Critical 大塚化学ホールディングス株式会社
Priority to JP05057198A priority Critical patent/JP3567304B2/en
Priority to MYPI98003133A priority patent/MY129168A/en
Priority to BRPI9814813-3A priority patent/BRPI9814813B1/en
Priority to EA200000345A priority patent/EA002426B1/en
Priority to US09/509,085 priority patent/US6355698B1/en
Priority to TW087111228A priority patent/TW538079B/en
Priority to HU0004805A priority patent/HU226848B1/en
Priority to KR1020007003458A priority patent/KR100545464B1/en
Priority to CA002304561A priority patent/CA2304561C/en
Priority to AU81281/98A priority patent/AU745468B2/en
Priority to ES98931038T priority patent/ES2333491T3/en
Priority to AT98931038T priority patent/ATE445683T1/en
Priority to DE69841242T priority patent/DE69841242D1/en
Priority to CNB988104504A priority patent/CN1193082C/en
Priority to PCT/JP1998/003094 priority patent/WO1999045080A1/en
Priority to EP98931038A priority patent/EP1061110B1/en
Priority to IL13519398A priority patent/IL135193A0/en
Priority to IDW20000898A priority patent/ID24384A/en
Publication of JPH11246844A publication Critical patent/JPH11246844A/en
Priority to IL135193A priority patent/IL135193A/en
Application granted granted Critical
Publication of JP3567304B2 publication Critical patent/JP3567304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発泡剤の改質方法に関する。
【0002】
【従来の技術】
アゾジカルボンアミドを始めとする発泡剤は、従来から、塩化ビニル樹脂、ポリオレフィン樹脂(ポリエチレン樹脂、ポリプロピレン樹脂等)、エチレンビニルアルコール樹脂等の熱可塑性樹脂等の発泡剤として広く利用されている。
【0003】
これらの発泡剤は、通常、微粉末状の化合物であり、経時や荷重によって凝集固化し、樹脂への添加工程における流動性が悪化してホッパーを詰まらせたり、樹脂への分散性が悪化するという問題点を有している。近年の発泡樹脂の高品質化と製造の省力化に伴い、その固化性の改良がより一層望まれている。
【0004】
【発明が解決しようとする課題】
現在、このような問題を解決するために、(1)シリカ、ケイ酸金属塩等の無機系粉末粒子を固化防止剤として発泡剤に添加する方法、(2)乾燥方式をバッチ式にして十分な乾燥時間をとり、発泡剤に含有される微量の水分を減少させる方法等が採用されている。
【0005】
しかしながら、これらの方法を採用した場合には種々の欠点を生ずる。即ち、(1)の方法では、固化防止効果は幾分認められるが、その効果の維持は数ケ月程度に止まる。また、発泡剤が微粒子になると固化防止効果が小さくなるため、より多くの無機系粉末粒子の添加が必要になるが、無機系粉末粒子の多量添加は発泡時の気泡の粗大化の原因となるため微細なセルが要求される用途においては好ましくない。一方、(2)の方法では、乾燥に長時間を要するため、生産能力が著しく低下し、製造コストが高くなり、また、連続生産に対応できない。
【0006】
特開平4−320432号公報には、アゾジカルボンアミドにシラン系カップリング剤の溶剤溶液を添加して、アゾジカルボンアミドの流動性や樹脂への分散性を改善する方法が提案されている。しかしながら、該方法では十分に固化防止を図ることはできない(後記比較例2及び比較例4参照)。
【0007】
また、特開平8−295872号公報には、化学発泡剤にアルミニウム系カップリング剤の溶剤溶液又は分散液を添加して、流動性や樹脂への分散性を改善する方法が提案されている。しかしながら、該方法でも十分に固化防止を図ることはできない(後記比較例1参照)。
【0008】
【課題を解決するための手段】
本発明者等は、上記課題を解決するため鋭意研究した結果、特定の処理を行うことにより、その発泡剤の固化性が著しく抑制され、長期間経過後も流動性や樹脂への分散性等が良好な発泡剤が得られることを見い出した。本発明は、斯かる知見に基づき完成されたものである。
【0009】
即ち、本発明は、シラン系カップリング剤、アルミニウム系カップリング剤、チタネート系カップリング剤より選ばれる少なくとも一種のカップリング剤をを発泡剤に添加混合して30℃〜発泡剤の分解温度までの温度で加熱することを特徴とする発泡剤の改質方法に係る。
【0010】
