JP3565702B2 - Suspension type lifting device - Google Patents

Suspension type lifting device Download PDF

Info

Publication number
JP3565702B2
JP3565702B2 JP08874398A JP8874398A JP3565702B2 JP 3565702 B2 JP3565702 B2 JP 3565702B2 JP 08874398 A JP08874398 A JP 08874398A JP 8874398 A JP8874398 A JP 8874398A JP 3565702 B2 JP3565702 B2 JP 3565702B2
Authority
JP
Japan
Prior art keywords
speed
positioning
lifting
shake
compensating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08874398A
Other languages
Japanese (ja)
Other versions
JPH11286388A (en
Inventor
一路 加藤
雄志 佐藤
Original Assignee
アシスト シンコー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アシスト シンコー株式会社 filed Critical アシスト シンコー株式会社
Priority to JP08874398A priority Critical patent/JP3565702B2/en
Priority to TW088102811A priority patent/TW568879B/en
Priority to KR1019990010160A priority patent/KR100603773B1/en
Priority to US09/285,002 priority patent/US6460711B1/en
Publication of JPH11286388A publication Critical patent/JPH11286388A/en
Application granted granted Critical
Publication of JP3565702B2 publication Critical patent/JP3565702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control And Safety Of Cranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,基台(例えば移動台車)から懸垂材を介して昇降可能に吊り下げられた昇降部を有し,上記昇降部の振れを短時間で減衰させることができる懸垂式昇降装置に関するものである。
【0002】
【従来の技術】
例えば工場内などでは,荷物の搬送装置として懸垂式昇降装置(いわゆるクレーン)を搭載した搬送装置が用いられることが多い。このような搬送装置の一例を図4に示す。
図4に示す搬送装置A0は,天井51に配設されたレール52に沿って移動する移動台車53と,上記移動台車53から垂下された懸垂材54と,上記懸垂材54の下端部に取り付けられた昇降部55とを具備して構成されている。上記昇降部55には,所定の荷物56を把持可能なハンド55aが一体的に取り付けられている。上記懸垂材54は,例えば上記移動台車53側に取り付けられた図外の巻き取り装置により巻き取り/巻き出しが行われ,これにより上記昇降部55の上昇/下降が行われる。
上記搬送装置A0によって荷物56を搬送する際には,まず図4(a)に示すように上記移動台車53を上記荷物57の真上に停止させて上記昇降部55を下降させ,上記ハンド55aにより上記荷物56を把持させる。そして上記荷物56を把持した状態で上記昇降部55を所定の位置まで上昇させ,図4(b)に示す状態で上記移動台車53により上記レール52に従って目的位置まで搬送する。目的位置に到着すると,上記移動台車53を上記荷物56の載置位置の真上に位置決めし,再度上記昇降部55を下降させて上記荷物56を載置する。
以上のような動作を繰り返すことにより,比較的障害物などの少ない天井付近の空間を利用して効率よく荷物の搬送が行われる。
【0003】
【発明が解決しようとする課題】
ところで,上記従来の搬送装置A0は,昇降部55が上記懸垂材54で吊り下げられた構造になっているため,上記昇降部55は上記移動台車53を支点とする振り子を構成している。従って,例えば上記移動台車53の停止時には,上記昇降部55に上記懸垂材54の長さで決まる固有振動数に応じた振れが生じる。そのために,上記従来の搬送装置A0では,上記移動台車53が目的位置に停止しても,上記昇降部55の振れが治まるまで上記ハンド55aによる荷物56の把持,或いは把持していた荷物56の載置ができず,搬送効率に大きく影響を与えていた。
尚,その対策として受動的な制振装置(例えば動吸振器,ダンパなど)を取り付けることが行われているが,昇降部55の停止高さが異なる場合の制振装置の調整には,手間がかかり容易でないといった問題点があった。
本発明は上記事情に鑑みてなされたものであり,その目的とするところは,効果的に昇降部の振れ止めを行うことにより作業効率の飛躍的な向上が可能な懸垂式昇降装置を提供することである。
【0004】
【課題を解決するための手段】
上記目的を達成するために本発明は,基台から懸垂材を介して昇降可能に吊り下げられた昇降部の位置を,上記懸垂材の位置を制御することにより制御する昇降部位置制御装置を具備する懸垂式昇降装置において,上記昇降部位置制御装置が,上記昇降部の振れ速度を検出する振れ速度検出手段と,上記懸垂材を水平面内で位置決めする位置決め手段と,上記位置決め手段に対する位置目標値と実位置との偏差に基づいて速度指令を出力する位置補償手段と,上記位置補償手段から出力された上記位置決め手段に対する速度指令と実速度との偏差に基づいて上記位置決め手段の操作量である推力指令を出力する速度補償手段と,上記振れ速度検出手段の出力に比例した上記位置決め手段に対する制振信号を出力する振れ止め補償手段と,上記振れ止め補償手段から出力された上記制振信号を上記速度補償手段から出力された上記推力指令に加算する加算手段とを具備してなることを特徴とする懸垂式昇降装置として構成されている。
当該懸垂式昇降装置は,例えば上記基台を移動台車とする搬送装置などに適用できる。
また,上記位置決め手段は,例えば上記懸垂材と上記昇降部とを上記基台に対して移動させるように構成できるが,上記基台として移動台車を用いている場合には,その移動台車の移動手段を上記位置決め手段として利用してもよい。
また,上記振れ止め補償手段による触れ速度に対する比例出力は,例えば比例要素により構成でき,その値は昇降部の停止高さに応じて設定される。
また,観測ノイズによるサーボ系の発振を防ぐため,上記振れ止め補償手段に観測ノイズを除去するフィルタを取り付けることが望ましい。
更に,上記振れ速度検出手段により検出される昇降部の振れ速度が上記基台に対する相対速度である場合には,上記振れ止め補償手段から出力される上記制振信号による制振制御と上記速度補償手段から出力される推力指令による上記位置決め手段の速度制御との干渉による不具合を防止するため,上記振れ止め補償手段に,上記振れ速度検出手段で得られた振れ速度信号から振れに関係した周波数帯のみを抜き出すフィルタを取り付けることが望ましい。
【0005】
【作用】
本発明に係る懸垂式昇降装置によれば,上記昇降部に振れがある場合に,上記位置決め手段は等価的に上記昇降部の振れ速度に比例して変位する。また,それによって生じる上記基台と上記昇降部との間の相対変位に比例した力が上記昇降部に減衰力として与えられる。従って,上記昇降部の振動は極めて短時間で減衰する。また,上記振れ止め補償手段から出力された上記制振信号は上記速度補償手段から出力された推力指令に外乱の形で加算されるため,上記位置決め手段は,上記位置補償手段による位置制御により,上記昇降部の振動の減衰と共に正確に目標位置に位置決めされる。このように,シンプルな制御系により極めて効果的に昇降部の振れ止め及び位置決めを行うことができ,作業効率の飛躍的な向上が可能となる。
尚,上記基台として移動台車を用いている場合には,その移動台車をレール上で移動させる移動手段を上記位置決め手段として利用すれば,別に位置決め手段を設置する必要がなく,コストやコンパクト化の面で有利である。但し,この場合にはレールと平行な方向の振動のみに対応可能である。
また,昇降部の停止高さが異なる場合には,比例要素の値を変更するのみであり,従来のような受動的な制振装置を用いる場合と比べて調整が容易に行える。また,上記振れ止め補償手段に観測ノイズを除去するフィルタを取り付けることにより,観測ノイズによるサーボ系の発振が防止できる。
更に,上記振れ速度検出手段により検出される昇降部の振れ速度が上記基台に対する相対速度である場合には,上記振れ止め補償手段に,振れ速度信号から振れに関係した周波数帯のみ(速度制御周波数より十分低いことが前提)を抜き出すフィルタを取り付けることにより,上記振れ止め補償手段から出力される上記制振信号による制振制御と,上記速度補償手段から出力される推力指令による上記位置決め手段の速度制御との干渉による不具合が防止できる。
【0006】
【発明の実施の形態】
以下添付図面を参照して,本発明の実施の形態及び実施例につき説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係る搬送装置A1の概略構成を示す模式図,図2は上記搬送装置A1の昇降部位置制御装置10の概略構成を示すブロック図,図3は昇降部55に微小変位を与えた場合の変位減衰時刻暦を示すグラフ図((a)が従来の搬送装置A0によるもの,(b)が本発明の実施の形態に係る搬送装置A1によるもの)である。
本実施の形態に係る搬送装置A1は,本発明に係る懸垂式昇降装置を上記従来の搬送装置A0と同様の形で具現化した一例であり,上記搬送装置A0と共通する要素については同符号を用いて説明する。
【0007】
図1に示すように,上記搬送装置A1は,天井51に配設されたレール52に沿って移動する移動台車53と,上記移動台車53の下部に取り付けられた位置決めアクチュエータ1(位置決め手段の一例)及び上板2と,上記上板2から垂下された懸垂材54と,上記懸垂材54の下端部に取り付けられ,荷物56を把持可能なハンド55aが一体的に取り付けられた昇降部55と,上記昇降部55に取り付けられ,上記昇降部55の振れ速度(絶対速度)を検出する振れ速度センサ3(振れ速度検出手段の一例)と,上記位置決めアクチュエータ1の動作を制御することによって上記位置決めアクチュエータ1の位置決め及び上記昇降部55の制振を行う昇降部位置制御装置10(図2参照,詳細は後述する)とを具備して構成されている。
上記懸垂材54は,例えば上記上板2側に取り付けられた図外の巻き取り装置により巻き取り/巻き出しが行われ,これにより上記昇降部55の上昇/下降が行われる。
上記位置決めアクチュエータ1は,上記上板2を上記移動台車53に対して上記レール52と直角な水平方向に相対移動させるものであり,上記昇降部位置制御装置10からの推力指令により動作する。尚,上記位置決めアクチュエータ1の実位置(実移動量)及び実速度は図外のセンサにより検出される。
続いて,上記昇降部位置制御装置10の構成及び制御動作について,図2に示す制御ブロック図を用いて説明する。
上記昇降部位置制御装置10は,図2に示すように,上記位置決めアクチュエータ1に対する位置指令(位置目標値)と実変位(実位置)との偏差に基づいて位置補償部11(位置補償手段に相当)により速度指令を出力する位置制御ループと,上記位置補償部11から出力された上記位置決めアクチュエータ1に対する速度指令と実速度との偏差に基づいて速度補償部12(速度補償手段に相当)により上記位置決めアクチュエータ1に対して推力指令を出力する速度制御ループと,上記振れ速度センサ3から出力された上記昇降部55の振れ速度に基づいて上記位置決めアクチュエータ1に対する制振信号を出力し,上記制振信号を位相反転した後に上記速度補償部12から出力された推力指令に加算する振れ止め補償部4(振れ止め補償手段に相当)とで構成されている。
上記振れ止め補償部4は,比例要素4aとフィルタ4bとで構成されている。上記比例要素4aは上記昇降部55の停止高さに応じて設定されている。また,上記フィルタ4bは,観測ノイズを除去して上記観測ノイズによるサーボ系の発振を防ぐために設けられたローパスフィルタである。
【0008】
以上のような昇降部位置制御装置10による上記位置決めアクチュエータ1の制御動作について説明する。
上記移動台車53が目的位置に停止すると,上記昇降部位置制御装置10に対して,上記位置決めアクチュエータ1を例えば所定の原点位置(上記移動台車53と上記上板2との相対位置関係から決まる)に制御するための位置指令が与えられる。上記位置指令は,上記位置決めアクチュエータ1の実変位との偏差(位置偏差)がとられ,上記位置補償部11に入力される。上記位置補償部11からは,上記位置偏差を0にするような速度指令が出力され,更に上記速度指令は上記位置決めアクチュエータ1の実速度との偏差(速度偏差)がとられ,上記速度補償部12に入力される。上記速度補償部12からは,上記速度偏差を0にするような推力指令が出力される。
また,それと同時に,上記振れ止め補償部4には,上記振れ速度センサ3から出力された上記昇降部55の振れ速度が入力される。上記振れ止め補償部4では,上記比例要素4aにより上記昇降部55の振れ速度に応じた推力が出力され,更に上記フィルタ4bを介して制振信号として出力される。
上記振れ止め補償部4から出力された上記制振信号は,位相反転した後で上記速度補償部12から出力された推力指令に加算され,該推力指令は上記位置決めアクチュエータ1に入力され,所定の動作が行われる。
以上の制御により,上記昇降部55に振れがある場合には,上記位置決めアクチュエータ1は,振れの周波数が速度制御周波数に比べて十分低い場合に,等価的に上記昇降部55の振れ速度に比例して変位する。ここで,上板2と昇降部55との間に相対変位が生じると昇降部55にはそれに比例した力が働くため,上記昇降部55には自分自身の振れ速度に比例した力が減衰力として与えられることになり,上記昇降部55の振動は短時間で減衰する。また,上記振れ止め補償部4から出力された上記制振信号は上記速度補償部12から出力された推力指令に外乱の形で加算されるため,上記位置決めアクチュエータ1は,上記位置制御ループにより,上記昇降部55の振動の減衰と共に正確に目標位置に位置決めされる。
図3に,上記昇降部55に微小変位を与えた場合の上記昇降部55の変位の減衰時刻暦を示す。図3(a)が上記従来の搬送装置A0によるもの,図3(b)が本実施の形態に係る搬送装置A1によるものである。短時間では殆ど減衰の見られない上記従来の搬送装置A0に対して,本実施の形態に係る搬送装置A1では,昇降部55の振れ速度に比例する形で位置決めアクチュエータ1が変位し,その結果上記昇降部55の振れは極めて短時間で収まっている。また,搬送装置A1では,昇降部55の振動の減衰と共に上記位置決めアクチュエータ1が目標位置(原点位置)に正確に位置決めされていることが図3(b)よりよくわかる。
【0009】
以上説明したように,本実施の形態に係る搬送装置A0では,上記昇降部55に振れがある場合に,上記位置決めアクチュエータ1は等価的に上記昇降部55の振れ速度に比例して変位し,それによって生じる上板2と昇降部55との間の相対変位に比例した力が上記昇降部55に減衰力として与えられるため,上記昇降部55の振動は短時間で減衰する。また,上記振れ止め補償部4から出力された上記制振信号は上記速度補償部12から出力された推力指令に外乱の形で加算されるため,上記位置決めアクチュエータ1は,上記位置制御ループにより,上記昇降部55の振動の減衰と共に正確に目標位置に位置決めされる。このように,シンプルな制御系により極めて効果的に昇降部の振れ止め及び位置決めを行うことができ,作業効率の飛躍的な向上が可能となる。
【0010】
【実施例】
上記実施の形態では,上記昇降部55の振動方向をレールに直角な方向に限定して説明したが,レールに平行な振動,及び懸垂材54の捩じり方向への振動についても,それぞれレールに平行な方向,鉛直軸回りに移動可能な位置決めアクチュエータを使用して同様の制御を行うことにより適用できる。
また,上記実施の形態では位置決め手段の一例として位置決めアクチュエータ1を用いたが,上記移動台車53自体を位置決め手段として用いてもよい。即ち,上記移動台車53の上記レール上での移動により昇降部の振れ止め及び位置決めを行うようにしてもよい。但しその場合にはレールに平行な振動にのみ対応できる。
また,上記振れ速度センサ3は昇降部55の絶対速度を直接検出するものに限らず,例えば加速度センサの出力を積分するものや,位置センサの出力を微分するものであってもよい。また,上記振れ速度センサ3は昇降部55の絶対速度を検出するように構成したが,上記昇降部55の上記上板2に対する相対速度を検出するようにしてもよい。相対速度の検出の典型的な例には,上記昇降部55の上記飢え板2に対する相対位置を検出し,その出力を微分する方法がある。
尚,上記振れ速度センサ3で上記昇降部55の上記上板2に対する相対速度を検出するようにした場合,上記振れ止め補償部4から出力される制振信号による制振制御と,上記速度補償手段から出力される推力指令による上記位置決めアクチュエータ1の速度制御との干渉を防ぐため,上記振れ止め補償部4のフィルタ4bとしては,振れ速度信号から振れに関係した周波数帯のみ(速度制御周波数より十分低いことが前提)を抜き出すローパスフィルタ若しくはバンドパスフィルタを用いることが望ましい。
【0011】
【発明の効果】
以上説明したように,本発明は,基台から懸垂材を介して昇降可能に吊り下げられた昇降部の位置を,上記懸垂材の位置を制御することにより制御する昇降部位置制御装置を具備する懸垂式昇降装置において,上記昇降部位置制御装置が,上記昇降部の振れ速度を検出する振れ速度検出手段と,上記懸垂材を水平面内で位置決めする位置決め手段と,上記位置決め手段に対する位置目標値と実位置との偏差に基づいて速度指令を出力する位置補償手段と,上記位置補償手段から出力された上記位置決め手段に対する速度指令と実速度との偏差に基づいて上記位置決め手段の操作量である推力指令を出力する速度補償手段と,上記振れ速度検出手段の出力に比例した上記位置決め手段に対する制振信号を出力する振れ止め補償手段と,上記振れ止め補償手段から出力された上記制振信号を上記速度補償手段から出力された上記推力指令に加算する加算手段とを具備してなることを特徴とする懸垂式昇降装置として構成されているため,上記昇降部に振れがある場合に,上記位置決め手段は等価的に上記昇降部の振れ速度に比例して変位し,それによって生じる上記基台と上記昇降部との間の相対変位に比例した力が上記昇降部に減衰力として与えられる。従って,上記昇降部の振動は極めて短時間で減衰する。
また,上記振れ止め補償手段から出力された上記制振信号は上記速度補償手段から出力された推力指令に外乱の形で加算されるため,上記位置決め手段は,上記位置補償手段による位置制御により,上記昇降部の振動の減衰と共に正確に目標位置に位置決めされる。このように,シンプルな制御系により極めて効果的に昇降部の振れ止め及び位置決めを行うことができ,作業効率の飛躍的な向上が可能となる。
また,上記位置決め手段は,例えば上記懸垂材と上記昇降部とを上記基台に対して移動させるように構成できるが,上記基台として移動台車を用いている場合には,その移動台車の移動手段を上記位置決め手段として利用することにより,コスト低減,コンパクト化に寄与する。
また,昇降部の停止高さが異なる場合には,上記振れ止め補償手段の比例要素の値を変更するのみであり,従来のような受動的な制振装置を用いる場合と比べて調整が容易に行える。
また,上記振れ止め補償手段に観測ノイズを除去するフィルタを取り付けることにより,観測ノイズによるサーボ系の発振が防止できる。
更に,上記振れ速度検出手段により検出される昇降部の振れ速度が上記基台に対する相対速度である場合には,上記振れ止め補償手段に,上記振れ速度検出手段で得られた振れ速度信号から振れに関係した周波数帯のみを抜き出すフィルタを取り付けることにより,上記振れ止め補償手段から出力される上記制振信号による制振制御と上記速度補償手段から出力される推力指令による上記位置決め手段の速度制御との干渉による不具合が防止できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る搬送装置A1の概略構成を示す模式図。
