JP3564932B2 - Sealing device - Google Patents

Sealing device Download PDF

Info

Publication number
JP3564932B2
JP3564932B2 JP08558897A JP8558897A JP3564932B2 JP 3564932 B2 JP3564932 B2 JP 3564932B2 JP 08558897 A JP08558897 A JP 08558897A JP 8558897 A JP8558897 A JP 8558897A JP 3564932 B2 JP3564932 B2 JP 3564932B2
Authority
JP
Japan
Prior art keywords
lip
annular
sealing device
sealed fluid
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08558897A
Other languages
Japanese (ja)
Other versions
JPH10267133A (en
Inventor
芳行 勘崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP08558897A priority Critical patent/JP3564932B2/en
Publication of JPH10267133A publication Critical patent/JPH10267133A/en
Application granted granted Critical
Publication of JP3564932B2 publication Critical patent/JP3564932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、各種装置の軸とハウジングの間の隙間を封止する密封装置に関する。特に、1つの密封装置で両方向回転に対応可能とする構成に関する。
【0002】
【従来の技術】
従来より、高速・高圧・高温条件で使用される回転軸用密封装置には、シールリップの材料としてゴム状弾性材料よりも耐熱性や耐摩耗性の良いPTFE等の樹脂材料が適用されている。しかし、樹脂材料はゴム状弾性材料に比べて弾性復元性に劣り、軸振れに追随する能力(偏心追随性)が低くなる。
【0003】
は、シールリップの材料として樹脂材料を使用した密封装置101の断面構成を説明する図である。密封装置101は、外環部102a,103aが嵌め合わされる断面L字状の外側補強環102と内側補強環103と、それら補強環の径方向部102b,103bに外周固定部104aが挟持される樹脂材料製の円環板104から構成されている。
【0004】
円環板104の内径は密封装置101の内環部に挿入される回転軸105の直径よりも小さく設定され、回転軸105の外周表面に添って密封流体側Mに撓み変形させ、円環板104の内径先端側の内周表面をリップ摺動面104bとして接触摺動させる構造としている。
【0005】
また、リップ摺動面104bには一方向の螺旋ミゾ104cを設け、回転軸105の回転に伴い発生する螺旋ミゾ104cのポンプ作用による密封流体側Mへの密封流体の戻し効果により密封性を向上させる構造が従来より採用されている。
【0006】
【発明が解決しようとする課題】
しかしこの密封装置101では、回転軸105を他方向に回転させると密封流体の漏れを発生させてしまい、一方向に回転する軸には適用可能であるが、両方向に回転する軸には適用することが出来ないという問題があった。
【0007】
また、この図の密封装置101では螺旋ミゾ104cにより密封流体側Mと大気側Oが連通しているので、回転軸1の静止時に螺旋ミゾ104cを伝わって密封流体が静的に漏出するという問題もあった。
【0008】
本発明は上記従来技術の問題を解決するためになされたもので、その目的とするところは、両方向回転に対して密封流体側への密封流体の戻し作用を発揮させること、また、摺動表面が停止している際の静的な密封流体の漏れを防止することによる密封性の向上を可能とする密封装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明にあっては、回動する摺動表面に当接する環状のリップ摺動部を備えた密封装置において、
前記リップ摺動部は、前記摺動表面に対するそれぞれの接触圧力分布において、その最大接触圧力部が大気側よりも密封流体側に偏った分布形態となる環状当接部を、軸方向に複数段備えることを特徴とする。
【0010】
これによると、リップ摺動部が当接する摺動表面が回動している状態では、それぞれの環状当接部の接触圧力分布形態は、環状当接部の密封流体側に最大接触圧力点が偏っている分布となっており、大気側へ密封流体が流出する場合には、環状当接部の密封流体側に対応する流体入口部の圧力勾配が大きいため、流体力学的に大気側へ流出する密封流体の膜厚は薄くしか形成されず流出量は少なくなる。
【0011】
そして、大気側へ流出した密封流体は、環状当接部の間に保持されることになるが、この流体が逆に密封流体側へ流入して戻る場合には、環状当接部の大気側に対応する流体入口部の圧力勾配が小さいため、密封流体側へ流入して戻る流体膜厚が厚く形成され、流体の戻り量は多くなることになる。
【0012】
すなわち、大気側への流出量の方より密封流体側へ戻る流入量の方が多くなるため、軸方向に複数段備えられた環状当接部全体として良好なシール性が発揮される。
【0013】
この作用は摺動表面の回動方向にかかわらず、いずれの方向であっても得られるので、両方向に回動する軸やハウジング等の摺動表面に対して密封装置を使用することが可能となる。
【0014】
また、軸方向に複数段備えられた環状当接部は、摺動表面が停止している状態でも、密封流体側と大気側を複数段に隔離しているので密封流体を疎通させることはなく、静的な状態でのシール性も得ることができる。
【0015】
前記複数段の環状当接部は、密封流体側に向かって傾斜する複数本の環状の切り込みにより区分された前記リップ摺動部であることも好適である。
【0017】
前記リップ摺動部は、樹脂材料による円環状のシールリップの前記摺動表面に添って密封流体側に撓ませられたリップ先端側の円周表面部であることも良い。
【0018】
【発明の実施の形態】
(実施の形態1)
以下に本発明の第1の実施の形態を図1と図2に基づいて説明する。図1は密封装置1の断面構成を説明する図であり、図1(a)は密封装置1がハウジング106と軸105の間の環状隙間107に備えられ、回動する軸105の摺動表面としての外周面105aに環状のリップ摺動部4aが当接している状態の図であり、図1(b)は図1(a)のD1部を拡大したリップ摺動部4aを説明する図である。図2はリップ摺動部4aを備えた樹脂リップ4の密封装置1として組み立てられる前の状態の正面図である。
【0019】
この密封装置1は、断面L形状の外側補強環2と内側補強環3のそれぞれの径方向部2a,3aの間に環状のリップ摺動部を構成する樹脂リップ4の外環部を挟持して備えている。尚、外側補強環2と内側補強環3は、外側補強環2の密封流体側Mの端部2bを折り曲げることによるカシメ固定により締結されている。
【0020】
樹脂リップ4は、例えばPTFE等の樹脂材料により形成されており、軸105が挿入されていない図2の状態(組み立て前)では(図1(a)においては4’(破線)に示されている)概略平ワッシャ形状であり、図1(a)のように組み立てた後に軸105を挿入することで内側の縁が軸105の外周面105aに沿って拡径しながら撓み、内径先端側の内周表面が外周面105aに当接してシール性を発揮する環状のリップ摺動部4aとなっている。尚、PTFEを材質とすることで、軸105の外周面105aに当接して摺動する状態において低摩擦抵抗による良好な摺動性や耐摩耗特性に優れている等の特徴を備えている。
【0021】
但し、樹脂リップ4の基本的な形態はこの図1に示されるものに限定されるものではなく、環状の外周保持部からリップ摺動部が内側に直接的に斜めに突出した形態や、内周面に当接させる場合においては環状の内周保持部からリップ摺動部が外側に突出する形態を備えるものでもなんら問題ない。
【0022】
樹脂リップ4のリップ摺動部4aには、リップ表面4bから密封流体側に向かって傾斜する複数本の環状の切り込み4cが設けられ、各切り込み4cの間に複数段の環状当接部4dが軸方向に形成されている。
【0023】
この環状当接部4dを図1(b)により説明すると、外周面105aに当接するそれぞれの環状当接部4dの当接領域4eは、切り込み4cにより区分されたリップ表面4bの領域中における密封流体側Mの接触領域である。そして、その区分された個々の当接領域4eにおいて、密封流体側Mの端部を4f、大気側Oの端部を4gとすると、軸105の挿入の際に端部4gよりも端部4fの拡径量が多くより大きな緊迫力(接触荷重)が発生していることから、当接領域4eの接触圧力分布は図1(b)上側のグラフに示されるようにそれぞれの接触圧力分布において、その最大接触圧力部Paが大気側Oよりも密封流体側Mに偏向した分布形態となっている。
【0024】
従って、リップ摺動部4aが当接する摺動表面が回動している状態では、それぞれの当接領域4eの接触圧力分布形態は、当接領域4eの密封流体側Mに最大接触圧力部Paが偏っている分布となっており、大気側Oへ密封流体が流出する場合には、当接領域4eの密封流体側Mに対応する流体入口部の圧力勾配が大きいため、流体力学的に大気側Oへ流出する密封流体の膜厚は薄くしか形成されず流出量は少なくなる。
【0025】
そして、大気側Oへ流出した密封流体は、当接領域4eの間に保持されることになるが、この流体が逆に密封流体側Mへ流入して戻る場合には、当接領域4eの大気側Oに対応する流体入口部の圧力勾配が小さいため、密封流体側Mへ流入して戻る流体膜厚が厚く形成され、流体の戻り量は多くなることになる。
【0026】
すなわち、大気側Oへの流出量の方より密封流体側Mへ戻る流入量の方が多くなるため、軸方向に複数段備えられた当接領域4e全体として良好なシール性が発揮される。
【0027】
この作用は摺動表面の回動方向にかかわらず、いずれの方向であっても得られるので、両方向に回動する軸やハウジング等の摺動表面に対して密封装置を使用することが可能となる。
【0028】
また、軸方向に複数段備えられた環状当接部4dの当接領域4eにより、軸105が停止している状態でも、密封流体側Mと大気側Oの間を複数段に隔離しているので密封流体が切り込み4cを伝わって密封流体側Mから大気側Oへ疎通することはなく、静的な状態でのシール性も得ることができる。
【0029】
尚、この実施の形態では、リップ摺動部4aは樹脂リップ4に形成されたものとして説明したが、より弾性を備えたゴム状弾性材料等によるリップに本発明を適用することも可能である。
【0036】
【発明の効果】
上記のように説明された本発明にあっては、両方向に回動する摺動表面に対してシール性が発揮され、摺動表面の回動方向を指定する必要がなく使用することができる。
【0037】
また、軸方向に複数段備えられた環状当接部は、摺動表面が停止している状態でも、密封流体側と大気側を複数段に隔離しているので密封流体を疎通させることはなく、静的な状態でのシール性も得ることができる。
【図面の簡単な説明】
【図1】図1は本発明の第1の実施の形態の密封装置の断面構成説明図。
【図2】図2は樹脂リップを説明する図。
【図3】図3は従来の密封装置の断面構成説明図。
【符号の説明】
1 密封装置
2 外側補強環
2a,3a 径方向部
2b 端部
3 内側補強環
4 樹脂リップ
4a リップ摺動部
4b リップ表面
4c 切り込み
4d 環状当接部
4e 当接領域
4f 密封流体側Mの端部
4g 大気側Oの端部
105 軸
105a 外周面(摺動表面)
106 ハウジング
107 環状隙間
M 密封流体側
O 大気側
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sealing device for sealing a gap between a shaft of various devices and a housing. In particular, it relates to a configuration in which one sealing device can cope with bidirectional rotation.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, resin materials such as PTFE, which has better heat resistance and wear resistance than rubber-like elastic materials, have been applied to sealing lips for rotating shafts used under high-speed, high-pressure, and high-temperature conditions. . However, the resin material is inferior in elastic restoring property as compared with the rubber-like elastic material, and has a low ability to follow the shaft runout (eccentricity following ability).
[0003]
FIG. 3 is a diagram illustrating a cross-sectional configuration of the sealing device 101 using a resin material as the material of the seal lip. In the sealing device 101, an outer reinforcing ring 102 and an inner reinforcing ring 103 having an L-shaped cross section into which the outer rings 102a and 103a are fitted, and an outer peripheral fixing portion 104a is sandwiched between radial portions 102b and 103b of the reinforcing rings. The annular plate 104 is made of a resin material.
[0004]
The inner diameter of the annular plate 104 is set smaller than the diameter of the rotating shaft 105 inserted into the inner annular portion of the sealing device 101, and is deformed to the sealed fluid side M along the outer peripheral surface of the rotating shaft 105, The inner peripheral surface of the inner diameter tip side of the inner surface 104 is slidably contacted with the lip sliding surface 104b.
[0005]
The lip sliding surface 104b is provided with a spiral groove 104c in one direction, and the sealing performance is improved by the effect of returning the sealed fluid to the sealed fluid side M by the pump action of the spiral groove 104c generated as the rotating shaft 105 rotates. The structure to be made has been conventionally adopted.
[0006]
[Problems to be solved by the invention]
However, in the sealing device 101, when the rotating shaft 105 is rotated in the other direction, leakage of the sealing fluid occurs, and the sealing device 101 is applicable to a shaft rotating in one direction, but is applicable to a shaft rotating in both directions. There was a problem that I could not do it.
[0007]
Further, in the sealing device 101 of FIG. 3, since the sealed fluid side M and the atmosphere side O communicate with each other by the spiral groove 104c, the sealed fluid is statically leaked through the spiral groove 104c when the rotating shaft 1 is stationary. There were also problems.
[0008]
The present invention has been made in order to solve the above-mentioned problems of the prior art, and has an object to provide a function of returning a sealed fluid to a sealed fluid side with respect to bidirectional rotation, and to provide a sliding surface. It is an object of the present invention to provide a sealing device capable of improving the sealing performance by preventing static leakage of a sealing fluid when the device is stopped.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, there is provided a sealing device having an annular lip sliding portion abutting on a rotating sliding surface,
The lip sliding portion includes, in each of the contact pressure distributions with respect to the sliding surface, an annular contact portion in which a maximum contact pressure portion has a distribution form deviated more toward the sealed fluid side than the atmosphere side, and is formed in a plurality of stages in the axial direction. It is characterized by having.
[0010]
According to this, when the sliding surface with which the lip sliding portion abuts is rotating, the contact pressure distribution form of each annular abutment has a maximum contact pressure point on the sealed fluid side of the annular abutment. When the sealed fluid flows out to the atmosphere side due to a skewed distribution, the pressure gradient at the fluid inlet corresponding to the sealed fluid side of the annular abutment is large, so that the fluid flows out to the atmosphere side hydrodynamically. The thickness of the sealing fluid to be formed is small and the outflow amount is small.
[0011]
Then, the sealed fluid that has flowed out to the atmosphere side is held between the annular abutting portions. Since the pressure gradient at the fluid inlet corresponding to the above is small, the fluid film thickness flowing into and returning to the sealed fluid side is formed thick, and the return amount of the fluid is increased.
[0012]
That is, since the amount of inflow returning to the sealed fluid side is larger than the amount of outflow to the atmosphere side, good sealing performance is exerted as a whole of the annular contact portions provided in a plurality of stages in the axial direction.
[0013]
This effect can be obtained in any direction regardless of the rotating direction of the sliding surface, so that the sealing device can be used for a sliding surface such as a shaft or a housing that rotates in both directions. Become.
[0014]
In addition, the annular contact portion provided with a plurality of stages in the axial direction separates the sealed fluid side from the atmosphere side in a plurality of stages even when the sliding surface is stopped, so that the sealed fluid does not pass therethrough. In addition, a sealing property in a static state can be obtained.
[0015]
It is also preferable that the plurality of annular contact portions are the lip sliding portions divided by a plurality of annular cuts inclined toward the sealed fluid side.
[0017]
The lip sliding portion may be a circumferential surface portion on a lip tip side which is bent toward a sealing fluid side along the sliding surface of the annular seal lip made of a resin material.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a view for explaining a cross-sectional configuration of the sealing device 1. FIG. 1A shows the sealing device 1 provided in an annular gap 107 between a housing 106 and a shaft 105, and a sliding surface of a rotating shaft 105. FIG. 1B is a diagram illustrating a state in which an annular lip sliding portion 4a is in contact with an outer peripheral surface 105a as a first example, and FIG. 1B is a diagram illustrating the lip sliding portion 4a in which a portion D1 in FIG. It is. FIG. 2 is a front view of a state before the resin lip 4 having the lip sliding portion 4a is assembled as the sealing device 1.
[0019]
This sealing device 1 sandwiches an outer ring portion of a resin lip 4 constituting an annular lip sliding portion between respective radial portions 2a, 3a of an outer reinforcing ring 2 and an inner reinforcing ring 3 having an L-shaped cross section. Equipped. The outer reinforcing ring 2 and the inner reinforcing ring 3 are fastened by crimping by bending an end 2b of the outer reinforcing ring 2 on the sealed fluid side M.
[0020]
The resin lip 4 is formed of, for example, a resin material such as PTFE, and in a state of FIG. 2 in which the shaft 105 is not inserted (before assembling) (shown by a broken line 4 ′ in FIG. 1A). 1) It is a substantially flat washer shape, and when the shaft 105 is inserted after assembling as shown in FIG. 1A, the inner edge bends while expanding along the outer peripheral surface 105a of the shaft 105, and The inner peripheral surface is an annular lip sliding portion 4a which comes into contact with the outer peripheral surface 105a to exhibit sealing properties. In addition, by using PTFE as a material, it has characteristics such as good sliding properties due to low frictional resistance and excellent wear resistance in a state of sliding against the outer peripheral surface 105a of the shaft 105.
[0021]
However, the basic form of the resin lip 4 is not limited to the one shown in FIG. 1, and the lip sliding portion directly obliquely projects inward from the annular outer peripheral holding portion, In the case of contact with the peripheral surface, there is no problem at all if the lip sliding portion projects outward from the annular inner peripheral holding portion.
[0022]
The lip sliding portion 4a of the resin lip 4 is provided with a plurality of annular cuts 4c inclined from the lip surface 4b toward the sealed fluid side, and a plurality of annular contact portions 4d are provided between the cuts 4c. It is formed in the axial direction.
[0023]
This annular contact portion 4d will be described with reference to FIG. 1B. The contact region 4e of each annular contact portion 4d that contacts the outer peripheral surface 105a is sealed in the region of the lip surface 4b divided by the cut 4c. The contact area on the fluid side M. If the end of the sealed fluid side M is 4f and the end of the atmosphere side O is 4g in each of the divided contact areas 4e, the end 4f is larger than the end 4g when the shaft 105 is inserted. Since a large tension force (contact load) is generated due to the large diameter expansion amount of the contact area 4e, the contact pressure distribution in the contact area 4e is, as shown in the upper graph of FIG. The maximum contact pressure portion Pa has a distribution form deflected more toward the sealed fluid side M than the atmosphere side O.
[0024]
Therefore, when the sliding surface with which the lip sliding portion 4a abuts is rotating, the contact pressure distribution form of each abutting region 4e is such that the maximum contact pressure portion Pa is on the sealed fluid side M of the abutting region 4e. When the sealed fluid flows out to the atmosphere side O, the pressure gradient at the fluid inlet corresponding to the sealed fluid side M of the contact area 4e is large, and therefore, The film thickness of the sealed fluid flowing out to the side O is formed only thinly, and the outflow amount is reduced.
[0025]
Then, the sealed fluid that has flowed out to the atmosphere side O is held between the contact areas 4e. However, when the fluid flows back into the sealed fluid side M and returns, the contact area 4e is closed. Since the pressure gradient at the fluid inlet corresponding to the atmosphere side O is small, the fluid film flowing into and returning to the sealed fluid side M is formed to be thick, and the return amount of the fluid is increased.
[0026]
That is, since the amount of inflow returning to the sealed fluid side M is greater than the amount of outflow to the atmosphere side O, good sealing properties are exhibited as a whole in the contact region 4e provided in a plurality of stages in the axial direction.
[0027]
This effect can be obtained in any direction regardless of the rotating direction of the sliding surface, so that the sealing device can be used for a sliding surface such as a shaft or a housing that rotates in both directions. Become.
[0028]
Further, the contact area 4e of the annular contact portion 4d provided in a plurality of stages in the axial direction separates the sealed fluid side M and the atmosphere side O into a plurality of stages even when the shaft 105 is stopped. Therefore, the sealing fluid does not pass through the cuts 4c to communicate from the sealing fluid side M to the atmosphere side O, and a sealing property in a static state can be obtained.
[0029]
In this embodiment, the lip sliding portion 4a is described as being formed on the resin lip 4. However, the present invention can be applied to a lip made of a rubber-like elastic material having more elasticity. .
[0036]
【The invention's effect】
In the present invention described above, the sealing property is exerted on the sliding surface that rotates in both directions, and the sliding surface can be used without having to specify the rotating direction of the sliding surface.
[0037]
In addition, the annular contact portion provided with a plurality of stages in the axial direction separates the sealed fluid side from the atmosphere side in a plurality of stages even when the sliding surface is stopped, so that the sealed fluid does not pass therethrough. In addition, a sealing property in a static state can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration explanatory view of a sealing device according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a resin lip.
FIG. 3 is an explanatory view of a cross-sectional configuration of a conventional sealing device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sealing device 2 Outer reinforcing rings 2a, 3a Radial portion 2b End 3 Inner reinforcing ring 4 Resin lip 4a Lip sliding portion 4b Lip surface 4c Cut 4d Annular contact portion 4e Contact region 4f End of sealed fluid side M 4g Atmospheric side O end 105 Shaft 105a Outer surface (sliding surface)
106 Housing 107 Annular gap M Sealed fluid side O Atmosphere side

Claims (2)

回動する摺動表面に当接する環状のリップ摺動部を備えた密封装置において、
前記リップ摺動部には、径方向のうち前記摺動表面から離間する方向に向けて且つ密封流体側に向かって傾斜する複数本の環状の切り込みにより区分された複数段の環状当接部が軸方向に設けられ、
前記摺動表面に対するそれぞれの前記環状当接部の接触圧力分布、その最大接触圧力部が大気側よりも密封流体側に偏った分布形態となっていることを特徴とする密封装置。
In a sealing device having an annular lip sliding portion abutting on a rotating sliding surface,
The lip sliding portion has a plurality of annular contact portions divided by a plurality of annular cuts inclined in a direction away from the sliding surface in the radial direction and toward the sealed fluid side. Provided in the axial direction,
The contact pressure distribution of each of the annular contact portion with respect to the sliding surface, the sealing device that maximum contact pressure unit is characterized and this has Tsu Do and distribution form biased to sealed fluid side from the atmosphere side.
前記リップ摺動部は、樹脂材料による円環状のシールリップの前記摺動表面に添って密封流体側に撓ませられたリップ先端側の円周表面部であることを特徴とする請求項1に記載の密封装置。The lip sliding portion is a circumferential surface portion on a tip side of the lip which is bent toward a sealing fluid side along the sliding surface of the annular seal lip made of a resin material, according to claim 1, wherein The sealing device as described.
JP08558897A 1997-03-21 1997-03-21 Sealing device Expired - Lifetime JP3564932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08558897A JP3564932B2 (en) 1997-03-21 1997-03-21 Sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08558897A JP3564932B2 (en) 1997-03-21 1997-03-21 Sealing device

Publications (2)

Publication Number Publication Date
JPH10267133A JPH10267133A (en) 1998-10-09
JP3564932B2 true JP3564932B2 (en) 2004-09-15

Family

ID=13862983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08558897A Expired - Lifetime JP3564932B2 (en) 1997-03-21 1997-03-21 Sealing device

Country Status (1)

Country Link
JP (1) JP3564932B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165327A (en) * 1999-12-08 2001-06-22 Koyo Sealing Techno Co Ltd Sealing apparatus
JP4648514B2 (en) * 2000-05-02 2011-03-09 イーグル工業株式会社 Lip type seal
JP4877460B2 (en) * 2005-06-14 2012-02-15 Nok株式会社 Lip type seal
CN109780209B (en) * 2019-03-11 2024-02-20 青岛达能环保设备股份有限公司 Concentric ring type feeding sealing system

Also Published As

Publication number Publication date
JPH10267133A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
US5967746A (en) Gas turbine interstage portion seal device
US5224714A (en) Noncontacting face seal
CA2152737C (en) Seal design with bi-directional pumping feature
JP3875824B2 (en) Lip type seal
EP0174313A1 (en) Rotating-lip bidirection hydrodynamic oil seal
JP2003113945A (en) Shaft sealing mechanism and turbine
EP2685140B1 (en) Sealing device
US6655692B2 (en) Brush seal device
JPH04337165A (en) Non-contact type mechanical seal device
JP3564932B2 (en) Sealing device
US20020050684A1 (en) Brush seal device
JP3436287B2 (en) Seal ring
JP2003097723A (en) Rotation shaft seal
JP3591221B2 (en) Sealing device
JPH08135795A (en) Sealing device
KR101106828B1 (en) Pump
JP2002139153A (en) Brush type sealing device
JP2002115762A (en) Sealing device
JP2006132636A (en) Shaft seal and rotary machine
JP7350446B2 (en) mechanical seal
JPH08145186A (en) Seal device
JPH10252898A (en) Sealing device
JP4193299B2 (en) Sealing device
JP2000002255A (en) Sealing device
JPH11230368A (en) Sealing device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

EXPY Cancellation because of completion of term