本発明の方法により改質された発泡剤(以下、単に「本発明の発泡剤」と称することがある)は、特に経時固化性が著しく改良され、長期間積載保存しても固化することは極めて少なく、製造直後の良好な流動性と樹脂への分散性が長期に亘って保持されるという利点を有している。また、本発明の発泡剤の発泡性能は、従来の発泡剤のそれと同等又はそれ以上である。従って、本発明の発泡剤が提供されたことにより、発泡剤の製造からユーザーで使用されるまでの製品の荷重固化及び経時固化の不安が一掃される。
【0011】
【発明の実施の形態】
本発明において、改質される発泡剤としては、従来公知の有機発泡剤を広く使用でき、例えばアゾジカルボンアミド(ADCA:分解温度約200℃)、p,p’−オキシビスベンゼンスルホニルヒドラジド(OBSH:分解温度約160℃)、ジニトロペンタメチレンテトラミン(DPT:分解温度約200℃)、p−トルエンスルホニルヒドラジド(TSH:分解温度約110℃)、ベンゼンスルホニルヒドラジド(BSH:分解温度約95℃)等を例示できる。これらの中でもADCAが好適である。
【0012】
本発明の発泡剤の改質方法は、特に分解温度100℃以上の発泡剤粉末につき好適に適用することができる。中でも従来固化性が大きな問題となっていたADCAにおいてメリットの大きいものである。
【0013】
本発明において、発泡剤は、粉末形態であるのが好ましい。その粒子径は特に限定されるものではないが、通常1〜50μm程度、好ましくは3〜30μm程度のものがよい。尚、本明細書において粒子径とは、レーザー回折式粒度分布計を用いて測定したメジアン径をいう。
【0014】
本発明に用いられるカップリング剤は、シラン系カップリング剤、アルミニウム系カップリング剤、チタネート系カップリング剤より選ばれる少なくとも1種である。
【0015】
シラン系カップリング剤としては、従来公知のものを広く使用でき、具体的にはメチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−フェニルアミノメチルトリメトキシシラン、ビニルメチルジエトキシシラン等を例示できる。
【0016】
アルミニウム系カップリング剤としては、従来公知のものを広く使用でき、具体的にはアルミニウムイソプロピレート、アルミニウムエチレート、アルミニウムトリス(エチルアセトアセテート)、エチルアセトアセテートアルミニウムジイソプロピレート等を例示できる。
【0017】
チタネート系カップリング剤としては、従来公知のものを広く使用でき、具体的にはイソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート等を例示できる。
【0018】
これらのカップリング剤は1種単独で又は2種以上を混合して用いることができる。これらの化合物の中でもアルミニウム系カップリング剤が好ましく、アルミニウムトリス(エチルアセトアセテート)が特に好ましい。
【0019】
これらのカップリング剤は、発泡剤と混合し加熱することにより、発泡剤中に含有される水分と効率的に反応し、発泡剤中の水分含量を低減させると共に、発泡剤表面に撥水性を付与する。
【0020】
カップリング剤の発泡剤に対する使用量としては、発泡剤の含有する水分と反応させるのに必要な量が目安となる。具体的には、発泡剤100重量部に対して通常0.01〜10重量部程度、好ましくは0.05〜0.5重量部の割合で使用すればよい。
【0021】
本発明において、カップリング剤は、溶媒に溶解乃至分散させないで、そのままで使用することが必要である。カップリング剤を溶媒に溶解乃至分散させた状態で使用した場合には、経時固化性の改善が不十分となり、本発明の所期の目的が達せられなくなる。このことは、後記比較例4から明らかである。
【0022】
本発明においては、発泡剤にカップリング剤を添加する際、もしくは添加後に加熱処理を行う。カップリング剤が常温で固体状にあるものは、発泡剤にカップリング剤を添加する際に予め加熱処理しておくのが必須である。この加熱処理により、固体状のカップリング剤は、加熱溶融された状態になっている。
【0023】
加熱温度としては、通常、30℃〜発泡剤の分解温度まで、好ましくは55℃〜発泡剤の分解温度までを例示できるが、発泡剤の分解や劣化を防ぐため100℃までの間で行うのが特に好ましい。更に、加熱時間を少なくしてより一層効率的に混合を行い、エネルギーコストを最小限にするという観点からは、加熱温度は70〜90℃程度とするのがよい。
【0024】
加熱は、発泡剤にカップリング剤を添加混合する際に同時に行うのが効率的である。
【0025】
発泡剤にカップリング剤を添加する方法としては、特に制限はないが、加圧ノズルもしくは二流体ノズル等を用いて微小液滴状態で噴霧するようにしてカップリング剤を添加するのが好ましい。
【0026】
また、添加に際しては発泡剤を十分に混合しながら行うのが好ましい。斯かる混合に用いることのできる混合機としては、例えば、スーパーミキサー、ヘンシエルミキサー、ナウタミキサー、リボン型ブレンダ等が例示できる。もっとも、上記混合の際に、表面被覆された発泡剤粒子が粉砕されると断面の未被覆面が露出して、本発明の効果を損なう虞がある。そのため、本発明においては、シェアがかかりにくく且つ粒子の粉砕が抑制された混合機、即ち、発泡剤の粉砕を伴わない混合機を用いるのが望ましい。発泡剤の粉砕を伴わない混合機としては、例えばナウタミキサー等のスクリュー型ミキサー、リボコーンミキサー等のリボン型ブレンダ、プロシェアミキサー(チョッパー羽根を取り外して用いる)等を例示できる。
【0027】
本発明の改質方法により改質された発泡剤は、従来の発泡剤と同様に、各種合成樹脂の発泡剤として好適に使用され得る。
【0028】
【実施例】
以下に実施例及び比較例を挙げ、本発明をより一層明らかにする。
【0029】
本実施例において使用したADCAは、大塚化学株式会社製、平均粒子径20μmのものである。
【0030】
実施例1
ADCA100重量部にアルミニウムトリス(エチルアセトアセテート)(商品名:ALCH−TR、川研ファインケミカル株式会社製)0.2重量部を90℃に加熱溶解しスプレー噴霧により添加しつつ円錐形リボン型ブレンダ(製品名:リボコーンE RME−50、大川原製作所製)を用いて70rpm、90℃にて10分間混合した後、更に70rpm、90℃にて7.5分混合を続けて本発明の発泡剤粉末を得た。
【0031】
比較例1
ADCA100重量部にアルミニウムトリス(エチルアセトアセテート)(商品名:ALCH−TR、川研ファインケミカル株式会社製)0.2重量部を90℃に加熱溶解しスプレー噴霧により添加しつつ円錐形リボン型ブレンダ(製品名:リボコーンE RME−50、大川原製作所製)を用いて70rpm、室温にて10分間混合した後、更に70rpm、室温にて7.5分混合を続けて発泡剤粉末を得た。
【0032】
実施例2
ADCA100重量部とN−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン(商品名:TSL8340、東芝シリコーン株式会社製)0.2重量部とを、スーパーミキサーを用いて300rpm、85℃にて、10分間混合した後、同条件で更に7.5分混合を続けて本発明の発泡剤粉末を得た。
【0033】
比較例2
ADCA100重量部とN−(β−アミノメチル)−γ−アミノプロピルトリメトキシシラン(商品名:TSL8340、東芝シリコーン株式会社製)0.2重量部とを、スーパーミキサー(製品名、株式会社川田製作所製)を用いて300rpm、室温にて10分間混合した後、更に300rpm、室温にて7.5分混合を続けて発泡剤粉末を得た。
【0034】
比較例3
未処理のADCAを比較例3の発泡剤粉末とする。
【0035】
比較例4
メチルトリメトキシシラン(商品名:TSL8113、東芝シリコーン株式会社製)0.4重量部を水10重量部に希釈した水溶液を調製した。この水溶液とADCA100重量部とを、ヘンシェルミキサーに投入し、室温で5分間混合後、乾燥して発泡剤粉末を得た。
【0036】
試験例1
上記の実施例及び比較例で得られた各発泡剤粉末につき、下記に示す方法で堆積固化テスト、実包装固化テストを行った。結果を表1に示す。
【0037】
(1)堆積固化テスト:
サンプル400gを23×13cmのポリ袋に充填し、十分脱気した後、開口部をヒートシールしたものを重ねて、更にその上から0.08kg/cmの荷重を加えた。10日後、サンプルを取り出し、14メッシュの篩にてふるい分けして不通過分の量を測定し、%に換算して求めた値を堆積固化値とした。
【0038】
(2)実包装固化テスト:
サンプル25kgを製品流通包装である段ボールケースに充填包装し、温度40℃、湿度80%の条件下に1ケ月放置し、その後、14メッシュの篩にてふるい分けして不通過分の量を測定し、%に換算して求めた値を堆積固化値とした。
【0039】
【表1】

Figure 0003567304
【0040】
実施例1、2及び比較例3の発泡剤粉末についての試験結果を比較すると、本発明の発泡剤粉末は、未処理の発泡剤粉末に比較して顕著に固化が抑制されていることがわかる。
【0041】
また、実施例1と比較例1の発泡剤粉末についての試験結果の比較から、単にアルミニウム系カップリング剤で表面処理しただけでは固化防止性は不十分であり、加熱下での処理を行うことにより固化防止性が大きく向上することがわかる。
【0042】
また実施例2、比較例2及び比較例4の発泡剤粉末についての試験結果の比較から、アルミニウム系カップリング剤と同様に、シラン系カップリング剤を用いた場合も加熱処理を行うことで固化防止性が大きく向上することがわかる。
【0043】
試験例2
実施例1、2及び比較例3で得られた発泡剤粉末の各々15重量部に、低密度ポリエチレン(メルトインデックス 2.0)100重量部及びジクミルパーオキサイド0.8重量部を配合した組成物をロール温度110〜115℃で加熱しながら混練し、厚み5mmのシートにして取り出した後、125℃で5分間120kg/cmの圧力をかけ加熱して、プレスシートとした。得られたシートを220℃にセットした熱風オーブンを用いて発泡させた。得られた発泡体は、実施例1、2及び比較例3のいずれの発泡剤粉末を用いたものについてもセルは均一微細で、表面平滑性、分解速度ともにほぼ同等な良好な発泡体であった。
【0044】
この結果から、本発明の発泡剤粉末は、未処理の発泡剤粉末と同等の発泡性能を有していることがわかる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for modifying a blowing agent.
[0002]
[Prior art]
BACKGROUND ART Blowing agents such as azodicarbonamide have been widely used as blowing agents for thermoplastic resins such as vinyl chloride resins, polyolefin resins (eg, polyethylene resins and polypropylene resins), and ethylene vinyl alcohol resins.
[0003]
These foaming agents are usually fine-powder compounds, which are agglomerated and solidified with the passage of time or a load, deteriorate the fluidity in the step of adding to the resin, clog the hopper, or deteriorate the dispersibility in the resin. There is a problem that. With the recent improvement in the quality of foamed resin and labor saving in production, improvement of the solidification property has been further demanded.
[0004]
[Problems to be solved by the invention]
At present, in order to solve such problems, (1) a method in which inorganic powder particles such as silica and metal silicate are added to a foaming agent as an anti-solidification agent, and (2) a batch-type drying method is used. For example, a method of taking a long drying time and reducing a trace amount of water contained in the foaming agent is employed.
[0005]
However, these methods have various disadvantages. That is, in the method (1), the effect of preventing solidification is somewhat recognized, but the effect is maintained only for several months. Further, since the solidification prevention effect is reduced when the foaming agent becomes fine particles, it is necessary to add more inorganic powder particles, but the addition of a large amount of the inorganic powder particles causes coarsening of bubbles at the time of foaming. Therefore, it is not preferable for applications requiring fine cells. On the other hand, in the method (2), since a long time is required for drying, the production capacity is significantly reduced, the production cost is increased, and it is not possible to cope with continuous production.
[0006]
Japanese Patent Application Laid-Open No. Hei 4-320432 proposes a method in which a solvent solution of a silane coupling agent is added to azodicarbonamide to improve the fluidity and dispersibility of the azodicarbonamide in a resin. However, this method cannot sufficiently prevent solidification (see Comparative Examples 2 and 4 described later).
[0007]
Japanese Patent Application Laid-Open No. 8-295872 proposes a method of improving the fluidity and dispersibility in a resin by adding a solvent solution or dispersion of an aluminum-based coupling agent to a chemical foaming agent. However, even with this method, solidification cannot be sufficiently prevented (see Comparative Example 1 described later).
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, by performing a specific treatment, the solidifying property of the foaming agent is significantly suppressed, and even after a long period of time, fluidity and dispersibility in resin, etc. Found that a good foaming agent was obtained. The present invention has been completed based on such findings.
[0009]
That is, the present invention adds a silane coupling agent, an aluminum coupling agent, and at least one coupling agent selected from titanate coupling agents to a foaming agent and mixes the mixture at 30 ° C. to the decomposition temperature of the foaming agent. The method according to the present invention relates to a method for modifying a foaming agent, characterized in that the method is characterized by heating at a temperature of 1: 1.
[0010]
The foaming agent modified by the method of the present invention (hereinafter sometimes simply referred to as the “foaming agent of the present invention”) has a particularly remarkably improved solidification property over time, and does not solidify even when stored for a long period of time. It is extremely low and has the advantage that good fluidity immediately after production and dispersibility in resin are maintained for a long period of time. The foaming performance of the foaming agent of the present invention is equal to or higher than that of the conventional foaming agent. Therefore, by providing the foaming agent of the present invention, anxiety of solidification under load and solidification over time from the production of the foaming agent to the use by the user is eliminated.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, as the foaming agent to be modified, conventionally known organic foaming agents can be widely used, for example, azodicarbonamide (ADCA: decomposition temperature of about 200 ° C.), p, p′-oxybisbenzenesulfonylhydrazide (OBSH) : Decomposition temperature of about 160 ° C), dinitropentamethylenetetramine (DPT: decomposition temperature of about 200 ° C), p-toluenesulfonylhydrazide (TSH: decomposition temperature of about 110 ° C), benzenesulfonylhydrazide (BSH: decomposition temperature of about 95 ° C), etc. Can be exemplified. Among them, ADCA is preferable.
[0012]
The method for modifying a blowing agent of the present invention can be suitably applied particularly to a blowing agent powder having a decomposition temperature of 100 ° C or higher. Among them, ADCA, in which solidification has conventionally been a major problem, has a great advantage.
[0013]
In the present invention, the foaming agent is preferably in a powder form. Although the particle diameter is not particularly limited, it is usually about 1 to 50 μm, preferably about 3 to 30 μm. In addition, in this specification, a particle diameter means the median diameter measured using the laser diffraction type particle size distribution analyzer.
[0014]
The coupling agent used in the present invention is at least one selected from a silane coupling agent, an aluminum coupling agent, and a titanate coupling agent.
[0015]
As the silane coupling agent, conventionally known ones can be widely used, and specifically, methyltrimethoxysilane, γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane , N-phenylaminomethyltrimethoxysilane, vinylmethyldiethoxysilane, and the like.
[0016]
As the aluminum-based coupling agent, conventionally known ones can be widely used, and specific examples thereof include aluminum isopropylate, aluminum ethylate, aluminum tris (ethyl acetoacetate), and ethyl acetoacetate aluminum diisopropylate.
[0017]
As the titanate-based coupling agent, conventionally known coupling agents can be widely used, and specifically, isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, bis (dioctyl) (Pyrophosphate) oxyacetate titanate and the like.
[0018]
These coupling agents can be used alone or in combination of two or more. Among these compounds, an aluminum-based coupling agent is preferable, and aluminum tris (ethyl acetoacetate) is particularly preferable.
[0019]
These coupling agents react efficiently with the water contained in the foaming agent by mixing and heating with the foaming agent, thereby reducing the water content in the foaming agent and imparting water repellency to the foaming agent surface. Give.
[0020]
As an amount of the coupling agent to be used with respect to the foaming agent, an amount necessary for causing the coupling agent to react with moisture contained in the foaming agent is used as a guide. Specifically, it may be used in an amount of usually about 0.01 to 10 parts by weight, preferably 0.05 to 0.5 part by weight, based on 100 parts by weight of the foaming agent.
[0021]
In the present invention, the coupling agent must be used as it is, without being dissolved or dispersed in a solvent. When the coupling agent is used in a state of being dissolved or dispersed in a solvent, solidification over time is insufficiently improved, and the intended object of the present invention cannot be achieved. This is apparent from Comparative Example 4 described later.
[0022]
In the present invention, heat treatment is performed when or after the coupling agent is added to the foaming agent. When the coupling agent is in a solid state at room temperature, it is essential to perform a heat treatment before adding the coupling agent to the foaming agent. By this heat treatment, the solid coupling agent is in a state of being heated and melted.
[0023]
The heating temperature is usually from 30 ° C. to the decomposition temperature of the foaming agent, preferably from 55 ° C. to the decomposition temperature of the foaming agent. Is particularly preferred. Further, from the viewpoint of shortening the heating time and performing mixing more efficiently and minimizing the energy cost, the heating temperature is preferably set to about 70 to 90 ° C.
[0024]
It is efficient to perform the heating at the same time as adding and mixing the coupling agent to the foaming agent.
[0025]
The method for adding the coupling agent to the foaming agent is not particularly limited, but it is preferable to add the coupling agent by spraying in a fine droplet state using a pressure nozzle or a two-fluid nozzle.
[0026]
In addition, it is preferable to perform the addition while sufficiently mixing the foaming agent. Examples of a mixer that can be used for such mixing include a super mixer, a Hensiel mixer, a Nauta mixer, a ribbon-type blender, and the like. However, during the mixing, if the surface-coated foaming agent particles are pulverized, the uncoated surface of the cross section is exposed, and the effect of the present invention may be impaired. Therefore, in the present invention, it is desirable to use a mixer in which shear is hardly applied and in which the pulverization of the particles is suppressed, that is, a mixer that does not involve the pulverization of the blowing agent. Examples of the mixer that does not involve the pulverization of the foaming agent include a screw-type mixer such as a Nauta mixer, a ribbon-type blender such as a ribocorn mixer, and a pro-share mixer (with the chopper blades removed).
[0027]
The foaming agent modified by the modification method of the present invention can be suitably used as a foaming agent for various synthetic resins, like a conventional foaming agent.
[0028]
【Example】
Hereinafter, the present invention will be further clarified by giving Examples and Comparative Examples.
[0029]
ADCA used in this example is manufactured by Otsuka Chemical Co., Ltd. and has an average particle diameter of 20 μm.
[0030]
Example 1
To 100 parts by weight of ADCA, 0.2 parts by weight of aluminum tris (ethyl acetoacetate) (trade name: ALCH-TR, manufactured by Kawaken Fine Chemical Co., Ltd.) is heated and melted at 90 ° C., and is added by spraying. Product name: Ribocorn ERME-50, manufactured by Okawara Seisakusho), and then mixed at 70 rpm and 90 ° C. for 10 minutes, and further mixed at 70 rpm and 90 ° C. for 7.5 minutes to obtain the blowing agent powder of the present invention. Obtained.
[0031]
Comparative Example 1
To 100 parts by weight of ADCA, 0.2 parts by weight of aluminum tris (ethyl acetoacetate) (trade name: ALCH-TR, manufactured by Kawaken Fine Chemical Co., Ltd.) is heated and melted at 90 ° C., and is added by spraying. Product name: Ribocone ERME-50, manufactured by Okawara Seisakusho) was used, and the mixture was mixed at 70 rpm for 10 minutes at room temperature, followed by mixing at 70 rpm for 7.5 minutes at room temperature to obtain a foaming agent powder.
[0032]
Example 2
100 parts by weight of ADCA and 0.2 part by weight of N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane (trade name: TSL8340, manufactured by Toshiba Silicone Co., Ltd.) were heated at 300 rpm and 85 ° C. using a super mixer. After mixing for 10 minutes, the mixture was further mixed under the same conditions for 7.5 minutes to obtain the foaming agent powder of the present invention.
[0033]
Comparative Example 2
100 parts by weight of ADCA and 0.2 parts by weight of N- (β-aminomethyl) -γ-aminopropyltrimethoxysilane (trade name: TSL8340, manufactured by Toshiba Silicone Co., Ltd.) were mixed with a super mixer (product name, Kawada Manufacturing Co., Ltd.). Was mixed at 300 rpm and room temperature for 10 minutes, and further continued to be mixed at 300 rpm and room temperature for 7.5 minutes to obtain a foaming agent powder.
[0034]
Comparative Example 3
Untreated ADCA is used as the foaming agent powder of Comparative Example 3.
[0035]
Comparative Example 4
An aqueous solution was prepared by diluting 0.4 parts by weight of methyltrimethoxysilane (trade name: TSL8113, manufactured by Toshiba Silicone Co., Ltd.) with 10 parts by weight of water. This aqueous solution and 100 parts by weight of ADCA were put into a Henschel mixer, mixed at room temperature for 5 minutes, and dried to obtain a foaming agent powder.
[0036]
Test example 1
Each of the foaming agent powders obtained in the above Examples and Comparative Examples was subjected to a solidification test for solidification and a solidification test for actual packaging by the following methods. Table 1 shows the results.
[0037]
(1) Solidification test:
400 g of the sample was filled in a 23 × 13 cm plastic bag, and after sufficiently degassing, the heat-sealed openings were overlaid, and a load of 0.08 kg / cm 2 was further applied thereto. After 10 days, the sample was taken out, sieved with a 14-mesh sieve, the amount of non-passage was measured, and the value calculated in% was determined as the solidification value.
[0038]
(2) Actual packaging solidification test:
A 25 kg sample was filled and packaged in a cardboard case as a product distribution package, allowed to stand for one month at a temperature of 40 ° C. and a humidity of 80%, and then sieved with a 14-mesh sieve to measure the amount of non-passage. ,%, Was determined as the solidification value.
[0039]
[Table 1]
Figure 0003567304
[0040]
Comparing the test results of the blowing agent powders of Examples 1 and 2 and Comparative Example 3, it can be seen that the solidification of the blowing agent powder of the present invention is significantly suppressed as compared with the untreated blowing agent powder. .
[0041]
Also, from the comparison of the test results of the foaming agent powders of Example 1 and Comparative Example 1, it was found that simply treating the surface with an aluminum-based coupling agent was insufficient in the anti-solidification property, and that the treatment under heating was performed. It can be seen that the solidification preventing property is greatly improved by the method.
[0042]
Also, from the comparison of the test results of the foaming agent powders of Example 2, Comparative Example 2 and Comparative Example 4, when the silane-based coupling agent was used as in the case of the aluminum-based coupling agent, the solidification was also performed by performing the heat treatment. It can be seen that the prevention is greatly improved.
[0043]
Test example 2
Composition in which 100 parts by weight of low-density polyethylene (melt index 2.0) and 0.8 part by weight of dicumyl peroxide were mixed with 15 parts by weight of each of the blowing agent powders obtained in Examples 1 and 2 and Comparative Example 3. The material was kneaded while being heated at a roll temperature of 110 to 115 ° C., taken out into a sheet having a thickness of 5 mm, and heated at 125 ° C. by applying a pressure of 120 kg / cm 2 for 5 minutes to obtain a pressed sheet. The obtained sheet was foamed using a hot air oven set at 220 ° C. Regarding the foam obtained using the foaming agent powders of Examples 1 and 2 and Comparative Example 3, the cells were uniform and fine, and the foam was a good foam having almost the same surface smoothness and decomposition rate. Was.
[0044]
From this result, it can be seen that the blowing agent powder of the present invention has the same foaming performance as the untreated blowing agent powder.

Claims (5)

予め加熱された、シラン系カップリング剤、アルミニウム系カップリング剤及びチタネート系カップリング剤より選ばれる少なくとも1種のカップリング剤を発泡剤に添加混合して30℃〜発泡剤の分解温度までの温度で加熱することを特徴とする発泡剤の改質方法。 Pre heated, a silane coupling agent, at least one coupling agent selected from the aluminum-based coupling agent and a titanate coupling agent, to the decomposition temperature of 30 ° C. ~ blowing agent is admixed with the blowing agent A method for modifying a foaming agent, characterized by heating at a temperature of at least 1%. 加熱温度が55℃〜100℃である請求項1に記載の方法。The method according to claim 1, wherein the heating temperature is from 55C to 100C. カップリング剤の発泡剤への添加は噴霧状態にて行い、発泡剤の粉砕を伴わない混合条件下で混合する請求項1又は請求項2に記載の方法。The method according to claim 1 or 2 , wherein the addition of the coupling agent to the blowing agent is performed in a spray state, and the mixing is performed under mixing conditions that do not involve grinding of the blowing agent. 発泡剤の粉砕を伴わない混合条件下で使用される混合機がリボン型ブレンダ又はスクリュー型ミキサーである請求項3に記載の方法。4. The method according to claim 3 , wherein the mixer used under mixing conditions without grinding of the blowing agent is a ribbon-type blender or a screw-type mixer. アルミニウム系カップリング剤がアルミニウムトリスアセトアセテートである請求項1、請求項2、請求項3又は請求項4に記載の方法。Claim 1 aluminum coupling agent is aluminum tris acetoacetate, claim 2, Process according to claim 3 or claim 4.
JP05057198A 1998-03-03 1998-03-03 Modification method of blowing agent Expired - Lifetime JP3567304B2 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
JP05057198A JP3567304B2 (en) 1998-03-03 1998-03-03 Modification method of blowing agent
MYPI98003133A MY129168A (en) 1998-03-03 1998-07-09 Substantially anhydrous blowing agent and process for producing the same
CNB988104504A CN1193082C (en) 1998-03-03 1998-07-10 Substantially anhydrous foaming agent and process for producing the same
US09/509,085 US6355698B1 (en) 1998-03-03 1998-07-10 Substantially anhydrous foaming agent and process for producing the same
TW087111228A TW538079B (en) 1998-03-03 1998-07-10 Substantially anhydrous blowing agent and process for producing the same
HU0004805A HU226848B1 (en) 1998-03-03 1998-07-10 Process for producing foaming agent - in a powder form -
KR1020007003458A KR100545464B1 (en) 1998-03-03 1998-07-10 Substantially anhydrous foaming agent powder and process for producing the same
CA002304561A CA2304561C (en) 1998-03-03 1998-07-10 Substantially anhydrous blowing agent and process for producing the same
AU81281/98A AU745468B2 (en) 1998-03-03 1998-07-10 Substantially anhydrous foaming agent and process for producing the same
ES98931038T ES2333491T3 (en) 1998-03-03 1998-07-10 PROCEDURE FOR WATER REDUCTION IN A BLOWING AGENT.
BRPI9814813-3A BRPI9814813B1 (en) 1998-03-03 1998-07-10 "Process for the production of expansion powder with a water content of less than 0,03% by weight".
DE69841242T DE69841242D1 (en) 1998-03-03 1998-07-10 PROCESS FOR REDUCING THE WATER CONTENT IN A BARRIER
EA200000345A EA002426B1 (en) 1998-03-03 1998-07-10 Substantially anhydrous foaming agent and process for producing the same
PCT/JP1998/003094 WO1999045080A1 (en) 1998-03-03 1998-07-10 Substantially anhydrous foaming agent and process for producing the same
EP98931038A EP1061110B1 (en) 1998-03-03 1998-07-10 Process for reducing the water content of a blowing agent
IL13519398A IL135193A0 (en) 1998-03-03 1998-07-10 Substantially anhydrous foaming agent and process for producing the same
IDW20000898A ID24384A (en) 1998-03-03 1998-07-10 SUBSTANCIAL SUBSANSIAL SUBSTANCING SUBSTANCES AND PROCESSES FOR PRODUCING THESE MATERIALS
AT98931038T ATE445683T1 (en) 1998-03-03 1998-07-10 METHOD FOR REDUCING THE WATER CONTENT IN A FOAM AGENT
IL135193A IL135193A (en) 1998-03-03 2000-03-21 Substantially anhydrous foaming agent and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05057198A JP3567304B2 (en) 1998-03-03 1998-03-03 Modification method of blowing agent

Publications (2)

Publication Number Publication Date
JPH11246844A JPH11246844A (en) 1999-09-14
JP3567304B2 true JP3567304B2 (en) 2004-09-22

Family

ID=12862696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05057198A Expired - Lifetime JP3567304B2 (en) 1998-03-03 1998-03-03 Modification method of blowing agent

Country Status (1)

Country Link
JP (1) JP3567304B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101217865B1 (en) * 2006-10-17 2013-01-03 주식회사 제이앤드제이 캐미칼 A method for modifying a blowing agent

Also Published As

Publication number Publication date
JPH11246844A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
JP2538783B2 (en) Dustproofing composition
JPH0380173B2 (en)
AU745468B2 (en) Substantially anhydrous foaming agent and process for producing the same
JP3567304B2 (en) Modification method of blowing agent
KR100320117B1 (en) Foaming powder and preparation method thereof
JP3012950B2 (en) Blowing agent composition
JPH11246843A (en) Foaming agent surface-coated with aluminum hydroxide and its production
JP3136403B2 (en) Foaming agent powder and method for producing the same
KR100295472B1 (en) Foaming agent composition
JP3390828B2 (en) Anhydrous azodicarbonamide crystal and method for producing the same
JPH11302628A (en) Blowing agent powder and its production
JPH06241575A (en) Method for manufacturing chemical pocket heater
JPH08295872A (en) Modified chemical foaming agent and modification of chemical foaming agent
JPH06179862A (en) Modification of chemical blowing agent
JP6755133B2 (en) Ethylene / propylene / diene rubber foam, its manufacturing method and sealing material
JPH0329253B2 (en)
JP2613439B2 (en) Method for producing conductive polyolefin foam
JP2008101210A (en) Method for modifying foaming agent
JP3586762B2 (en) Foaming agent powder and method for producing the same
RU2093027C1 (en) Method of preparing insecticide cypermethrin-base composition
JP2604321B2 (en) Blowing agent composition
JPH051153A (en) Master batch of granular forming agent
JPS6140546B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term