【図2】上記搬送装置A1の昇降部位置制御装置10の概略構成を示すブロック図。
【図3】昇降部55に微小変位を与えた場合の変位減衰時刻暦を示すグラフ図((a)が従来の搬送装置A0によるもの,(b)が本発明の実施の形態に係る搬送装置A1によるもの)。
【図4】従来の搬送装置A0の概略構成を示す模式図。
【符号の説明】
1…位置決めアクチュエータ(位置決め手段の一例)
3…振れ速度センサ(振れ速度検出手段の一例)
4…振れ止め補償部
4a…比例要素
4b…フィルタ
10…昇降部位置制御装置
11…位置補償部
12…速度補償部
52…レール
53…移動台車
54…懸垂材
55…昇降部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a suspension type lifting device having a lifting portion suspended from a base (for example, a moving vehicle) via a suspension member so as to be able to lift and lower, and capable of attenuating the swing of the lifting portion in a short time. It is.
[0002]
[Prior art]
For example, in a factory or the like, a transport device equipped with a suspension type lifting device (a so-called crane) is often used as a transport device for loads. FIG. 4 shows an example of such a transport device.
The transfer device A0 shown in FIG. 4 includes a movable carriage 53 that moves along a rail 52 provided on a ceiling 51, a suspension 54 suspended from the movable carriage 53, and a lower end of the suspension 54. And a lifting unit 55 provided. A hand 55a capable of holding a predetermined load 56 is integrally attached to the elevating unit 55. The suspension member 54 is wound / unwinded by, for example, a winding device (not shown) attached to the movable carriage 53 side, whereby the lifting / lowering portion 55 is moved up / down.
When the load 56 is transported by the transport device A0, first, as shown in FIG. 4A, the movable carriage 53 is stopped immediately above the load 57, and the elevating unit 55 is lowered, and the hand 55a is moved. , The luggage 56 is gripped. Then, the lifting unit 55 is raised to a predetermined position while the luggage 56 is gripped, and is conveyed to a target position by the movable carriage 53 along the rail 52 in the state shown in FIG. When the vehicle arrives at the destination position, the movable carriage 53 is positioned right above the position where the load 56 is placed, and the elevating unit 55 is lowered again to place the load 56.
By repeating the above operation, the cargo can be efficiently transported using the space near the ceiling where there are relatively few obstacles.
[0003]
[Problems to be solved by the invention]
By the way, since the conventional transport device A0 has a structure in which the elevating unit 55 is hung by the suspension member 54, the elevating unit 55 constitutes a pendulum having the movable carriage 53 as a fulcrum. Therefore, for example, when the movable trolley 53 is stopped, a swing occurs in the elevating unit 55 according to the natural frequency determined by the length of the suspension member 54. For this reason, in the conventional transport device A0, even if the movable carriage 53 stops at the target position, the hand 55a grips the luggage 56 or removes the luggage 56 that has been gripped until the swing of the elevating unit 55 stops. It could not be placed, which greatly affected the transfer efficiency.
As a countermeasure, a passive vibration damping device (for example, a dynamic vibration absorber, a damper, etc.) is mounted, but it is troublesome to adjust the vibration damping device when the height of the lift 55 is different. And it is not easy.
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a suspension type lifting device capable of dramatically improving work efficiency by effectively preventing the lifting portion from oscillating. That is.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a lifting section position control device for controlling the position of a lifting section suspended from a base via a suspension member by controlling the position of the suspension member. In the suspension type lifting device provided, the lifting portion position control device includes a swing speed detecting device for detecting a swing speed of the lifting portion, a positioning device for positioning the suspension member in a horizontal plane, and a position target for the positioning device. A position compensating means for outputting a speed command based on a deviation between the value and the actual position, and an operation amount of the positioning means based on a deviation between the speed command for the positioning means output from the position compensating means and the actual speed. and speed compensation means for outputting a certain thrust command, and steadying compensation means for outputting a damping signal to said positioning means in proportion to the output of the shake speed detection means, the Re and the damping signal output from the stop compensating means is configured as a suspended-type lifting apparatus characterized by comprising comprises an adding means for adding to the thrust command output from said speed compensation means.
The suspension type lifting device can be applied to, for example, a transfer device using the above-mentioned base as a movable carriage.
The positioning means can be configured to move the suspension member and the elevating unit with respect to the base. For example, when a movable carriage is used as the base, the movement of the movable carriage is performed. Means may be used as the positioning means.
The proportional output to the touch speed by the steady rest compensating means can be constituted by , for example, a proportional element, and its value is set according to the stop height of the lifting / lowering unit.
Further, in order to prevent the servo system from oscillating due to the observation noise, it is desirable to attach a filter for removing the observation noise to the steady rest compensating means.
Further, when the shake speed of the elevating section detected by the shake speed detecting means is a relative speed with respect to the base, the vibration damping control based on the vibration damping signal output from the vibration damping compensating means and the speed compensation. In order to prevent a problem caused by interference with the speed control of the positioning means by the thrust command output from the means, the vibration compensating means is provided with a frequency band related to the vibration from the vibration speed signal obtained by the vibration speed detecting means. It is desirable to attach a filter that extracts only
[0005]
[Action]
According to the suspension type elevating device of the present invention, when the elevating portion swings, the positioning means equivalently displaces in proportion to the oscillation speed of the elevating portion. Further, a force proportional to a relative displacement between the base and the elevating unit caused thereby is given to the elevating unit as a damping force. Therefore, the vibration of the elevating part is attenuated in a very short time. Further, since the vibration suppression signal output from the steady rest compensating means is added to the thrust command output from the speed compensating means in the form of a disturbance, the positioning means is controlled by the position control by the position compensating means. It is accurately positioned at the target position together with the attenuation of the vibration of the elevating unit. As described above, the steadying and positioning of the elevating unit can be extremely effectively performed by the simple control system, and the working efficiency can be dramatically improved.
In the case where a movable trolley is used as the base, if the movable means for moving the movable trolley on the rail is used as the above-mentioned positioning means, there is no need to install a separate positioning means, resulting in cost and compactness. It is advantageous in terms of. However, in this case, only vibration in the direction parallel to the rail can be handled.
Further, when the stop height of the elevating unit is different, only the value of the proportional element is changed, and adjustment can be easily performed as compared with the case where a conventional passive vibration damping device is used. In addition, by attaching a filter for removing observation noise to the steady-state compensation means, oscillation of the servo system due to observation noise can be prevented.
Further, when the shake speed of the lifting section detected by the shake speed detecting means is a relative speed with respect to the base, only the frequency band related to the shake from the shake speed signal (speed control By installing a filter for extracting the vibration control signal from the steady-state compensating means, the vibration suppression control based on the vibration suppression signal output from the steady rest compensating means, and the positioning means based on the thrust command output from the speed compensating means. Problems due to interference with speed control can be prevented.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments and examples of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention.
Here, FIG. 1 is a schematic diagram showing a schematic configuration of a transport device A1 according to an embodiment of the present invention, FIG. 2 is a block diagram showing a schematic configuration of a lifting / lowering portion position control device 10 of the transport device A1, and FIG. A graph showing a displacement decay time calendar when a minute displacement is applied to the elevating unit 55 ((a) is a result of the conventional transport device A0, (b) is a result of the transport device A1 according to the embodiment of the present invention) It is.
The transfer device A1 according to the present embodiment is an example in which the suspension type lifting device according to the present invention is embodied in the same manner as the above-described conventional transfer device A0. This will be described with reference to FIG.
[0007]
As shown in FIG. 1, the transfer device A1 includes a movable carriage 53 that moves along a rail 52 provided on a ceiling 51, and a positioning actuator 1 (an example of a positioning unit) mounted below the movable carriage 53. ) And the upper plate 2, a suspension member 54 suspended from the upper plate 2, and a lifting / lowering portion 55 attached to a lower end portion of the suspension member 54 and integrally attached with a hand 55a capable of holding a load 56. The positioning is performed by controlling the operation of a shake speed sensor 3 (an example of a shake speed detecting means), which is attached to the elevating unit 55 and detects a shake speed (absolute speed) of the elevating unit 55, and the positioning actuator 1. An elevator position control device 10 (see FIG. 2, which will be described in detail later) that performs positioning of the actuator 1 and damping of the elevator unit 55 is configured.
The suspension member 54 is wound / unwound by, for example, a winding device (not shown) attached to the upper plate 2 side, whereby the elevating unit 55 is moved up / down.
The positioning actuator 1 moves the upper plate 2 relative to the movable carriage 53 in a horizontal direction perpendicular to the rails 52, and operates in accordance with a thrust command from the lifting / lowering unit position control device 10. The actual position (actual movement amount) and actual speed of the positioning actuator 1 are detected by a sensor (not shown).
Next, the configuration and control operation of the lifting unit position control device 10 will be described with reference to a control block diagram shown in FIG.
As shown in FIG. 2, the lifting / lowering unit position control device 10 controls the position compensating unit 11 (for position compensating means) based on a deviation between a position command (position target value) for the positioning actuator 1 and an actual displacement (actual position). And a speed control unit 12 (corresponding to a speed compensating means) based on a deviation between the actual speed and the speed command for the positioning actuator 1 output from the position compensating unit 11. A speed control loop for outputting a thrust command to the positioning actuator 1 and a vibration damping signal for the positioning actuator 1 based on the shake speed of the elevating unit 55 output from the shake speed sensor 3, and The anti-sway compensator 4 (the anti-sway compensator) adds the thrust command output from the speed compensator 12 after the phase of the shake signal is inverted. It is constructed out with corresponds to a unit).
The steady rest compensator 4 is composed of a proportional element 4a and a filter 4b. The proportional element 4a is set according to the stop height of the elevating unit 55. The filter 4b is a low-pass filter provided for removing observation noise and preventing the oscillation of the servo system due to the observation noise.
[0008]
The control operation of the positioning actuator 1 by the lifting unit position control device 10 as described above will be described.
When the movable carriage 53 stops at the target position, the positioning actuator 1 is moved, for example, to a predetermined origin position (determined from the relative positional relationship between the movable carriage 53 and the upper plate 2) with respect to the lifting / lowering unit position control device 10. Is given a position command for control. The position command has a deviation (position deviation) from the actual displacement of the positioning actuator 1 and is input to the position compensation unit 11. The position compensating unit 11 outputs a speed command to make the position deviation zero, and the speed command is a deviation from the actual speed of the positioning actuator 1 (speed deviation). 12 is input. The speed compensator 12 outputs a thrust command that makes the speed deviation zero.
At the same time, the shake speed of the elevation unit 55 output from the shake speed sensor 3 is input to the steady-state compensation unit 4. In the steady rest compensator 4, the proportional element 4a outputs a thrust corresponding to the swing speed of the elevating unit 55, and further outputs the vibration as a vibration suppression signal through the filter 4b.
The vibration damping signal output from the steady rest compensating unit 4 is added to the thrust command output from the speed compensating unit 12 after phase inversion, and the thrust command is input to the positioning actuator 1 and given a predetermined value. The operation is performed.
According to the above control, when there is a run-out in the elevating unit 55, the positioning actuator 1 is equivalently proportional to the run-up speed of the elevating unit 55 when the run-out frequency is sufficiently lower than the speed control frequency. And displace. Here, when a relative displacement occurs between the upper plate 2 and the lifting / lowering portion 55, a force proportional to the relative displacement acts on the lifting / lowering portion 55. Therefore, a force proportional to its own swing speed is applied to the lifting / lowering portion 55 by a damping force. The vibration of the elevating unit 55 is attenuated in a short time. Further, since the vibration damping signal output from the steady rest compensator 4 is added to the thrust command output from the speed compensator 12 in the form of a disturbance, the positioning actuator 1 is controlled by the position control loop. It is accurately positioned at the target position together with the attenuation of the vibration of the elevating unit 55.
FIG. 3 shows a decay time chart of the displacement of the lift unit 55 when a minute displacement is applied to the lift unit 55. FIG. 3A shows the case of the conventional transfer device A0, and FIG. 3B shows the case of the transfer device A1 according to the present embodiment. In contrast to the above-described conventional transfer apparatus A0, in which the attenuation is hardly observed in a short time, in the transfer apparatus A1 according to the present embodiment, the positioning actuator 1 is displaced in a form proportional to the swing speed of the elevating unit 55. The swing of the elevating unit 55 is settled in a very short time. Further, it can be seen from FIG. 3B that in the transfer device A1, the positioning actuator 1 is accurately positioned at the target position (origin position) together with the attenuation of the vibration of the elevating unit 55.
[0009]
As described above, in the transfer device A0 according to the present embodiment, when the elevating unit 55 has a runout, the positioning actuator 1 is equivalently displaced in proportion to the runout speed of the elevating unit 55, As a result, a force proportional to the relative displacement between the upper plate 2 and the elevating part 55 is given to the elevating part 55 as a damping force, so that the vibration of the elevating part 55 is attenuated in a short time. Further, since the vibration damping signal output from the steady rest compensator 4 is added to the thrust command output from the speed compensator 12 in the form of a disturbance, the positioning actuator 1 is controlled by the position control loop. It is accurately positioned at the target position together with the attenuation of the vibration of the elevating unit 55. As described above, the steadying and positioning of the elevating unit can be extremely effectively performed by the simple control system, and the working efficiency can be dramatically improved.
[0010]
【Example】
In the above embodiment, the vibration direction of the elevating section 55 is limited to the direction perpendicular to the rail. However, the vibration parallel to the rail and the vibration of the suspension member 54 in the torsion direction are also respectively set in the rail. This can be applied by performing the same control using a positioning actuator that can move in a direction parallel to the vertical axis and around the vertical axis.
In the above-described embodiment, the positioning actuator 1 is used as an example of the positioning means. However, the moving carriage 53 itself may be used as the positioning means. In other words, the movement of the movable carriage 53 on the rail may be used to stop and position the elevating unit. However, in that case, it is possible to cope only with vibration parallel to the rail.
Further, the shake speed sensor 3 is not limited to a device that directly detects the absolute speed of the elevating unit 55, but may be a device that integrates an output of an acceleration sensor or a device that differentiates an output of a position sensor. Further, the swing speed sensor 3 is configured to detect the absolute speed of the lifting unit 55, but may be configured to detect the relative speed of the lifting unit 55 with respect to the upper plate 2. As a typical example of the detection of the relative speed, there is a method of detecting the relative position of the elevating unit 55 with respect to the starvation plate 2 and differentiating the output.
When the shake speed sensor 3 detects the relative speed of the elevating unit 55 with respect to the upper plate 2, the vibration suppression control based on the vibration suppression signal output from the steady rest compensation unit 4 and the speed compensation In order to prevent interference with the speed control of the positioning actuator 1 due to the thrust command output from the means, only the frequency band related to the shake from the shake speed signal (from the speed control frequency) It is desirable to use a low-pass filter or a band-pass filter that extracts the value that is sufficiently low.
[0011]
【The invention's effect】
As described above, the present invention includes a lifting / lowering portion position control device that controls the position of a lifting / lowering portion suspended from a base via a suspension member by controlling the position of the suspension member. A lifting / lowering portion position control device, wherein the lifting / lowering portion position control device detects a deflection speed of the lifting / lowering portion, a positioning device for positioning the suspension member in a horizontal plane, and a target position value for the positioning device. A position compensating means for outputting a speed command based on the deviation between the actual position and the actual position, and an operation amount of the positioning means based on a deviation between the speed command for the positioning means output from the position compensating means and the actual speed. and speed compensation means for outputting thrust command, and steadying compensation means for outputting a damping signal to said positioning means in proportion to the output of the shake speed detecting means, the deflection And an adding means for adding the vibration damping signal output from the compensating means to the thrust command output from the speed compensating means. When the lifting part has a run-out, the positioning means is equivalently displaced in proportion to the run-out speed of the lifting / lowering part, and the resulting force is proportional to the relative displacement between the base and the lifting part. Is given to the lifting unit as a damping force. Therefore, the vibration of the elevating part is attenuated in a very short time.
Further, since the vibration suppression signal output from the steady rest compensating means is added to the thrust command output from the speed compensating means in the form of a disturbance, the positioning means is controlled by the position control by the position compensating means. It is accurately positioned at the target position together with the attenuation of the vibration of the elevating unit. As described above, the steadying and positioning of the elevating unit can be extremely effectively performed by the simple control system, and the working efficiency can be dramatically improved.
The positioning means can be configured to move the suspension member and the elevating unit with respect to the base. For example, when a movable carriage is used as the base, the movement of the movable carriage is performed. By using the means as the positioning means, it contributes to cost reduction and downsizing.
If the stop height of the lifting unit is different, it is only necessary to change the value of the proportional element of the steady rest compensating means, and the adjustment is easier than when a conventional passive vibration damping device is used. Can be done.
In addition, by attaching a filter for removing observation noise to the steady-state compensation means, oscillation of the servo system due to observation noise can be prevented.
Further, when the shake speed of the lifting section detected by the shake speed detecting means is a relative speed with respect to the base, the shake preventing compensating means outputs the shake from the shake speed signal obtained by the shake speed detecting means. By attaching a filter that extracts only the frequency band related to, the vibration control by the vibration suppression signal output from the steady rest compensating means and the speed control of the positioning means by the thrust command output from the speed compensating means The trouble caused by the interference can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a schematic configuration of a transport device A1 according to an embodiment of the present invention.
FIG. 2 is a block diagram showing a schematic configuration of a lifting / lowering unit position control device 10 of the transfer device A1.
FIG. 3 is a graph showing a displacement decay time chart when a minute displacement is applied to the lifting / lowering unit 55 ((a) is a graph based on a conventional transport device A0, and (b) is a transport device according to an embodiment of the present invention). A1).
FIG. 4 is a schematic diagram showing a schematic configuration of a conventional transport device A0.
[Explanation of symbols]
1. Positioning actuator (an example of positioning means)
3. Shake speed sensor (an example of shake speed detecting means)
DESCRIPTION OF SYMBOLS 4 ... Anti-sway compensating part 4a ... Proportional element 4b ... Filter 10 ... Elevating part position control device 11 ... Position compensating part 12 ... Speed compensating part 52 ... Rail 53 ... Moving carriage 54 ... Suspension member 55 ... Elevating part

Claims (5)

基台から懸垂材を介して昇降可能に吊り下げられた昇降部の位置を,上記懸垂材の位置を制御することにより制御する昇降部位置制御装置を具備する懸垂式昇降装置において,
上記昇降部位置制御装置が,
上記昇降部の振れ速度を検出する振れ速度検出手段と,
上記懸垂材を水平面内で位置決めする位置決め手段と,
上記位置決め手段に対する位置目標値と実位置との偏差に基づいて速度指令を出力する位置補償手段と,
上記位置補償手段から出力された上記位置決め手段に対する速度指令と実速度との偏差に基づいて上記位置決め手段の操作量である推力指令を出力する速度補償手段と,
上記振れ速度検出手段の出力に比例した上記位置決め手段に対する制振信号を出力する振れ止め補償手段と,
上記振れ止め補償手段から出力された上記制振信号を上記速度補償手段から出力された上記推力指令に加算する加算手段とを具備してなることを特徴とする懸垂式昇降装置。
In a suspension type lifting apparatus having a lifting section position control device for controlling the position of a lifting section suspended from a base via a suspension member so as to be able to ascend and descend by controlling the position of the suspension member,
The lift position control device is
A shake speed detecting means for detecting a shake speed of the lifting unit;
Positioning means for positioning the suspension in a horizontal plane;
Position compensating means for outputting a speed command based on a deviation between a position target value and an actual position with respect to the positioning means;
Speed compensating means for outputting a thrust command which is an operation amount of the positioning means based on a deviation between the speed command for the positioning means and the actual speed outputted from the position compensating means;
Anti-sway compensating means for outputting a vibration suppression signal to the positioning means in proportion to the output of the vibration speed detecting means;
A suspending type elevating device comprising: an adding unit that adds the vibration suppression signal output from the steady rest compensating unit to the thrust command output from the speed compensating unit.
上記基台が移動台車である請求項1記載の懸垂式昇降装置。The suspension type lifting device according to claim 1, wherein the base is a movable carriage. 上記位置決め手段が,上記懸垂材と上記昇降部とを上記基台に対して移動させるように構成されてなる請求項1又は2記載の懸垂式昇降装置。3. The suspension type lifting device according to claim 1, wherein the positioning means is configured to move the suspension member and the lifting portion with respect to the base. 上記位置決め手段が,上記移動台車の移動手段により構成される請求項2記載の懸垂式昇降装置。3. The suspension type lifting device according to claim 2, wherein said positioning means is constituted by moving means of said movable cart. 上記振れ速度検出手段により検出される昇降部の振れ速度が上記基台に対する相対速度である場合に,上記振れ止め補償手段が,上記振れ速度検出手段で得られた振れ速度信号から振れに関係した周波数帯のみを抜き出すフィルタを具備してなる請求項1〜のいずれかに記載の懸垂式昇降装置。When the swing speed of the elevating section detected by the shake speed detecting means is a relative speed with respect to the base, the steady rest compensating means relates to the shake from the shake speed signal obtained by the shake speed detecting means. The suspension type lifting device according to any one of claims 1 to 4 , further comprising a filter for extracting only a frequency band.
JP08874398A 1998-04-01 1998-04-01 Suspension type lifting device Expired - Fee Related JP3565702B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP08874398A JP3565702B2 (en) 1998-04-01 1998-04-01 Suspension type lifting device
TW088102811A TW568879B (en) 1998-04-01 1999-02-25 Suspension type hoist
KR1019990010160A KR100603773B1 (en) 1998-04-01 1999-03-24 A suspending type of lift device
US09/285,002 US6460711B1 (en) 1998-04-01 1999-04-01 Suspension type hoisting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08874398A JP3565702B2 (en) 1998-04-01 1998-04-01 Suspension type lifting device

Publications (2)

Publication Number Publication Date
JPH11286388A JPH11286388A (en) 1999-10-19
JP3565702B2 true JP3565702B2 (en) 2004-09-15

Family

ID=13951407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08874398A Expired - Fee Related JP3565702B2 (en) 1998-04-01 1998-04-01 Suspension type lifting device

Country Status (1)

Country Link
JP (1) JP3565702B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981885B2 (en) * 2003-05-20 2007-09-26 株式会社ダイフク Transport device
KR102583574B1 (en) * 2020-10-30 2023-10-05 세메스 주식회사 Carriage robot and tower lift including the same
CN116216345B (en) * 2023-05-09 2024-01-23 宁德时代新能源科技股份有限公司 Powder conveying control method, powder conveying device and powder feeding system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569065U (en) * 1992-02-28 1993-09-17 日立機電工業株式会社 Signal processor for crane runout angle detection
JPH0781876A (en) * 1993-09-20 1995-03-28 Nippon Steel Corp Method for preventing deviation of suspended crane and for positioning crane
JP3376772B2 (en) * 1995-08-01 2003-02-10 株式会社明電舎 Crane steady rest / positioning device

Also Published As

Publication number Publication date
JPH11286388A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
US5785191A (en) Operator control systems and methods for swing-free gantry-style cranes
US7627393B2 (en) Crane or digger for swinging a load hanging on a support cable with damping of load oscillations
CN102976200B (en) Lifting control method, device and system as well as lifting appliance and hoisting machine
JP4549629B2 (en) Crane anti-sway control system and method under operator command
US5961563A (en) Anti-sway control for rotating boom cranes
KR20110004776A (en) Crane for handling a load hanging on a load cable
KR20080078653A (en) Device for preventing sway of suspended load
EP0675066B1 (en) Control system for elevator active vibration control
JP4883272B2 (en) Crane steady rest control method
KR20200059148A (en) Method and oscillation controller for compensating for oscillations of an oscillatable technical system
JP2865949B2 (en) Elevator damping device
JP2016120996A (en) Bracing control method and device of trolley type crane
JP3565702B2 (en) Suspension type lifting device
JP3355616B2 (en) Crane steady rest control method
JP7384025B2 (en) Control equipment and inverter equipment for suspended cranes
JP4075135B2 (en) Suspended lifting device
KR100293185B1 (en) Unmanned overhead crane control device having anti-swing function
JP4123570B2 (en) Suspended lifting device
JP2014152020A (en) Vibration reducing device for elevator and elevator
JP4085469B2 (en) Suspended lifting device
JP2971318B2 (en) Sway control device for suspended load
JPH06336394A (en) Vibration restricting method for overhead crane
JP4123566B2 (en) Suspended lifting device
JPH0218293A (en) Condition detecting method for lifting load
JP4123569B2 (en) Suspended lifting device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees