JP3567058B2 - Detecting agent - Google Patents

Detecting agent Download PDF

Info

Publication number
JP3567058B2
JP3567058B2 JP09173997A JP9173997A JP3567058B2 JP 3567058 B2 JP3567058 B2 JP 3567058B2 JP 09173997 A JP09173997 A JP 09173997A JP 9173997 A JP9173997 A JP 9173997A JP 3567058 B2 JP3567058 B2 JP 3567058B2
Authority
JP
Japan
Prior art keywords
gas
chlorine
agent
hydroxide
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09173997A
Other languages
Japanese (ja)
Other versions
JPH10115608A (en
Inventor
孝 島田
洋二 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP09173997A priority Critical patent/JP3567058B2/en
Publication of JPH10115608A publication Critical patent/JPH10115608A/en
Application granted granted Critical
Publication of JP3567058B2 publication Critical patent/JP3567058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はハロゲンガスおよび酸性ガスの検知剤に関し、さらに詳細には、窒素、水素、アルゴン、ヘリウムなどのガス中に含まれるフッ素、塩素、臭素、フッ化水素、六フッ化タングステン、四フッ化珪素、三フッ化硼素、塩化水素、四塩化珪素、三塩化硼素、フッ化塩素、三フッ化塩素等のハロゲンガスおよび酸性ガスの検知剤に関する。
【0002】
近年、半導体工業やオプトエレクトロニクス工業の発展に伴い各種のハロゲンガスおよび酸性ガスが使用されているとともに、その使用量が増加している。
これらのハロゲンガスおよび酸性ガスはシリコン半導体や化合物半導体製造工程などにおいて、結晶性シリコン、アモルファスシリコンあるいは酸化シリコン膜の膜成長用ガス、あるいは、エッチング用ガスとして不可欠な物質である。
【0003】
しかし、これらのガスはいずれも極めて毒性が高く、特に毒性の高い塩素やフッ素の時間加重平均許容濃度は1ppmとされている。従って、これらのガスの取り扱いに際しては絶えず作業環境の測定を行わなくてはならず、万一これらのガスが漏れた場合には的確に検知し、危害を生じないような処置を講ずる必要がある。
また、半導体製造プロセス等から排出されるガスにはこれらのハロゲンガスおよび酸性ガスが含有されているため、除害装置等を用いて浄化した後、外部に放出する際には、これらのハロゲンガスおよび酸性ガスの有無を確認する必要がある。
【0004】
【従来の技術】
従来、ハロゲンガスの検知方法としては、▲1▼オルトトリジン法を利用したもの、▲2▼ハロゲンガスの脱色作用を利用したものなどがある。また、酸性ガスの検知方法としては、▲3▼変色成分にpH指示薬を用いたもの、▲4▼酸性ガスと水からハロゲン化水素を生成させ、そのpH変化を利用したものなどがある。
これらの検知方法を利用した検知剤をガラス管や容器に充填して検知管や検知器として構成し、被測定ガスと接触させて、検知剤が変色することを利用したものが多数知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、▲1▼オルトトリジン法を利用したもの、▲2▼ハロゲンガスの脱色作用を利用したもの、あるいは▲4▼酸性ガスと水からハロゲン化水素を生成させ、そのpH変化を利用したものではいずれも湿式あるいは湿度の高い反応条件が必要であり、ガス中のハロゲンガスあるいは酸性ガスの検出には加湿を要すること、および応答性が遅い点などの不都合があり、乾燥条件下では実際上使用できないという問題点があった。
一方、▲3▼変色成分にpH指示薬を用いたものでは、乾式法で行うことができるものの、何れもその変色の差が小さく、高感度で検出できないほか、検知成分が乾燥するとさらに感度が低下する等の不都合があった。 これらのことから、ハロゲンガスおよび酸性ガスに対して、乾燥条件下でも、高感度で検出しうるとともに、長期間にわたり安定した検出能を有する検知剤の開発が強く望まれていた。
【0006】
【課題を解決するための手段】
本発明者らはこれらの問題点を解決し、希薄なハロゲンガスおよび酸性ガスに対しても高感度で、かつ迅速に変色する検知剤を得るべく検討を重ねた結果、変色成分として遷移金属の水酸化物とコンゴーレッドを組み合わせることにより優れた検知剤を得ることができることを見いだし、本発明を完成した。
すなわち、本発明は、遷移金属の水酸化物とコンゴーレッドを変色成分とした、ハロゲンガスおよび酸性ガスから選ばれる少なくとも一種を含有するガスの検知剤である。
【0007】
【発明の実施の態様】
本発明の検知剤は、窒素、水素、アルゴン、およびヘリウムなどに含まれるハロゲンガスおよび酸性ガスから選ばれる少なくとも一種を含むガスの検知に適用することができる。
本発明におけるハロゲンガスとはフッ素、塩素または臭素である。また酸性ガスとは、そのもの自体酸性を有するほか、水と接触して加水分解により酸性を示すものをいい、具体的にはフッ化水素、六フッ化タングステン、四フッ化珪素、三フッ化硼素、塩化水素、四塩化珪素、三塩化硼素、フッ化塩素、三フッ化塩素などである。
【0008】
本発明の検知剤は、遷移金属の水酸化物とpH指示薬コンゴーレッドとの混合物を変色成分とした、ハロゲンガスと酸性ガスの検知剤であり、ハロゲンガスおよびフッ化塩素、三フッ化塩素など一部の酸性ガスと接触することにより柿色〜紅色から黒色に変色し、フッ化塩素、三フッ化塩素を除く他の酸性ガスと接触することにより柿色〜紅色から青色〜紺色へと鋭敏に変色する。
【0009】
本発明において検知剤の変色成分の一成分として遷移金属の水酸化物が用いられる。遷移金属としてはニッケル(II)、コバルト(II)又はマンガン(II)等が挙げられ、その水酸化物は水酸化ニッケル(Ni(OH))、水酸化コバルト(Co(OH))、水酸化マンガン(Mn(OH))であり、これらの水酸化物の1種を用いてもよく、また2種以上を併用して用いてもよい。
水酸化ニッケル(II)は淡緑色の結晶であり、硝酸ニッケル(II)等の水溶液に水酸化カリウム溶液を加えることによって調製することもできるが、市販品があり、それらを用いることもできる。水酸化ニッケル(II)に少量の水酸化ニッケル(I)および水酸化ニッケル(III)を含有する場合があるが、水酸化ニッケル(II)の色調を著しく損なうものでなければ、本発明の検知剤に用いることができる。
【0010】
水酸化コバルト(II)は淡青色またはバラ色の結晶であり、水酸化カリウム水溶液に硝酸コバルト(II)溶液を加えることによって調製することができる。水酸化コバルト(II)は空気中で比較的容易に酸化されて緑色から暗緑色に変色することから、不活性気体中で取り扱うことが好ましい。
【0011】
水酸化マンガン(II)は白色結晶であり、水酸化カリウム水溶液に硝酸マンガン(II)溶液を加えることによって調製することができる。水酸化マンガン(II)は空気中で比較的容易に酸化されて褐色に変色することから、不活性気体中で取り扱うことが好ましい。
本発明の一方の変色成分であるコンゴーレッドはpH指示薬として広く用いられているものであり、市販品があることから、それを用いると好都合である。
【0012】
本発明において、変色成分である遷移金属の水酸化物とコンゴーレッドとの混合物を粉末状のまま、またはペレット状などに成型して検知剤としてもよく、または無機担体などに担持させて検知剤とすることもできる。
遷移金属の水酸化物とコンゴーレッドとの混合物を粉末状のまま、又はペレット状などに成型して検知剤として用いる場合の混合割合は、コンゴーレットの割合が少ない場合は変色感度が得られず、また多すぎる場合は変色が不明瞭となることから重量比(水酸化物:コンゴーレッド)で通常は1:0.01〜0.00001、好ましくは1:0.005〜0.0001である。これらの混合物を通常の乾式あるいは湿式の成型方法によってペレット状、あるいは粒状などに成型して用いることができる。また成型の際に、成型を容易にするために、遷移金属の水酸化物およびコンゴーレッドに不活性な少量の滑剤、成形剤を用いることもできる。
【0013】
変色成分である遷移金属の水酸化物とコンゴーレッドとの混合物を担体に担持させて用いることもできる。特に水酸化コバルトは安定的に取扱いにくいことから、担体に担持させて用いることが好ましい。
遷移金属の水酸化物とコンゴーレッドの混合物を無機担体に担持させる場合の担体としては、広い範囲から選択することができるが、例えばシリカゲル、シリカアルミナ、アルミナ、ジルコニア、チタニアなどの触媒担体、中でも白色ないしは無色のものが好適に使用され、これらの内でもシリカゲルが特に好ましい。シリカゲルとしては、乾燥剤用として一般に市販されているものは450〜800m/g程度の比表面積を有するものであり、これらを用いてもよいが本発明の目的をより高度に達成するためには水熱合成法などで得られる比表面積50〜400m/gの範囲のものが好ましい。比表面積が小さくなりすぎると変色速度が小さくなることがある。
【0014】
担体を用いる場合の変色成分の担持方法としては、例えば変色成分を水や各種の有機溶媒などに溶解またはけん濁させた液に担体を浸漬させてもよく、もしくは担体をかき混ぜながら変色成分の溶液あるいはけん濁液を担体表面に散布して担持させてもよい。
【0015】
無機担体に対する遷移金属の水酸化物とコンゴーレッドの担持量は重量比(無機担体:水酸化物:コンゴーレッド)で通常は1:0.15〜0.0001:0.1〜0.00001、好ましくは1:0.05〜0.005:0.01〜0.0001である。
無機担体に対する遷移金属水酸化物の担持量が上記範囲よりも少ない場合は感度が得られず、また多すぎる場合、遷移金属の種類によっては(コバルトの場合)変色前後の色の変化が判別しにくくなる。
また、無機担体に対するコンゴーレッドの担持量が上記範囲よりも少ない場合には感度が得られず、また多すぎる場合には変色前後の色の変化が判別しにくくなる。
検知剤調製時における遷移金属水酸化物の酸化を防止するため、担持操作および乾燥は、窒素雰囲気中で行うことが好ましい。また、得られた検知剤は酸素との接触をさけて保存することが好ましい。
【0016】
検知剤と接触させるガスの速度に特に制限はないが、半導体製造プロセスの装置内や排ガス処理装置内では、通常、空筒基準線速度で0.01〜100cm/sec程度とされる。ただし、これらの装置のパージの時などでは100cm/secを越える線速度となる場合がある。通常、空筒基準線速度が上記範囲より低い場合は変色が遅くなり、高い場合は圧力損失が大きくなるおそれがある。
接触時のガスの温度は通常は−20〜100℃、また、圧力は0.001〜20kg/cmabs程度である。
【0017】
本発明の検知剤は固体であり、通常はガラス製の検知管や透明プラスチック製などの透明な容器またはガスの浄化筒などに設けられた透明な覗き窓部に充填して使用され、ガス中に含有されるハロゲンおよび酸性ガスの存在を検知剤の変色により知ることができる。また、本発明の検知剤を浄化剤などとともに使用する場合には浄化筒内の浄化剤の層の下流側または複数の浄化剤層の間に充填したり、検知剤を充填した検知筒を浄化筒の後ろに接続した形態などで使用される。
【0018】
このように本発明の検知剤を用いることによって、検知剤がハロゲンガスおよびフッ化塩素、三フッ化塩素など一部の酸性ガスに接触することにより柿色〜紅色から黒色に鋭敏に変色し、検知剤がフッ化塩素、三フッ化塩素を除く他の酸性ガスに接触した場合には柿色〜紅色から青色〜紺色に鋭敏に変色することにより容易に検知することができる。
【0019】
【実施例】
次に本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
実施例1〜9
(検知剤の調製1)
粒の大きさが5〜10mesh、比表面積325m/g、細孔容積0.99ml/g、充填密度0.420g/mlの粒状シリカゲル(富士シリシア化学(株)製、キャリアクト−10)100gに、硝酸コバルト6水和物5.0gを水153mlに溶解した溶液を含浸させた後、1Nの水酸化ナトリウム水溶液50mlを加えてかき混ぜたのち、ロータリーエバポレーターで50℃の温度で減圧乾燥させた。これにコンゴーレッド0.1gを水100mlに溶解した溶液を加えてかき混ぜ、再びロータリーエバポレーターで完全に減圧乾燥させて検知剤を調製した。
【0020】
(検知能力の測定1)
この検知剤2.0gを内径19mmのガラス管に充填したものを多数作製し、これに10ppmおよび1ppmの塩素、50ppmおよび5ppmの塩化水素、10ppmの臭素、10ppmのフッ素、50ppmの三塩化ほう素、50ppmの六フッ化タングステン、10ppmの三フッ化塩素を含有する窒素ガスをそれぞれ空筒基準線速度5.9cm/secで接触させ、変色し始めるまでの時間を測定した。
結果を表1に示す。
【0021】
【表1】

Figure 0003567058
【0022】
実施例10、11
(検知剤の調製2)
実施例1と同様の粒状シリカゲル100gに、硫酸ニッケル6水和物20.0gを水153mlに溶解した溶液を含浸させた後、1Nの水酸化ナトリウム水溶液250mlを加えかき混ぜた。次に時々かき混ぜながら12時間放置して反応させた後上澄みを捨て、ロータリーエバポレーターで50℃の温度で減圧乾燥させた。これにコンゴーレッド0.02gを水100mlに溶解した溶液を加え、再びロータリーエバポレーターで完全に乾燥させて検知剤を調製した。
【0023】
(検知能力の測定2)
この検知剤2.0gを実施例1と同様にガラス管に充填し、これに10ppmの塩素、50ppmの塩化水素を含有する窒素ガスをそれぞれ空筒基準線速度5.9cm/secで接触させ、変色し始めるまでの時間を測定した。
結果を表2に示す。
【0024】
【表2】
Figure 0003567058
【0025】
実施例12、13
(検知剤の調製3)
実施例1と同様の粒状シリカゲル100gに、硫酸マンガン4〜5水和物20.0gを水153mlに溶解した溶液を含浸させた後、1Nの水酸化ナトリウム水溶液250mlを加えてかき混ぜた。次に時々かき混ぜながら12時間放置して反応させた後上澄みを捨て、ロータリーエバポレーターで50℃の温度で減圧乾燥させた。これにコンゴーレッド0.02gを水100mlに溶解した溶液を加え、再びロータリーエバポレーターで完全に乾燥させて検知剤を調製した。
【0026】
(検知能力の測定3)
この検知剤2.0gを実施例1と同様にガラス管に充填し、これに10ppmの塩素、50ppmの塩化水素を含有する窒素ガスをそれぞれ空筒基準線速度5.9cm/secで通して接触させ、変色し始めるまでの時間を測定した。
結果を表3に示す。
【0027】
【表3】
Figure 0003567058
【0028】
実施例14、15
(検知剤の調製4)
粒の大きさが8〜16mesh、比表面積210m/g、細孔容積0.99g、平均細孔径100Å、充填密度0.68g/mlの活性アルミナ(水沢化学工業(株)製、Neobeads GB8〜16)150g、硝酸コバルト6水和物5.0gを水153mlに溶解した溶液を含浸させた後、1Nの水酸化ナトリウム水溶液50mlを加えてかき混ぜた。次に時々かき混ぜながら12時間放置して反応させた後上澄みを捨て、ロータリーエバポレーターで50℃の温度で減圧乾燥させた。これにコンゴーレッド0.1gを水100mlに溶解した溶液を加え、再びロータリーエバポレーターで完全に乾燥させて検知剤を調製した。
【0029】
(検知能力の測定4)
この検知剤2.0gを実施例1と同様にガラス管に充填し、これに10ppmの塩素、50ppmの塩化水素を含有する窒素ガスをそれぞれ空筒基準線速度5.9cm/secで通して接触させ、変色し始めるまでの時間を測定した。
結果を表4に示す。
【0030】
【表4】
Figure 0003567058
【0031】
実施例16、17
(検知剤の調製5)
水酸化ニッケル1.5水和物100gに、コンゴーレッド0.04gを水22gに溶かした溶液を加え、更に1Nの水酸化ナトリウム水溶液2mlを加え、そのペーストを型に入れ、窒素ガス雰囲気下50℃で乾燥させたのち、それを6〜10meshに砕いて検知剤を調製した。
【0032】
(検知能力の測定5)
この検知剤2.0gを実施例1と同様にガラス管に充填し、これに10ppmの塩素、50ppmの塩化水素を含有する窒素ガスをそれぞれ空筒基準線速度5.9cm/secで通して接触させ、変色し始めるまでの時間を測定した。
結果を表4に示す。
【0033】
【表5】
Figure 0003567058
【0034】
実施例18
(窒素ガスによる影響の確認)
次に、実施例1で使用した検知剤2.0gを内径19mmのガラス管に充填し、これに100%の窒素ガスを空筒基準線速度6.4cm/secで通して接触させ、変化の有無を観察した。その結果、7200分経過後も変色は認められなかった。
【0035】
実施例19、20
(検知能力の測定6)
実施例18で使用した検知剤に10ppmの塩素、50ppmの塩化水素を含有する窒素ガスをそれぞれ線速度5.9cm/secで通して接触させ、変色し始めるまでの時間を測定した。
結果を表6に示す。
【0036】
【表6】
Figure 0003567058
【0037】
実施例21〜24
(検知剤能力の測定7)
実施例1〜9で用いたものと同種類の検知剤2.0gを内径19mmのガラス管に充填し、これに弗化水素、四弗化珪素、三弗化硼素、四塩化珪素を50ppm含む窒素ガスをそれぞれ線速5.9cm/secで通して接触させ、変色しはじめるまでの時間を測定した。
結果を表7に示す。
【0038】
【表7】
Figure 0003567058
【0039】
実施例25、26
(検知剤の調製6)
担体として、8〜16mesh、比表面積210m/g、細孔容積0.99ml/g、充填密度0.68g/mlの活性アルミナ(水澤化学(株)Neobeads GB8 〜16)150gを用い、これに硝酸コバルト6水和物5.0gを水153mlに溶解した溶液を含浸させた。次に、これに1Nの水酸化ナトリウムを50ml加えてかき混ぜた。次いで時々かき混ぜながら12時間放置して反応させた後上澄みを捨て、ロータリーエバポレーターで50℃の温度で余分な水分を減圧乾燥させた。さらに、コンゴーレット0.1gを水100mlに溶解した溶液を加え、再びロータリーエバポレーターで完全に乾燥させて検知剤を調製した。
【0040】
(検知剤能力の測定8)
この検知剤2.0gを実施例1と同様にガラス管に充填し、これに10ppmの塩素、50ppmの塩化水素を含む窒素ガスを通気して変色しはじめる迄の時間を測定した。
結果を表8に示す。
【0041】
実施例27、28
(検知剤の調製7)
担体として、直径5mmの球状、比表面積39m/g、細孔容積0.33ml/g、のチタニア(日産ガードラー(株)製、CS−300−46 )150gを用いたほかは、実施例25、26と同様にして検知剤を調製した。
(検知剤能力の測定9)
この検知剤について実施例25、26と同様の方法で,塩素、塩化水素を含む窒素ガスについて変色しはじめる迄の時間を測定した。
結果を表8に示す。
【0042】
実施例29、30
(検知剤の調製8)
担体として、直径2〜3mm、長さ約5mm、比表面積90m/g、細孔容積0.31ml/g、のジルコニア(ノートン社製、XZ−16052)150gを用いたほかは、実施例25、26と同様にして検知剤を調製した。
(検知剤能力の測定10)
この検知剤について実施例25、26と同様の方法で、塩素、塩化水素を含む窒素ガスについて変色しはじめる迄の時間を測定した。
結果を表8に示す。
【0043】
実施例31、32
(検知剤の調製9)
担体として、直径5mmの球状、比表面積80m/g、のシリカアルミナ(ノートン社製、SA377 )150gを用いたほかは、実施例25、26と同様にして検知剤を調製した。
(検知剤能力の測定11)
この検知剤について実施例25,26と同様の方法で、塩素、塩化水素を含む窒素ガスについて変色しはじめる迄の時間を測定した。
結果を表8に示す。
【0044】
【表8】
Figure 0003567058
【0045】
比較例1
(検知剤の調製10)
実施例1で用いたものと同じ粒状のシリカゲル100gに、コンゴーレッド0.1gを水200mlに溶解した溶液を加え、ロータリーエバポレーターで50℃の温度で余分な水を減圧乾燥させて検知剤を調製した。
(検知剤能力の測定12)
この検知剤2.0gを実施例1と同様にガラス管に充填し、これに10ppmの塩素を含む窒素ガスをそれぞれ線速5.9cm/secで通気して接触させ、変色しはじめるまでの時間を測定した。
結果を表9に示したが、通気後1分以内に検知剤が脱色してしまった。
【0046】
【表9】
Figure 0003567058
【0047】
【発明の効果】
本発明の検知剤は以下のような優れた特長を有している。
▲1▼ハロゲンガスおよび酸性ガスの検知に水分を必要としないため、測定対象ガスおよび検知剤の水分量に関係なく、常に高感度で検知することができる。
▲2▼検知剤がハロゲンガスまたは酸性ガスと接触すると明るい色から暗い色に変色するため、変色差が大きく極めて容易に、かつ高感度で検知することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a detection agent for halogen gas and acid gas, and more specifically, fluorine, chlorine, bromine, hydrogen fluoride, tungsten hexafluoride, and tungsten tetrafluoride contained in gases such as nitrogen, hydrogen, argon, and helium. The present invention relates to an agent for detecting a halogen gas and an acid gas such as silicon, boron trifluoride, hydrogen chloride, silicon tetrachloride, boron trichloride, chlorine fluoride, and chlorine trifluoride.
[0002]
In recent years, along with the development of the semiconductor industry and the optoelectronics industry, various halogen gases and acid gases have been used, and their usage has been increasing.
These halogen gas and acid gas are indispensable substances as a gas for growing a crystalline silicon, an amorphous silicon or a silicon oxide film, or as an etching gas in a process of manufacturing a silicon semiconductor or a compound semiconductor.
[0003]
However, all of these gases are extremely toxic, and the time-weighted average allowable concentration of particularly toxic chlorine or fluorine is 1 ppm. Therefore, when handling these gases, it is necessary to constantly measure the working environment, and in the event that these gases leak, it is necessary to accurately detect them and take measures to prevent harm. .
In addition, since gases discharged from a semiconductor manufacturing process and the like contain these halogen gases and acid gases, these gases are required to be released to the outside after purification using a detoxification device or the like. It is necessary to confirm the presence of acid gas.
[0004]
[Prior art]
Conventionally, methods for detecting halogen gas include (1) a method utilizing the ortho-tolidine method, and (2) a method utilizing the decolorizing action of the halogen gas. As a method for detecting an acid gas, there are (3) a method using a pH indicator as a color change component, and (4) a method using a pH change of hydrogen halide generated from an acid gas and water.
A glass tube or a container is filled with a detecting agent using these detection methods to constitute a detecting tube or a detector, and a number of known methods utilizing contact with a gas to be measured and discoloration of the detecting agent are known. I have.
[0005]
[Problems to be solved by the invention]
However, any of (1) a method utilizing the ortho-tolidine method, (2) a method utilizing the decolorizing action of a halogen gas, or (4) a method utilizing the change in pH of hydrogen halide generated from an acidic gas and water. Also requires reaction conditions of wet or high humidity, detection of halogen gas or acid gas in the gas requires humidification, and has the disadvantage of slow response, and cannot be practically used under dry conditions. There was a problem.
On the other hand, in the case of using (3) a pH indicator for the discoloration component, the drying method can be used, but the difference in discoloration is small and cannot be detected with high sensitivity, and the sensitivity further decreases when the detection component is dried. There were inconveniences such as doing. For these reasons, there has been a strong demand for the development of a detection agent that can detect halogen gas and acid gas with high sensitivity even under dry conditions and has stable detection ability for a long period of time.
[0006]
[Means for Solving the Problems]
The present inventors have solved the above problems, and have studied repeatedly to obtain a detection agent that is highly sensitive to a dilute halogen gas and an acidic gas and that rapidly changes color. It has been found that an excellent detector can be obtained by combining hydroxide and Congo Red, and the present invention has been completed.
That is, the present invention is a detection agent for a gas containing at least one selected from a halogen gas and an acid gas, using a transition metal hydroxide and Congo Red as discoloring components.
[0007]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The detection agent of the present invention can be applied to detection of a gas containing at least one selected from a halogen gas and an acidic gas contained in nitrogen, hydrogen, argon, helium and the like.
The halogen gas in the present invention is fluorine, chlorine or bromine. In addition, the acidic gas refers to a gas which itself has acidity and shows acidity by hydrolysis upon contact with water, specifically, hydrogen fluoride, tungsten hexafluoride, silicon tetrafluoride, boron trifluoride. , Hydrogen chloride, silicon tetrachloride, boron trichloride, chlorine fluoride, chlorine trifluoride and the like.
[0008]
The detection agent of the present invention is a detection agent for a halogen gas and an acid gas containing a mixture of a transition metal hydroxide and a pH indicator Congo Red as a discoloration component, such as a halogen gas and chlorine fluoride or chlorine trifluoride. The color changes from persimmon to red to black when it comes in contact with some acid gases, and sharply changes from persimmon to red to blue to dark blue when it comes in contact with other acid gases except chlorine fluoride and chlorine trifluoride. I do.
[0009]
In the present invention, a transition metal hydroxide is used as one component of the discoloring component of the detecting agent. Examples of the transition metal include nickel (II), cobalt (II), and manganese (II), and the hydroxide thereof is nickel hydroxide (Ni (OH) 2 ), cobalt hydroxide (Co (OH) 2 ), Manganese hydroxide (Mn (OH) 2 ), one of these hydroxides may be used, or two or more may be used in combination.
Nickel (II) hydroxide is a pale green crystal and can be prepared by adding a potassium hydroxide solution to an aqueous solution of nickel (II) nitrate or the like, but there are commercially available products and these can also be used. Nickel (II) hydroxide may contain a small amount of nickel hydroxide (I) and nickel hydroxide (III), but if the color tone of nickel hydroxide (II) is not significantly impaired, the detection of the present invention is performed. Agent.
[0010]
Cobalt (II) hydroxide is a pale blue or rose-colored crystal and can be prepared by adding a cobalt (II) nitrate solution to an aqueous potassium hydroxide solution. Since cobalt (II) hydroxide is relatively easily oxidized in air and changes its color from green to dark green, it is preferable to handle it in an inert gas.
[0011]
Manganese (II) hydroxide is a white crystal and can be prepared by adding a manganese (II) nitrate solution to an aqueous potassium hydroxide solution. Manganese (II) hydroxide is relatively easily oxidized in the air and turns brown, so it is preferable to handle it in an inert gas.
Congo Red, one of the discoloring components of the present invention, is widely used as a pH indicator and is commercially available, so it is convenient to use it.
[0012]
In the present invention, a mixture of a transition metal hydroxide and Congo Red, which is a discoloring component, may be used as a detecting agent in the form of powder, or may be molded into a pellet or the like, or may be supported on an inorganic carrier or the like. It can also be.
Mixing ratio of the mixture of the transition metal hydroxide and Congo Red as a powder, or in the form of a pellet or the like and used as a detecting agent, the discoloration sensitivity is not obtained when the ratio of Congolet is small. If it is too large, the discoloration becomes unclear, so that the weight ratio (hydroxide: Congo red) is usually 1: 0.01 to 0.00001, preferably 1: 0.005 to 0.0001. . These mixtures can be used after being formed into pellets or granules by a usual dry or wet molding method. In molding, a small amount of a lubricant or a molding agent which is inactive to a hydroxide of a transition metal and Congo Red can be used to facilitate molding.
[0013]
A mixture of a transition metal hydroxide, which is a discoloring component, and Congo Red can be used by being supported on a carrier. In particular, since cobalt hydroxide is difficult to handle stably, it is preferable to use it by supporting it on a carrier.
The carrier when the mixture of the transition metal hydroxide and Congo Red is carried on the inorganic carrier can be selected from a wide range.For example, silica gel, silica alumina, alumina, zirconia, a catalyst carrier such as titania, among others A white or colorless one is preferably used, and among them, silica gel is particularly preferred. As silica gel, those which are generally commercially available for desiccants have a specific surface area of about 450 to 800 m 2 / g, and these may be used, but in order to achieve the object of the present invention more highly. preferably those in the range of a specific surface area of 50 to 400 m 2 / g obtained by hydrothermal synthesis method. If the specific surface area is too small, the discoloration speed may be reduced.
[0014]
As a method of supporting the color-changing component when using a carrier, for example, the carrier may be immersed in a solution in which the color-changing component is dissolved or suspended in water or various organic solvents, or a solution of the color-changing component while stirring the carrier. Alternatively, the suspension may be spread on the carrier surface and carried.
[0015]
The loading amount of the transition metal hydroxide and Congo Red on the inorganic carrier is usually 1: 0.15 to 0.0001: 0.1 to 0.00001 in weight ratio (inorganic carrier: hydroxide: Congo Red), Preferably it is 1: 0.05-0.005: 0.01-0.0001.
If the amount of the transition metal hydroxide supported on the inorganic carrier is less than the above range, no sensitivity can be obtained, and if the amount is too large, the change in color before and after discoloration is determined depending on the type of the transition metal (in the case of cobalt). It becomes difficult.
If the amount of Congo Red carried on the inorganic carrier is less than the above range, no sensitivity can be obtained, and if the amount is too large, it is difficult to determine the change in color before and after discoloration.
In order to prevent the oxidation of the transition metal hydroxide during the preparation of the detecting agent, the supporting operation and the drying are preferably performed in a nitrogen atmosphere. Further, it is preferable that the obtained detection agent is stored while avoiding contact with oxygen.
[0016]
The speed of the gas brought into contact with the detecting agent is not particularly limited. However, in a semiconductor manufacturing process apparatus or an exhaust gas treatment apparatus, the standard linear velocity of the cylinder is usually about 0.01 to 100 cm / sec. However, when these devices are purged, the linear velocity may exceed 100 cm / sec. Usually, when the cylinder reference linear velocity is lower than the above range, the discoloration becomes slow, and when it is high, the pressure loss may increase.
The temperature of the gas at the time of contact is usually -20 to 100 ° C, and the pressure is about 0.001 to 20 kg / cm 2 abs.
[0017]
The detection agent of the present invention is a solid, and is usually used by filling it in a transparent inspection window portion provided in a glass detection tube, a transparent container made of transparent plastic or the like, or a gas purification cylinder, etc. The presence of halogen and acid gas contained in the detection agent can be known from the color change of the detection agent. Further, when the detecting agent of the present invention is used together with a purifying agent or the like, the detecting agent is filled downstream of the purifying agent layer in the purifying cylinder or between a plurality of purifying agent layers, or the detecting tube filled with the detecting agent is purified. It is used in the form connected to the back of a cylinder.
[0018]
As described above, by using the detection agent of the present invention, the detection agent is sharply discolored from persimmon to red to black by contact with a halogen gas and some acidic gases such as chlorine fluoride and chlorine trifluoride, and is detected. When the agent comes into contact with another acid gas other than chlorine fluoride and chlorine trifluoride, it can be easily detected by sharply changing the color from persimmon to red to blue to dark blue.
[0019]
【Example】
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
Examples 1 to 9
(Preparation 1 of detection agent)
100 g of granular silica gel (Carrieract-10, manufactured by Fuji Silysia Chemical Ltd.) having a particle size of 5 to 10 mesh, a specific surface area of 325 m 2 / g, a pore volume of 0.99 ml / g, and a packing density of 0.420 g / ml. Was impregnated with a solution prepared by dissolving 5.0 g of cobalt nitrate hexahydrate in 153 ml of water, 50 ml of a 1N aqueous sodium hydroxide solution was added thereto, and the mixture was stirred and dried under reduced pressure at a temperature of 50 ° C. with a rotary evaporator. . A solution prepared by dissolving 0.1 g of Congo Red in 100 ml of water was added thereto, and the mixture was stirred, and completely dried under reduced pressure again using a rotary evaporator to prepare a detection agent.
[0020]
(Measurement of detection ability 1)
A large number of glass tubes each having an inner diameter of 19 mm filled with 2.0 g of this detecting agent were prepared, and 10 ppm and 1 ppm of chlorine, 50 ppm and 5 ppm of hydrogen chloride, 10 ppm of bromine, 10 ppm of fluorine, and 50 ppm of boron trichloride were prepared. , 50 ppm of tungsten hexafluoride, and nitrogen gas containing 10 ppm of chlorine trifluoride were respectively contacted at an empty cylinder reference linear velocity of 5.9 cm / sec, and the time until discoloration was started was measured.
Table 1 shows the results.
[0021]
[Table 1]
Figure 0003567058
[0022]
Examples 10 and 11
(Preparation 2 of detection agent)
A solution of 20.0 g of nickel sulfate hexahydrate dissolved in 153 ml of water was impregnated into 100 g of the same granular silica gel as in Example 1, and then 250 ml of a 1N aqueous sodium hydroxide solution was added and mixed. Next, the mixture was left standing for 12 hours while stirring with occasional stirring, and the supernatant was discarded, followed by drying under reduced pressure at a temperature of 50 ° C. using a rotary evaporator. A solution prepared by dissolving 0.02 g of Congo Red in 100 ml of water was added thereto, and completely dried again with a rotary evaporator to prepare a detection agent.
[0023]
(Measurement of detection ability 2)
A glass tube was filled with 2.0 g of the detection agent in the same manner as in Example 1, and nitrogen gas containing 10 ppm of chlorine and 50 ppm of hydrogen chloride was brought into contact with each other at a standard linear velocity of the cylinder of 5.9 cm / sec. The time until discoloration started was measured.
Table 2 shows the results.
[0024]
[Table 2]
Figure 0003567058
[0025]
Examples 12 and 13
(Preparation 3 of detection agent)
100 g of the same granular silica gel as in Example 1 was impregnated with a solution of 20.0 g of manganese sulfate 4 to 5 hydrate dissolved in 153 ml of water, and 250 ml of a 1N aqueous sodium hydroxide solution was added and stirred. Next, the mixture was left standing for 12 hours while stirring with occasional stirring, and the supernatant was discarded and dried under reduced pressure at a temperature of 50 ° C. using a rotary evaporator. A solution prepared by dissolving 0.02 g of Congo Red in 100 ml of water was added thereto, and completely dried again with a rotary evaporator to prepare a detection agent.
[0026]
(Measurement of detection ability 3)
A glass tube was filled with 2.0 g of this detecting agent in the same manner as in Example 1, and nitrogen gas containing 10 ppm of chlorine and 50 ppm of hydrogen chloride was passed through the tube at a standard linear velocity of 5.9 cm / sec, and contacted. Then, the time until discoloration started was measured.
Table 3 shows the results.
[0027]
[Table 3]
Figure 0003567058
[0028]
Examples 14 and 15
(Preparation 4 of detection agent)
Activated alumina having a particle size of 8 to 16 mesh, a specific surface area of 210 m 2 / g, a pore volume of 0.99 g, an average pore diameter of 100 °, and a packing density of 0.68 g / ml (manufactured by Mizusawa Chemical Industry Co., Ltd., Neobeads GB8 to 16) Impregnated with a solution in which 150 g of cobalt nitrate hexahydrate 5.0 g was dissolved in 153 ml of water, 50 ml of a 1N aqueous sodium hydroxide solution was added thereto, followed by stirring. Next, the mixture was left standing for 12 hours while stirring with occasional stirring, and the supernatant was discarded and dried under reduced pressure at a temperature of 50 ° C. using a rotary evaporator. A solution prepared by dissolving 0.1 g of Congo Red in 100 ml of water was added thereto, and dried completely again by a rotary evaporator to prepare a detection agent.
[0029]
(Measurement of detection ability 4)
A glass tube was filled with 2.0 g of this detecting agent in the same manner as in Example 1, and nitrogen gas containing 10 ppm of chlorine and 50 ppm of hydrogen chloride was passed through the tube at a standard linear velocity of 5.9 cm / sec, and contacted. Then, the time until discoloration started was measured.
Table 4 shows the results.
[0030]
[Table 4]
Figure 0003567058
[0031]
Examples 16 and 17
(Preparation 5 of detection agent)
A solution prepared by dissolving 0.04 g of Congo Red in 22 g of water was added to 100 g of nickel hydroxide 1.5 hydrate, 2 ml of a 1N aqueous solution of sodium hydroxide was further added, and the paste was placed in a mold. After drying at ℃, it was crushed to 6 to 10 mesh to prepare a detecting agent.
[0032]
(Measurement of detection ability 5)
A glass tube was filled with 2.0 g of this detecting agent in the same manner as in Example 1, and nitrogen gas containing 10 ppm of chlorine and 50 ppm of hydrogen chloride was passed through the tube at a standard linear velocity of 5.9 cm / sec, and contacted. Then, the time until discoloration started was measured.
Table 4 shows the results.
[0033]
[Table 5]
Figure 0003567058
[0034]
Example 18
(Confirmation of the effect of nitrogen gas)
Next, 2.0 g of the detecting agent used in Example 1 was filled into a glass tube having an inner diameter of 19 mm, and 100% nitrogen gas was passed through the glass tube at a reference linear velocity of 6.4 cm / sec to make contact with the glass tube. The presence or absence was observed. As a result, no discoloration was observed even after 7200 minutes had passed.
[0035]
Examples 19 and 20
(Measurement of detection ability 6)
Nitrogen gas containing 10 ppm of chlorine and 50 ppm of hydrogen chloride was brought into contact with the detecting agent used in Example 18 at a linear velocity of 5.9 cm / sec, and the time until discoloration was started was measured.
Table 6 shows the results.
[0036]
[Table 6]
Figure 0003567058
[0037]
Examples 21 to 24
(Measurement of detection agent capacity 7)
A glass tube having an inner diameter of 19 mm was filled with 2.0 g of the same type of detecting agent as used in Examples 1 to 9, and contained 50 ppm of hydrogen fluoride, silicon tetrafluoride, boron trifluoride, and silicon tetrachloride. Nitrogen gas was passed through at a linear velocity of 5.9 cm / sec to contact each other, and the time until discoloration started was measured.
Table 7 shows the results.
[0038]
[Table 7]
Figure 0003567058
[0039]
Examples 25 and 26
(Preparation of detection agent 6)
As the carrier, 150 g of activated alumina (Neobeads GB8 to 16 of Mizusawa Chemical Co., Ltd.) having 8 to 16 mesh, specific surface area of 210 m 2 / g, pore volume of 0.99 ml / g, and packing density of 0.68 g / ml was used. A solution obtained by dissolving 5.0 g of cobalt nitrate hexahydrate in 153 ml of water was impregnated. Next, 50 ml of 1N sodium hydroxide was added thereto, followed by stirring. Then, the mixture was allowed to react for 12 hours while stirring occasionally, and the supernatant was discarded, and excess water was dried under reduced pressure at a temperature of 50 ° C. using a rotary evaporator. Further, a solution prepared by dissolving 0.1 g of congolet in 100 ml of water was added, and the solution was completely dried again with a rotary evaporator to prepare a detecting agent.
[0040]
(Measurement of detecting agent ability 8)
A glass tube was filled with 2.0 g of this detecting agent in the same manner as in Example 1, and a nitrogen gas containing 10 ppm of chlorine and 50 ppm of hydrogen chloride was passed through the tube to measure the time until discoloration started.
Table 8 shows the results.
[0041]
Examples 27 and 28
(Preparation 7 of detection agent)
Example 25 was repeated except that 150 g of titania (manufactured by Nissan Gardler Co., Ltd., CS-300-46) having a spherical shape with a diameter of 5 mm, a specific surface area of 39 m 2 / g, and a pore volume of 0.33 ml / g was used as the carrier. , 26 were prepared in the same manner as described above.
(Measurement of detection agent ability 9)
The time until the discoloration of the nitrogen gas containing chlorine and hydrogen chloride was started was measured in the same manner as in Examples 25 and 26 for this detector.
Table 8 shows the results.
[0042]
Examples 29 and 30
(Preparation 8 of detection agent)
Example 25 was repeated except that 150 g of zirconia (manufactured by Norton, XZ-16052) having a diameter of 2 to 3 mm, a length of about 5 mm, a specific surface area of 90 m 2 / g and a pore volume of 0.31 ml / g was used as the carrier. , 26 were prepared in the same manner as described above.
(Measurement of detecting agent ability 10)
In the same manner as in Examples 25 and 26, the time until the discoloration of the nitrogen gas containing chlorine and hydrogen chloride started was measured.
Table 8 shows the results.
[0043]
Examples 31 and 32
(Preparation 9 of detection agent)
A detection agent was prepared in the same manner as in Examples 25 and 26 except that 150 g of silica alumina (manufactured by Norton, SA377) having a diameter of 5 mm and a specific surface area of 80 m 2 / g was used as a carrier.
(Measurement of detecting agent ability 11)
In the same manner as in Examples 25 and 26, the time until the discoloration of the nitrogen gas containing chlorine and hydrogen chloride was started was measured for this detector.
Table 8 shows the results.
[0044]
[Table 8]
Figure 0003567058
[0045]
Comparative Example 1
(Preparation 10 of detection agent)
A solution prepared by dissolving 0.1 g of Congo Red in 200 ml of water was added to 100 g of the same granular silica gel used in Example 1, and excess water was dried under reduced pressure at a temperature of 50 ° C. using a rotary evaporator to prepare a detection agent. did.
(Measurement of detecting agent ability 12)
A glass tube was filled with 2.0 g of this detecting agent in the same manner as in Example 1, and nitrogen gas containing 10 ppm of chlorine was brought into contact with the gas at a linear velocity of 5.9 cm / sec to contact the glass tube, and the time until discoloration started. Was measured.
The results are shown in Table 9, and the detection agent decolorized within 1 minute after ventilation.
[0046]
[Table 9]
Figure 0003567058
[0047]
【The invention's effect】
The detection agent of the present invention has the following excellent features.
{Circle around (1)} Since moisture is not required for detection of halogen gas and acid gas, detection can always be performed with high sensitivity irrespective of the amounts of moisture in the gas to be measured and the detection agent.
{Circle around (2)} When the detection agent comes into contact with a halogen gas or an acid gas, the color changes from a bright color to a dark color.

Claims (5)

遷移金属の水酸化物とコンゴーレッドを変色成分とした、ハロゲンガスおよび酸性ガスから選ばれる少なくとも一種を含有するガスの検知剤。A gas detecting agent containing a transition metal hydroxide and Congo Red as a color changing component and containing at least one selected from a halogen gas and an acidic gas. 遷移金属がニッケル(II)、コバルト(II)およびマンガン(II)から選ばれる少なくとも1種である請求項1に記載の検知剤。The detecting agent according to claim 1, wherein the transition metal is at least one selected from nickel (II), cobalt (II), and manganese (II). ハロゲンガスがフッ素、塩素または臭素であり、酸性ガスがフッ化水素、六フッ化タングステン、四フッ化珪素、三フッ化硼素、塩化水素、四塩化珪素、三塩化硼素、フッ化塩素または三フッ化塩素である請求項1に記載の検知剤。Halogen gas is fluorine, chlorine or bromine, and acid gas is hydrogen fluoride, tungsten hexafluoride, silicon tetrafluoride, boron trifluoride, hydrogen chloride, silicon tetrachloride, boron trichloride, chlorine fluoride or trifluoride. The detection agent according to claim 1, which is chlorine iodide. 遷移金属がコバルト(II)である場合において、水酸化コバルト(II)とコンゴーレッドが無機担体に担持されたものであり、その担持重量比(無機担体:遷移金属の水酸化物:コンゴーレッド)が1:0.15〜0.0001:0.1〜0.00001である請求項1に記載の検知剤。When the transition metal is cobalt (II), cobalt (II) hydroxide and Congo Red are supported on an inorganic carrier, and the supported weight ratio (inorganic carrier: transition metal hydroxide: Congo Red) Is 1: 0.15 to 0.0001: 0.1 to 0.00001. 無機担体がシリカゲル、シリカアルミナ、チタニア、アルミナおよびジルコニアから選ばれる少なくとも1種である請求項4に記載の検知剤。The detecting agent according to claim 4, wherein the inorganic carrier is at least one selected from silica gel, silica alumina, titania, alumina, and zirconia.
JP09173997A 1996-08-23 1997-03-26 Detecting agent Expired - Fee Related JP3567058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09173997A JP3567058B2 (en) 1996-08-23 1997-03-26 Detecting agent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24134996 1996-08-23
JP8-241349 1996-08-23
JP09173997A JP3567058B2 (en) 1996-08-23 1997-03-26 Detecting agent

Publications (2)

Publication Number Publication Date
JPH10115608A JPH10115608A (en) 1998-05-06
JP3567058B2 true JP3567058B2 (en) 2004-09-15

Family

ID=26433184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09173997A Expired - Fee Related JP3567058B2 (en) 1996-08-23 1997-03-26 Detecting agent

Country Status (1)

Country Link
JP (1) JP3567058B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020018953A (en) * 2018-07-30 2020-02-06 クラリアント触媒株式会社 Halogen gas remover and manufacturing method therefor, and method for monitoring consumption state of remover

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002239A1 (en) * 2010-06-29 2012-01-05 独立行政法人産業技術総合研究所 Agent for detecting halide, method for detecting halide, and detection sensor
JP6184071B2 (en) * 2012-09-28 2017-08-23 ユニ・チャーム株式会社 Disposable diaper with indicator housing
JP6123548B2 (en) * 2013-07-29 2017-05-10 宇部興産株式会社 Method for measuring concentration of halogen molecule in halogen compound and apparatus for measuring concentration of halogen molecule in halide
JP5920948B2 (en) * 2014-10-14 2016-05-18 国立研究開発法人産業技術総合研究所 Detection method and detection sensor
JP7007552B2 (en) * 2017-07-11 2022-02-10 セントラル硝子株式会社 Chlorine gas detector and exhaust gas dry abatement device.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020018953A (en) * 2018-07-30 2020-02-06 クラリアント触媒株式会社 Halogen gas remover and manufacturing method therefor, and method for monitoring consumption state of remover
JP7253132B2 (en) 2018-07-30 2023-04-06 クラリアント触媒株式会社 Halogen gas remover, method for producing same, and method for monitoring consumption of remover

Also Published As

Publication number Publication date
JPH10115608A (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JP3567058B2 (en) Detecting agent
TW202007444A (en) Agent for removing halogen gas, method for producing the same, apparatus for removing halogen gas, method for monitoring the consumption state of agent for removing halogen gas, and method for removing halogen gas
TW524720B (en) Cleaning agent for hazardous gas
EP0825437B1 (en) Halogen or acidic gas detecting agent
JP2001215221A (en) Reagent and method for detecting halide
KR940002517B1 (en) Inorganic salt reagent for detecting gaseous hydrides
US3397966A (en) Ozone determination
JPH10235185A (en) Agent for purifying toxic gas and process therefor
JPH0654309B2 (en) Detection agent
JP3545881B2 (en) Detecting agent
JP2665528B2 (en) Detecting agent
JP2596804B2 (en) Detecting agent
US3388075A (en) Indicator for nitrogen oxide
JPS6222062A (en) Detecting agent
JP2596816B2 (en) Detecting agent
JP2003344383A (en) Reagent for measuring formaldehyde
JP2544291B2 (en) Volatile inorganic hydride detection agent
JPH0583866B2 (en)
JP3895604B2 (en) Germanium detection agent and detection method
Lindsley et al. Acidimetric Method for Determination of Carbon Monoxide in Air
JP3532316B2 (en) Detecting agent
JPS6221061A (en) Detecting agent
JPH02110370A (en) Detecting agent
JP4747046B2 (en) Germanium detection agent
JPH0829411A (en) Detecting agent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees