JP3563954B2 - High-strength polyolefin heavy duty anticorrosion coated steel pipe and steel pipe pile - Google Patents

High-strength polyolefin heavy duty anticorrosion coated steel pipe and steel pipe pile Download PDF

Info

Publication number
JP3563954B2
JP3563954B2 JP4687798A JP4687798A JP3563954B2 JP 3563954 B2 JP3563954 B2 JP 3563954B2 JP 4687798 A JP4687798 A JP 4687798A JP 4687798 A JP4687798 A JP 4687798A JP 3563954 B2 JP3563954 B2 JP 3563954B2
Authority
JP
Japan
Prior art keywords
steel pipe
layer
polyethylene
strength
coated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4687798A
Other languages
Japanese (ja)
Other versions
JPH11245333A (en
Inventor
信樹 吉崎
義洋 宮嶋
博幸 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4687798A priority Critical patent/JP3563954B2/en
Publication of JPH11245333A publication Critical patent/JPH11245333A/en
Application granted granted Critical
Publication of JP3563954B2 publication Critical patent/JP3563954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は外面に防食被覆を必要とする鋼管の埋設施工時、あるいは鋼管杭の港湾・河川の桟橋や護岸などの鋼構造物の打設時、もしくは打設後の捨て石類、その他船舶を含む浮遊物等によって発生する衝撃に対して防食被覆の耐衝撃・耐久性に優れた外面重防食被覆鋼管及び鋼管杭に関する。
【0002】
【従来の技術】
外面防食が必要とされる鋼管、鋼管杭において数十年の長期耐久性が必要とされる場合、ポリエチレン、あるいはポリウレタンといった樹脂を被覆材として使用した重防食被覆鋼材が製造されている。一方、ポリプロピレン樹脂を用いたポリプロピレン被覆鋼管は、ポリエチレンに比較して耐熱性や強度に優れ、高温配管用途を中心に使用されている。このような重防食被覆ではポリオレフィンあるいはポリウレタン樹脂のコスト、電気絶縁性、耐薬品性等の種々の樹脂特性を生かし、添加剤により耐候性・耐久性を付与したものが使用される。このような被覆材料を用いた重防食被覆鋼材では被覆の防食性には著しく優れるが、用いられる樹脂自体の強度が低く、運搬、保管、施工時のハンドリングにおける衝突や摩擦などによる被覆の傷発生が問題となってきた。
【0003】
これに対して特公平7−006595号公報に提案されるように推進鋼管における重防食被覆ではポリオレフィンまたはポリウレタン樹脂からなる防食被覆はそのままに、ガラス繊維または金属繊維混入のポリエステル、またはガラス繊維または金属繊維混入のエポキシアクリレート層をその保護被覆として使用する方法が提案されている。
【0004】
【発明が解決しようとする課題】
重防食被覆の表層に強度・硬度に優れる耐傷性被覆層を形成するため、特公平7−006595号公報では、ポリオレフィンまたはポリウレタン樹脂からなる防食被覆層の上層にガラス繊維または金属繊維混入のポリエステル、またはガラス繊維または金属繊維混入のエポキシアクリレート層からなる高硬度の有機樹脂保護被覆を形成する方法が提案されている。また、特開平6−146271号公報では、ポリオレフィンまたはウレタン樹脂からなる防食被覆層の上層にガラスクロス又はマットで強化したビニルエステルもしくはポリエステル樹脂の保護被覆層を積層する方法が提案されている。防食被覆と種類の異なる樹脂を積層する場合にはその接着が問題である。特にポリオレフィン樹脂はその表面の極性が低いため、他の樹脂との接着が大きな課題となる。これに対しては、いずれの提案でも、ポリオレフィン被覆の表層にエンボス加工を施し凹凸を付けることによって物理的な剪断接着力を持たせることで保護層の被覆を可能としている。同様には、ポリオレフィン防食被覆に旋状に突起を付ける方法が考えられる。しかしながらこれらのポリオレフィンの表面形状を変更する方法は、新たに一つの工程が必要となるという問題がある。さらには、突起あるいは窪みの部分で防食層と保護被覆の膜厚が変動し、衝撃が加わった場合にはノッチ効果により保護被覆の破壊が起きるため、性能確保のためには加工部の高さに相当する被覆の厚み増加が必要である。その結果、材料コストの増加や、被覆工程の効率低下を招くといった問題があった。
【0005】
そこで本発明は、防食被覆にポリオレフィンを用いても、エンボス加工あるいは螺旋条の突起等の特殊な形状加工を行わなくても、表層のポリエステル保護被覆との剪断接着力を確保することが出来るため、製造工程の煩雑さを伴わないで生産の効率が良く、また安定した耐衝撃性と優れた防食性を持つ高強度ポリオレフィン重防食被覆鋼管及び鋼管杭を提供するものである。
【0006】
【課題を解決するための手段】
本発明者らは、上記の問題を解決する手段として、ポリオレフィンとしてポリエチレンを用いる場合、下地処理を施した鋼管の外面にプライマー層、ポリエチレン接着剤層、0.92〜0.98g/cm3 の密度を持つポリエチレン層を順次積層し、1〜6mmの防食被覆を構成した後、円周方向の全て、長さ方向には全て又は一部の表層に、着色顔料とガラス繊維を10〜50wt%の範囲で含有し、スチレンモノマー等の重合性単量体を30〜60%含有した不飽和ポリエステル硬化樹脂による厚さ2〜10mmの保護被覆層を順次積層することで剪断接着性、耐衝撃性・耐傷性と防食性に優れた高強度ポリエチレン重防食被覆鋼管及び鋼管杭が得られることを見いだした。
【0007】
また、ポリオレフィンとしてポリプロピレンを用いる場合、下地処理を施した鋼管の外面にプライマー層、ポリプロピレン接着剤層、フィルム状に押し出したポリプロピレンをスパイラル状に回転巻き付けしたポリプロピレン層を順次積層し、1〜6mmの防食被覆を構成した後、円周方向の全て、長さ方向の全て又は一部の表層に、着色顔料とガラス繊維を10〜50wt%の範囲で含有し、不飽和ポリエステル硬化樹脂による厚さ2〜10mmの保護被覆層を順次積層することで剪断接着性、耐衝撃性・耐傷性と防食性に優れた高強度ポリプロピレン重防食被覆鋼管及び鋼管杭が得られることを見いだし、本発明に至った。
【0008】
すなわち、本発明は図1に示すが如く、下地処理を施した鋼管1の表面に、プライマー層2、ポリオレフィン接着剤層3を介して、塗装温度領域で体積変化の小さい特定のポリオレフィン層4を1〜6mmの範囲の厚みで積層した後、円周方向の全て、長さ方向には全て又は一部の表層にガラス繊維を10〜50wt%の範囲で含有し、不飽和ポリエステル硬化樹脂による厚さ2〜10mmの保護被覆層5を順次積層したことを特徴とする高強度ポリオレフィン重防食被覆鋼管及び鋼管杭である。
【0009】
あるいは、図2に示すが如く、下地処理を施した鋼管1の外面にプライマー層2、ポリオレフィン接着剤層3を介して、塗装温度領域で体積変化の小さい特定のポリオレフィン層4を1〜6mmの範囲の厚みで防食被覆として積層した後、円周方向の全て、長さ方向には全て又は一部の表層にガラス繊維を10〜50wt%の範囲で含有し、不飽和ポリエステル硬化樹脂による厚さ2〜10mmの保護被覆層5、着色顔料を含有する不飽和ポリエステル硬化樹脂による着色保護層6を順次積層したことを特徴とする高強度ポリオレフィン防食被覆鋼管及び鋼管杭に関するものである。
【0010】
以下、本発明について詳細に説明する。
本発明に使用する鋼材は配管用の鋼管、あるいは海洋、河川の鋼構造物として使用される鋼管杭である。鋼材としては炭素鋼あるいは、ステンレス鋼、チタン合金鋼等の合金鋼、またそのクラッド鋼を用いる。その表面に亜鉛、アルミニウム、ニッケル、銅などのメッキ、亜鉛−鉄、亜鉛−アルミニウム、亜鉛−ニッケル、亜鉛−ニッケル−コバルトなどの合金メッキ、あるいは、これらのメッキ・合金メッキにシリカ、酸化チタンなどの無機物の微細粒子を分散させた分散メッキを施したものでもよい。
【0011】
鋼管表面の下地処理は、まずサンド、グリッド、ショット等を用いてブラスト処理を行ない表面付着物を除去する。ただし表面の油分・スケール等を除去して表面に粗度を付与する機能があればブラスト処理以外の方法を用いて構わない。更に下地処理として、被覆鋼材の使用環境が厳しい場合や耐陰極剥離性能が求められる場合には、ブラスト後の表面にクロメート処理を実施する。クロメート処理に用いるクロメート処理剤は成分としてクロム酸を含有するものであれば良いが、部分還元クロム酸と乾式超微粒子シリカを主成分としたもの、または前記主成分にリン酸やその化合物、シランカップリング剤等の各種添加剤を添加したものを用いると耐剥離性等の防食性に優れる。また塗布量としては全クロム付着量が50〜1000mg/mの範囲になるように塗布する。
【0012】
下地処理を施した鋼材の表面にはプライマー処理剤を塗布して硬化させる。プライマー処理剤は熱硬化性樹脂に無機顔料を添加したものを用いる。プライマー処理剤は液体、あるいは粉体で供給され、ロール塗装、スプレー塗装、静電粉体塗装等を用いて塗布し、常温あるいは加熱により硬化させる。また、硬化が不足する場合は紫外線照射等の硬化促進手法を用いる。プライマー処理層の硬化後の膜厚は10〜150μmが望ましい。膜厚が10μm以下ではプライマーによる鋼材表面被覆率が低下する。150μm以上ではプライマーの応力増加により密着力が低下する。プライマー処理剤に使用する熱硬化性樹脂はエポキシ樹脂又はウレタン樹脂等の鋼材との密着性に優れたものであればよいが、特にエポキシ樹脂を用いると鋼材との密着性・防食性に優れる。エポキシ樹脂とはビスフェノールA又はビスフェノールFのジグリシジルエーテルを単独又は混合物である。これに塗料粘度が問題にならない場合は、耐熱性の高いフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等の多官能エポキシ樹脂を添加して使用すると耐水性が向上する。エポキシ樹脂の硬化剤としては、脂環式アミン、脂肪族アミン、ジシアンジアミド、変性イミダゾール、フェノールノボラック硬化剤等を単独又は混合して用いる。一方、ウレタン樹脂を用いる場合、ポリオールとイソシアネートーからなる化合物であればよく、2液反応硬化もしくはプレポリマーによる湿気硬化型として使用する。またプライマー樹脂として分子中にビスフェノール骨格を有するビニルエステル樹脂を用いることも出来る。プライマー処理剤には顔料として、無機微粉末を主として添加する。酸化ケイ素、アルミナ、酸化チタン、ケイ酸マグネシウム、炭酸カルシウム、クロム酸化合物、リン酸化合物、ホウ酸化合物またはそれの混合物などが使用出来る。また、乾式超微粒子シリカも塗料のチキソ性制御や、防食性向上に添加しても構わない。特に耐衝撃性が要求される場合には10〜50wt%の範囲で添加し、120℃以上の高温で硬化させる。
【0013】
下地処理、プライマー処理を行った鋼管の表面にポリオレフィン接着剤層を介して、ポリオレフィン樹脂層を積層する。ポリエチレンあるいはポリプロピレンといったポリオレフィンは分子内に極性基を持たないため、他の樹脂との接着には、防食層に使用するのと同種の成分を含有するポリオレフィン接着剤が必要である。ポリオレフィン接着剤はプライマー層とポリオレフィン層との融着性が優れるものであれば何でも良い。接着剤の種類は本発明の効果に影響を与えるものでは無いが、ポリオレフィンを変性し極性基を導入した変性ポリオレフィン樹脂を用いると接着性に優れる。変性ポリオレフィン樹脂としては、ポリオレフィンをマレイン酸、アクリル酸、イタコン酸、メタアクリル酸等の不飽和カルボン酸またはその無水物で一部変性したものを一般的には用いる。ポリオレフィン接着剤は加熱した鋼管に、粉砕品を静電塗装するか、あるいは押出機とTダイス又は丸ダイスを用いてフィルム状に押し出して被覆する。この時、接着剤の厚みとしては被覆性と経済性の面から100〜1000μmが望ましい。
【0014】
防食層に使用するポリオレフィン樹脂には、ポリエチレン樹脂とポリプロピレン樹脂がある。ポリエチレン樹脂は、エチレンを主成分として重合した低密度〜高密度ポリエチレン、直鎖状低密度ポリエチレンを単独又はブレンドして用いる。鋼管杭のように耐候性が要求される場合には、カーボンブラックを1〜3%添加する。ポリエチレン樹脂は、押出機とTダイス又は丸ダイスを用いてフィルム状に押し出して被覆を行う。被覆されたポリエチレンの密度は0.92g/cm以上で、0.92〜0.98g/cmの範囲が望ましく、分子の分岐や分子量、添加剤を調整したものを用いる。ポリエチレンの密度が小さい場合は、ポリエチレン層上に不飽和ポリエステル樹脂層を形成する製造温度から、実使用温度での差により冷却収縮比が大きくなるため、上層に被覆する不飽和ポリエステル樹脂層との層間密着力が低下する。また、膜厚収縮量は被覆厚みが厚い程大きいため、被覆厚みとしては、重防食層としての機能を有することが可能な1mmから最大6mmまでの間で被覆する。6mm以上では、厚み方向での収縮量が大きく、ポリエステル樹脂との剪断接着力に影響を及ぼす。一方で、押し出し被覆用のポリエチレンは密度の大きいものでも、0.96g/cm程度までであることから、添加剤の大量の添加による密度の増大はポリエチレンの物性や、耐水防食性に影響を与えるため、0.98g/cm以下の密度を持つポリエチレンを使用することが望ましい。
【0015】
ポリプロピレン樹脂は一般的に用いられるプロピレンモノマー単独、あるいは一部に種々のエチレン、α−オレフィン、ジオレフィン、ビニルモノマー等のモノマーとを共重合したものである。耐熱用途、あるいは鋼管杭のように耐候性が要求される場合、ポリプロピレンは劣化しやすい性質があるため、各種酸化防止剤を適宜添加する。特にポリプロピレンにポリエステル保護層を施すと、酸化防止剤の流出防止や、紫外線遮蔽効果があるため、ポリプロピレン単独より耐久性も向上する。ポリプロピレン樹脂は、押出機とTダイスを用いて樹脂をフィルム状に押し出して被覆する。ポリプロピレン樹脂は一般にポリエチレン樹脂よりも耐熱性が高いため、ポリエステル塗装からの温度差による冷却収縮率が密度によって大きく変化しない。このため収縮の面からは密度範囲を限定する必要は無いが、押し出し成形性と物性から、0.88〜0.92g/cmの一般的な密度範囲のものを用いるのが望ましい。一方、被覆厚みは、重防食層としての機能を有することが可能な1mmから最大6mmまでの間で被覆する。6mm以上では、厚み方向での収縮量が大きく、ポリエステル樹脂との剪断接着力に影響を及ぼす。
【0016】
保護被覆としてのガラス繊維を含有する不飽和ポリエステル樹脂層の被覆にはハンドレイアップ法、スプレーアップ法、コールドプレス法、フィラメントワインデイング法や型枠による注入成形等の方法を用いる。本発明で使用する不飽和ポリエステル硬化樹脂とは、分子内にエステル結合と二重結合を有するものであれば良く、オルソフタル酸系、イソフタル酸系、テレフタル酸系、ビスフェノール系の不飽和ポリエステル樹脂が使用出来る。また材料コストの問題はあるが、化学的に安定で末端に二重結合を持つビニルエステルを使用しても良い。これらの不飽和ポリエステル樹脂をスチレンモノマー等の重合性単量体を含有率で30〜60%の割合に溶解したものをケトンパーオキシド、ハイドロパーオキシドの様な過酸化物触媒とコバルト系、バナジウム系、マンガン系、アミン系等の促進剤によって硬化する熱硬化性樹脂を用いる。モノマーは30%以上の含有率とすることで樹脂の硬化収縮率を5%以上に高めたものを用いる。
【0017】
ポリエステル樹脂防食層にはガラス繊維を充填する。ガラス繊維はその長さが短いと強度向上効果が得られないため、5mm以上の長さを持つものを10wt%以上添加する。フィラメントワインデイング法やガラスクロス、ガラスマットを用いる場合では特に長さの上限はないが、スプレーアップ法等においてガラス短繊維を用いる場合は、ガラス繊維が長いと塗料の脱泡性が低下することから5〜50mmの範囲が望ましい。また、その添加量の上限としては50wt%の以下の範囲で添加する。添加量が50wt%を越えるとポリエチレンの鋼管被覆では剪断接着性が低下する。添加繊維には、価格と樹脂補強効果、防食性能においてガラス繊維が優れるためこれを用いる。ガラス以外の繊維として有機繊維や炭素繊維、金属繊維等を組み合わせて用いる場合、樹脂に対する総添加量がガラス繊維の添加量範囲である10〜50wt%に相当する体積比を超えない様に調整し、単独又は混合して用いる。また、意匠性と耐候性付与のため着色顔料の添加によってポリエステル樹脂層を着色する。使用する着色顔料としては、例えばカドミウムイエロー、酸化鉄、ポリアゾイエロー、キノフタロンイエロー、イソインドリノンイエロー、キナクリドンイエロー、ベンガラレッド、ポリアゾブラウン、アゾレーキイエロー、ペリレンレッド、フタロシアニンブルー、フタロシアニングリーン、ベンガライエロー、アルミン酸コバルト、アニリンブラック、カーボンブラック、酸化チタン、ウルトラマリンブルー、アルミニウム微粉末等を添加する。特に鋼管杭として用いられる場合、不飽和ポリエステルは暴露により表層部分が劣化するため、着色顔料を0.5〜3%添加する。特に耐候性が必要な場合は、ガラス繊維を含有しない着色不飽和ポリエステル硬化樹脂層を最外面にもう一層形成すると良い。このため、ガラス繊維強化ポリエステル保護被覆層を形成後、その表面に着色顔料を含有した不飽和ポリエステル樹脂を100〜1000μmの厚みで塗装する。記組成の不飽和ポリエステル硬化樹脂層に保護層としての機能と密着性を持たせるため、2〜10mmの皮膜を形成する。厚みが2mmに及ばないと、耐衝撃性と剪断接着性が低下する。また、厚みが10mmを越えると、硬化時の発熱量が増加するためポリオレフィン防食被覆の収縮量が増大し、剪断接着性の低下が生じる。
【0018】
以上の被覆を図1又は2の断面図に示すように順次積層することにより、防食被覆にポリオレフィンを用いても、表層のポリエステル保護被覆との剪断接着力確保のためにエンボス加工あるいは螺旋条の突起等の特殊な形状加工を必要とせず、生産効率が良く、また安定した耐衝撃性と優れた防食性を持つ高強度ポリオレフィン重防食被覆鋼管及び鋼管杭が得られることを見いだし、本発明に至った。
【0019】
【発明の実施の形態】
不飽和ポリエステル硬化樹脂による保護被覆層を防食層の表層に被覆する場合、下層の防食層との接着が問題となる。特に杭では施工時に土圧等により、剪断力が加わる場合があり、その剪断接着力が重要である。一般の塗装では被覆材料に熱・硬化収縮による内部応力が残存すると接着力が低下するため、被覆材の内部応力を下げる方法が有効である。しかしながら、本発明に用いるポリオレフィン被覆鋼管ではポリオレフィンと不飽和ポリエステルでの化学的な接着作用が期待出来ない。そこで、本発明では接着阻害因子である皮膜収縮を逆に利用し、これにより発生する押しつけ圧力で剪断接着性を向上させる作用を持たせた結果、ポリオレフィン被覆に特殊な形状加工を施すことなく剪断接着性を確保することを可能とした。その方法としては使用する材料と膜厚を規定することによりポリオレフィン樹脂層4と不飽和ポリエステル樹脂層5にその機能を持たせている。
【0020】
不飽和ポリエステル硬化樹脂層5は樹脂のみであれば、硬化収縮が生じるが補強材としてガラス繊維を添加していくと収縮率が減少する。このため、10〜50wt%の範囲でガラス繊維を添加し、モノマーを30%以上含有することで樹脂の硬化収縮量を5%以上とすることによって保護被覆材による押しつけ圧力を発生させる。一方で、硬化収縮は硬化温度が高い程大きく、剪断接着力には有利に作用するが、温度が高いとポリオレフィン被覆層4が膨張し、冷却後の収縮によって、ポリエステル樹脂層5との剪断接着力を低下させる。このため、ポリオレフィンとしてポリエチレンを用いる場合には0.92〜0.98g/cm、ポリプロピレンでは望ましくは0.88〜0.92g/cmの密度範囲のものを用い、膜厚を1〜6mmの範囲とすることで、ポリエステルの硬化発熱によるポリオレフィンの膨張〜収縮を抑制し、本発明の高強度ポリオレフィンに必要な剪断接着力を確保することが可能となる。従って、本発明の効果はポリオレフィン樹脂と不飽和ポリエステル樹脂成分を請求項に記載された範囲で用いることによってのみ可能となる。またこのポリオレフィンの被覆方法としては、どのような方法を用いても良いが、Tダイスを用いてスパイラル状に巻き付けてポリオレフィン被覆を行うと、突起・隆起を形成しなくても鋼管軸方向でのポリオレフィン膜厚のうねりの効果が加わり、本発明のポリオレフィンの収縮防止と不飽和ポリエステル樹脂による収縮の効果がより有効に作用し、丸ダイスを用いた被覆方法より高い剪断接着力が得られる。
【0021】
上記の結果、特殊な加工を必要とせず剪断接着力確保が可能となることから、被覆の均一性が高まる。よって最低膜厚管理が容易になり、材料費用の低減と生産性の向上が可能となる。
【0022】
【実施例】
<ポリエチレン実施例及び比較例 1>
外径200A×長さ5500mm×肉厚5.8mmの鋼管外面にグリッドブラスト処理を施し、スケール等を除去して表面に粗度を付与した後、クロム−シリカ系のクロメート処理剤を全クロム付着量で500mg/mとなるように塗布乾燥後して下地処理を行った。次に酸化チタンを10重量%添加し、アミン系の硬化剤を用いたビスフェノールA型のエポキシ樹脂を主剤として用いたプライマーを30〜60μm膜厚となるようにスプレー塗布し、この鋼材を加熱してプライマーを硬化させた。次いで無水マレイン酸で変性したポリエチレン樹脂粉を、膜厚200μmになる様に静電塗布し、溶融させた後、ポリエチレン樹脂を丸ダイスを用いて管状に押し出して被覆した後に、冷却し、ポリエチレン被覆鋼管を製造した。次に、スプレーアップ法により、スチレンモノマーを30%含有するオルソ系不飽和ポリエステル樹脂に1%の着色顔料を添加した塗料と過酸化物触媒含有硬化剤をスプレー混合しながら、ガラスロービングをガンの先端で25mm長に切断したものを同時に吹き付け塗装を行い、着色保護層を形成した。
【0023】
これにより、ポリエチレンの密度の異なる比較例1−1、及び実施例1−1〜4の高強度保護被覆を持つポリエチレン被覆鋼管を製造した。この被覆鋼管を切断加工し、ASTM G14に規定された落錘衝撃試験により被覆の貫通エネルギーを測定した。また、剪断接着強度を図3に示す試験方法で、鋼管部分と被覆部分に剪断力を与え、最大加重を5回測定し、その平均値からポリエチレン被覆鋼管の単位表面面積あたりの剪断接着力を求めた。水準と結果を表1−1に示す。
【0024】
防食層として使用されるポリエチレンの密度は全体の衝撃強度に与える影響は小さいが比較例1−1に示されるように密度が小さい場合にはポリエチレンの熱収縮の影響のため、剪断接着力が低下する。一方、実施例の範囲では良好な剪断接着力が得られる。
【0025】
<ポリエチレン実施例及び比較例 2>
外径200A×長さ5500mm×肉厚5.8mmの鋼管外面にグリッドブラスト処理を施し、スケール等を除去して表面に粗度を付与した後、クロム−シリカ系のクロメート処理剤を全クロム付着量で500mg/mとなるように塗布乾燥後して下地処理を行った。次に粉砕シリカを16%添加し、アミン系の硬化剤を用いたビスフェノールF型のエポキシ樹脂を主剤として用いたプライマーを30〜60μm膜厚となるようにスプレー塗布し、この鋼材を加熱してプライマーを硬化させた。次いで無水マレイン酸で変性したポリエチレン接着剤(膜厚:150μm)と本発明の防食被覆用ポリエチレン樹脂を2層Tダイスを用いてフィルム状に押し出し被覆した。この後、冷却してポリエチレン被覆鋼管を製造した。次に、スプレーアップ法により、スチレンモノマーを30%含有するオルソ系不飽和ポリエステル樹脂に1%の着色顔料を添加した塗料と過酸化物触媒含有硬化剤をスプレー混合しながら、ガラスロービングをガンの先端で25mm長に切断したものを同時に吹き付け塗装を行い、着色保護層を形成した。
【0026】
以上の方法により、ポリエチレン防食層の厚みが1〜10mmの範囲の実施例2−1〜4と比較例2−1の高強度保護被覆を持つポリエチレン被覆鋼管を製造した。この被覆鋼管を切断加工し、実施例1と同じ条件で落錘衝撃試験、剪断接着力測定を行った。
【0027】
ポリエチレン防食層の厚みの影響を評価した結果を表1−2に示す。表1−2の結果、ポリエチレンの厚みが衝撃強度に与える影響は比較的小さい。一方で、ポリエチレンの厚みが1〜6mmの本発明の実施例では、熱収縮の影響が小さいため良好な剪断接着力を示すが、膜厚が厚い比較例では接着力の低下が見られる。また、丸ダイスを用いた表1−1の実施例1−1に対して、Tダイスを用いてポリエチレン被覆を行った本発明の請求項3及び4に相当する表1−2の実施例2−3が、高い剪断接着力を示すことがわかる。
【0028】
<ポリエチレン実施例及び比較例 3>
外径200A×長さ5500mm×肉厚5.8mmの鋼管外面にグリッドブラスト処理を施し、スケール等を除去して表面に粗度を付与した後、クロム−シリカ系のクロメート処理剤を全クロム付着量で500mg/mとなるように塗布乾燥後して下地処理を行った。次に乾式超微粒子シリカを3%添加し、アミン系の硬化剤を用いたビスフェノールA型のエポキシ樹脂にフェノールノボラック系のエポキシ樹脂を8:2に混合したものを主剤として用いたプライマーを30〜60μm膜厚となるようにスプレー塗布し、この鋼材を加熱してプライマーを硬化させた。次いで無水マレイン酸で変性したポリエチレン接着剤(膜厚:150μm)と本発明の防食被覆用ポリエチレン樹脂を2層Tダイスを用いてフィルム状に押し出し被覆した。この後、冷却してポリエチレン被覆鋼管を製造した。次に、スプレーアップ法により、スチレンモノマー含有量を20、30、40、50、70%にそれぞれ調整したイソ系不飽和ポリエステル樹脂に1%の着色顔料を添加した塗料と過酸化物触媒含有硬化剤をスプレー混合しながら、ガラスロービングをガンの先端で25mm長に切断したものを同時に吹き付け塗装を行い、着色保護層を形成した。
【0029】
以上の方法により、スチレンモノマーの含有量が本発明の範囲である実施例3−1〜3とスチレンモノマーの含有量が異なる比較例3−1、2の高強度保護被覆を持つポリエチレン被覆鋼管を製造した。この被覆鋼管を切断加工し、実施例1と同じ条件で落錘衝撃試験、剪断接着力測定を行った。結果を表2−1に示す。
【0030】
不飽和ポリエステル樹脂に含有されるモノマーの影響を評価した結果を表2−1に示す。表2−1の結果、モノマー含有量は本発明の範囲である30〜60%が衝撃強度と剪断接着力に対して良好である。
【0031】
<ポリエチレン実施例及び比較例 4>
外径200A×長さ5500mm×肉厚5.8mmの鋼管を用いて、実施例及び比較例3と同じ条件で、イソ系不飽和ポリエステル樹脂にはスチレンモノマーを30%に含有するものを使用し、ポリエステル被覆の厚みを変えた高強度ポリエチレン重防食被覆鋼管及び鋼管杭を製造した。この被覆鋼管を切断加工し、実施例1と同じ条件で落錘衝撃試験、剪断接着力測定を行った。結果を表2−2に示す。
【0032】
衝撃強度はポリエステル被覆層の膜厚に比例する傾向を示すが本発明の範囲である10mmを超えた比較例4−2の領域では、膜厚に対する強度増加分が小さく、剪断接着強度も皮膜の熱量蓄積による温度上昇から低下する傾向にある。また、皮膜の膜厚が小さいと収縮力の低下により、比較例4−1に示されるように剪断接着強度が低下する。これらの結果から、本発明の範囲である2〜10mmの膜厚範囲が安定した性能となる。
【0033】
<ポリエチレン実施例及び比較例 5>
外径200A×長さ5500mm×肉厚5.8mmの鋼管を用いて、実施例及び比較例3と同じ条件で、イソ系不飽和ポリエステル樹脂にはスチレンモノマーを30%に含有するものを使用し、ガラス繊維の添加量を変えた高強度ポリエチレン重防食被覆鋼管及び鋼管杭を製造した。この被覆鋼管を切断加工し、実施例1と同じ条件で落錘衝撃試験、剪断接着力測定を行った。結果を表3−1に示す。
【0034】
ガラス繊維の添加により被覆の強度が上昇するため、衝撃強度はガラス繊維添加量が多い程良好で保護被覆としての強度保持には10%以上の添加が必要である。一方で、ガラス繊維の添加量が50%を超えると硬化収縮が殆ど生じなくなるため、著しい剪断接着力の低下が生じる。このため、本発明の実施例の範囲である10〜50%のガラス繊維添加が良好な結果を示す。
【0035】
<ポリエチレン実施例及び比較例 6>
外径200A×長さ5500mm×肉厚5.8mmの鋼管外面にグリッドブラスト処理を施し、スケール等を除去して表面に粗度を付与した後、クロム−シリカ系のクロメート処理剤を全クロム付着量で500mg/mとなるように塗布乾燥後して下地処理を行った。次に乾式超微粒子シリカを3%添加し、アミン系の硬化剤を用いたビスフェノールA型のエポキシ樹脂にフェノールノボラック系のエポキシ樹脂を8:2に混合したものを主剤として用いたプライマーを30〜60μm膜厚となるようにスプレー塗布し、この鋼材を加熱してプライマーを硬化させた。次いで無水マレイン酸で変性したポリエチレン接着剤(膜厚:150μm)と本発明の防食被覆用ポリエチレン樹脂を2層Tダイスを用いてフィルム状に押し出し被覆した。この後、冷却してポリエチレン被覆鋼管を製造した。
【0036】
比較例として、ポリエチレンを被覆を施した直後に表面に凹凸を付けた内面水冷金属ロールにより、表面にエンボス加工を施した後、水冷し、特開平6−146271号公報に相当する比較例6−1のエンボス表面加工を施したポリエチレン被覆鋼管を製造した。比較例6−2,3の螺旋状の突起を付けたポリエチレン被覆鋼管をTダイスの一部を分割被覆することで製造した。
【0037】
次に、これらの被覆鋼管の表面にスプレーアップ法により、スチレンモノマーを30%含有するイソ系不飽和ポリエステル樹脂に1%の着色顔料を添加した塗料と過酸化物触媒含有硬化剤をスプレー混合しながら、ガラスロービングをガンの先端で25mm長に切断したものを同時に吹き付け塗装を行い、着色保護層を形成し、実施例6−1と比較例6−1〜3の高強度保護被覆を持つポリエチレン被覆鋼管を製造した。この被覆鋼管を切断加工し、実施例1と同じ条件で落錘衝撃試験、剪断接着力測定を行った。結果を表3−2に示す。
【0038】
表3−2の結果からも明らかなように、本発明の高強度ポリエチレン重防食被覆鋼管は、従来のエンボス加工や螺旋状突起による比較例と同等以上の剪断接着強度を示す。また、衝撃強度は膜厚が均一なため、ポリエチレンの突起部位での強度低下が少なく、従来品に比較して優れた性能を示す。
【0039】
<ポリエチレン実施例7>
外径200A×長さ5500mm×肉厚5.8mmの鋼管を用いて、実施例及び比較例3と同じ条件で、イソ系不飽和ポリエステル樹脂にはスチレンモノマーを30%に含有するものを使用して、ガラス繊維含有の保護被覆層を塗装した後、イソ系不飽和ポリエステル樹脂に着色顔料を1%添加した塗料を塗装し、300μmの表面着色層を形成し、本発明の請求項7及び8に相当する高強度ポリエチレン重防食被覆鋼管及び鋼管杭を製造した。この被覆鋼管を切断加工し、実施例1と同じ条件で落錘衝撃試験、剪断接着力測定を行った。また、この被覆鋼管を垂直状態で海岸近傍に8年間暴露し、色差変化、チョーキングによる塗膜減少量を調査した。結果は表4−1に示す。
【0040】
表4−1の長期暴露結果からも明らかなように、表面に樹脂と着色顔料のみの保護層を形成すると、ポリエステル樹脂表面の劣化によるチョーキングを抑制し、塗膜減少量を低下させることができる。
【0041】
<ポリプロピレン実施例及び比較例 8>
外径200A×長さ5500mm×肉厚5.8mmの鋼管外面に実施例2と同じ条件で下地処理、プライマー処理を行った。次いで無水マレイン酸で変性したポリプロピレン接着剤(膜厚:150μm)と本発明の防食被覆用ポリプロピレン樹脂を2層Tダイスを用いてフィルム状に押し出し被覆した。この後、冷却してポリプロピレン被覆鋼管を製造した。次に、スプレーアップ法により、スチレンモノマーを30%含有するオルソ系不飽和ポリエステル樹脂に1%の着色顔料を添加した塗料と過酸化物触媒含有硬化剤をスプレー混合しながら、ガラスロービングをガンの先端で25mm長に切断したものを同時に吹き付け塗装を行い、着色保護層を形成した。
【0042】
以上の方法により、ポリプロピレン防食層の厚みが1〜10mmの範囲の実施例8−1〜4と比較例8−1の高強度保護被覆を持つポリプロピレン被覆鋼管を製造した。この被覆鋼管を切断加工し、実施例1と同じ条件で落錘衝撃試験、剪断接着力測定を行った。
【0043】
ポリプロピレン防食層の厚みの影響を評価した結果を表4−2に示す。表4−2の結果、ポリプロピレンの厚みが衝撃強度に与える影響は比較的小さい。一方で、ポリプロピレンの厚みが1〜6mmの本発明の実施例では、熱収縮の影響が小さいため良好な剪断接着力を示すが、膜厚が厚い比較例では接着力の低下が見られる。
【0044】
<ポリプロピレン実施例及び比較例 9>
外径200A×長さ5500mm×肉厚5.8mmの鋼管外面に実施例3と同条件で下地処理、プライマー処理を行った。次いで無水マレイン酸で変性したポリプロピレン接着剤(膜厚:150μm)と本発明の防食被覆用ポリプロピレン樹脂を2層Tダイスを用いてフィルム状に押し出し被覆した。この後、冷却してポリプロピレン被覆鋼管を製造した。次に、スプレーアップ法により、スチレンモノマー含有量を20、30、40、50、70%にそれぞれ調整したイソ系不飽和ポリエステル樹脂に1%の着色顔料を添加した塗料と過酸化物触媒含有硬化剤をスプレー混合しながら、ガラスロービングをガンの先端で25mm長に切断したものを同時に吹き付け塗装を行い、着色保護層を形成した。
【0045】
以上の方法により、スチレンモノマーの含有量が本発明の範囲である実施例9−1〜3とスチレンモノマーの含有量が異なる比較例9−1、2の高強度保護被覆を持つポリプロピレン被覆鋼管を製造した。この被覆鋼管を切断加工し、実施例1と同じ条件で落錘衝撃試験、剪断接着力測定を行った。結果を表5−1に示す。
【0046】
表5−1の結果、不飽和ポリエステル樹脂に含有されるモノマー含有量は本発明の範囲である30〜60%が衝撃強度と剪断接着力に対して良好である。
【0047】
<ポリプロピレン実施例及び比較例 10>
外径200A×長さ5500mm×肉厚5.8mmの鋼管を用いて、実施例9と同じ条件で、スチレンモノマーを30%に含有したイソ系不飽和ポリエステル樹脂を使用して、ポリエステル被覆の厚みを変えた高強度ポリプロピレン重防食被覆鋼管及び鋼管杭を製造した。この被覆鋼管を切断加工し、実施例1と同じ条件で落錘衝撃試験、剪断接着力測定を行った。結果を表5−2に示す。表5−2には比較例10−1、実施例10−1、実施例10−2、実施例10−3、実施例10−4、比較例10−2をその順で記載している。
【0048】
衝撃強度はポリエステル被覆層の膜厚に比例する傾向を示すが本発明の範囲である10mmを超えた比較例10−2の領域では、膜厚に対する強度増加分が小さく、剪断接着強度も皮膜の熱量蓄積による温度上昇から低下する傾向にある。また、皮膜の膜厚が小さいと収縮力の低下により、比較例10−1に示されるように剪断接着強度が低下する。これらの結果から、本発明の範囲である2〜10mmの膜厚範囲が安定した性能となる。
【0049】
<実施例及び比較例 11>
外径200A×長さ5500mm×肉厚5.8mmの鋼管を用いて、実施例9と同じ条件で、イソ系不飽和ポリエステル樹脂にはスチレンモノマーを30%に含有するものを使用し、ガラス繊維の添加量を変えた高強度ポリプロピレン重防食被覆鋼管及び鋼管杭を製造した。この被覆鋼管を切断加工し、実施例1と同じ条件で落錘衝撃試験、剪断接着力測定を行った。結果を表6−1に示す。表6−1には比較例11−1、実施例11−1、実施例11−2、実施例11−3、実施例11−4、比較例11−2をその順で記載している。
【0050】
ガラス繊維の添加により被覆の強度が上昇するため、衝撃強度はガラス繊維添加量が多い程良好で保護被覆としての強度保持には10%以上の添加が必要である。一方で、ガラス繊維の添加量が50%を超えると硬化収縮が殆ど生じなくなるため、著しい剪断接着力の低下が生じる。このため、本発明の実施例の範囲である10〜50%のガラス繊維添加が良好な結果を示す。
【0051】
<ポリプロピレン実施例及び比較例 12>
外径200A×長さ5500mm×肉厚5.8mmの鋼管外面に実施例6と同条件で下地処理、プライマー処理を行った。次いで無水マレイン酸で変性したポリプロピレン接着剤(膜厚:150μm)と本発明の防食被覆用ポリプロピレン樹脂を2層Tダイスを用いてフィルム状に押し出し被覆した。この後、冷却してポリプロピレン被覆鋼管を製造した。
【0052】
比較例として、ポリプロピレンを被覆を施した直後に表面に凹凸を付けた内面水冷金属ロールにより、表面にエンボス加工を施した後、水冷し、特開平6−146271号公報に相当する比較例12−1のエンボス表面加工を施したポリプロピレン被覆鋼管を製造した。
【0053】
次に、これらの被覆鋼管の表面にスプレーアップ法により、スチレンモノマーを30%含有するイソ系不飽和ポリエステル樹脂に1%の着色顔料を添加した塗料と過酸化物触媒含有硬化剤をスプレー混合しながら、ガラスロービングをガンの先端で25mm長に切断したものを同時に吹き付け塗装を行い、着色保護層を形成し、実施例12−1と比較例12−1の高強度保護被覆を持つポリプロピレン被覆鋼管を製造した。この被覆鋼管を切断加工し、実施例1と同じ条件で落錘衝撃試験、剪断接着力測定を行った。結果を表6−2に示す。表6−2には実施例12−1と比較例12−1をその順で記載している。
【0054】
表6−2の結果からも明らかなように、本発明の高強度ポリプロピレン重防食被覆鋼管は、従来のエンボス加工や螺旋状突起による比較例と同等以上の剪断接着強度と優れた耐衝撃性を示す。
【0055】
【表1】

Figure 0003563954
【0056】
【表2】
Figure 0003563954
【0057】
【表3】
Figure 0003563954
【0058】
【表4】
Figure 0003563954
【0059】
【表5】
Figure 0003563954
【0060】
【表6】
Figure 0003563954
【0061】
【発明の効果】
本発明の高強度ポリオレフィン重防食被覆鋼管及び鋼管杭はは実施例からも明らかな様に、従来の高強度保護被覆を持つポリオレフィン重防食被覆鋼材のように、ポリオレフィンの表面に特殊な形状加工を施すことなく、剪断接着性の確保が可能である。このため、全被覆膜厚が同じ場合には、加工部分の耐衝撃性の低下を抑制することが出来、耐衝撃性が大幅に向上する。本発明を、高い耐衝撃性とポリオレフィンによる高い防食性を有する高強度ポリオレフィン重防食被覆鋼管及び鋼管杭として適用することにより、重防食被覆鋼材の施工時や、船舶等の衝突、捨て石による損傷を防止することが出来る。また、従来のポリエステル保護被覆に対して最低膜厚管理が容易になることによる材料費の削減や製造工程の簡素化が可能となるため、より容易に製品を提供することが出来るものである。
【図面の簡単な説明】
【図1】本発明の高強度ポリオレフィン重防食被覆鋼管及び鋼管杭の一部円周方向断面を示す。
【図2】本発明の高強度ポリオレフィン重防食被覆鋼管及び鋼管杭の一部円周方向断面を示す。
【図3】鋼管を用いた被覆の剪断接着力試験方法を示す断面図。
【符号の説明】
1 下地処理を施した鋼管
2 プライマー層
3 ポリオレフィン接着剤層
4 ポリオレフィン防食被覆層
5 ガラス繊維を含有する不飽和ポリエステル樹脂着色保護層
6 着色不飽和ポリエステル樹脂被覆層
7 鋼管押し込み支持具
8 被覆の受け台[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention includes when burying steel pipes requiring anticorrosion coating on the outer surface, or when laying steel structures such as piers or seawalls of steel pipe piles and harbors or rivers, or discarded stones after laying, and other ships The present invention relates to an outer heavy corrosion protection coated steel pipe and a steel pipe pile excellent in impact resistance and durability of a corrosion protection coating against an impact generated by a floating substance or the like.
[0002]
[Prior art]
When long-term durability of several decades is required for steel pipes and steel pipe piles requiring external corrosion protection, heavy corrosion protection coated steel materials using a resin such as polyethylene or polyurethane as a coating material have been manufactured. On the other hand, a polypropylene-coated steel pipe using a polypropylene resin has excellent heat resistance and strength as compared with polyethylene, and is mainly used for high-temperature piping applications. In such a heavy-duty anti-corrosion coating, a resin having weather resistance and durability imparted by an additive is used by taking advantage of various resin characteristics such as cost, electric insulation and chemical resistance of the polyolefin or polyurethane resin. Heavy corrosion protection coated steel using such a coating material is extremely excellent in the anticorrosion of the coating, but the strength of the resin used is low, and the coating is damaged due to collision or friction during handling during transportation, storage and construction. Has been a problem.
[0003]
On the other hand, as proposed in Japanese Patent Publication No. Hei 7-006595, in heavy anticorrosion coating on a propulsion steel pipe, polyester or glass fiber or metal mixed with glass fiber or metal fiber is used without changing the anticorrosion coating made of polyolefin or polyurethane resin. A method has been proposed in which a fiber-containing epoxy acrylate layer is used as its protective coating.
[0004]
[Problems to be solved by the invention]
In order to form a scratch-resistant coating layer having excellent strength and hardness on the surface layer of a heavy corrosion protection coating, Japanese Patent Publication No. Hei 7-006595 discloses a polyester containing glass fiber or metal fiber as an upper layer of a corrosion protection coating layer made of polyolefin or polyurethane resin. Alternatively, there has been proposed a method of forming a high-hardness organic resin protective coating composed of an epoxy acrylate layer mixed with glass fibers or metal fibers. JP-A-6-146271 proposes a method in which a protective coating layer of a vinyl ester or polyester resin reinforced with a glass cloth or mat is laminated on an anticorrosion coating layer made of polyolefin or urethane resin. When laminating a different type of resin with the anticorrosion coating, the adhesion is a problem. In particular, polyolefin resin has a low polarity on its surface, so that adhesion to another resin is a major problem. In response to this, in any of the proposals, the protective layer can be coated by embossing the surface layer of the polyolefin coating and providing irregularities so as to have physical shear adhesion. Similarly, a method of helically projecting the polyolefin anticorrosion coating can be considered. However, the method of changing the surface shape of these polyolefins has a problem that one new step is required. Furthermore, the film thickness of the anticorrosion layer and the protective coating fluctuates at the projections or depressions, and when an impact is applied, the protective coating is destroyed by the notch effect. It is necessary to increase the thickness of the coating corresponding to the above. As a result, there has been a problem that the material cost increases and the efficiency of the coating process decreases.
[0005]
Therefore, the present invention can use a polyolefin for the anticorrosion coating, and can secure the shear adhesive force with the polyester protective coating on the surface layer without performing embossing or special shape processing such as projection of a spiral strip. Another object of the present invention is to provide a high-strength polyolefin heavy duty anti-corrosion coated steel pipe and a steel pipe pile having high production efficiency without complicating the production process, and having stable impact resistance and excellent corrosion resistance.
[0006]
[Means for Solving the Problems]
As a means for solving the above-mentioned problem, the present inventors have proposed that when polyethylene is used as a polyolefin, a primer layer, a polyethylene adhesive layer, 0.92 to 0.98 g / cm Three Polyethylene layers having a density of 1 to 6 mm are sequentially laminated to form an anticorrosion coating of 1 to 6 mm. % In the range, Contains 30-60% of polymerizable monomer such as styrene monomer By sequentially laminating a protective coating layer having a thickness of 2 to 10 mm with an unsaturated polyester cured resin, a high-strength polyethylene heavy corrosion-resistant coated steel pipe and steel pipe pile having excellent shear adhesion, impact resistance, scratch resistance and corrosion resistance can be obtained. I found something.
[0007]
In addition, when using polypropylene as the polyolefin, a primer layer, a polypropylene adhesive layer, and a polypropylene layer obtained by rotating and winding a polypropylene extruded into a film in a spiral shape are sequentially laminated on the outer surface of a steel pipe subjected to a base treatment, and 1 to 6 mm. After forming the anticorrosion coating, the entire surface in the circumferential direction, all or part of the surface in the length direction, contains the coloring pigment and the glass fiber in the range of 10 to 50 wt%, and has a thickness of 2% by the unsaturated polyester cured resin. By sequentially laminating a protective coating layer of 10 mm to 10 mm, it was found that a high-strength polypropylene heavy-corrosion-coated steel pipe and a steel pipe pile excellent in shear adhesion, impact resistance, scratch resistance and corrosion resistance were obtained, which led to the present invention. .
[0008]
That is, as shown in FIG. 1, a specific polyolefin layer 4 having a small volume change in a coating temperature region is provided on a surface of a steel pipe 1 subjected to a base treatment, via a primer layer 2 and a polyolefin adhesive layer 3, as shown in FIG. After lamination with a thickness in the range of 1 to 6 mm, the glass fiber is contained in the range of 10 to 50 wt% in the entire circumferential direction, in the entire length or in a part of the surface layer in the range of 10 to 50 wt%. It is a high-strength polyolefin heavy duty anticorrosion coated steel pipe and steel pipe pile in which a protective coating layer 5 having a thickness of 2 to 10 mm is sequentially laminated.
[0009]
Alternatively, as shown in FIG. 2, a specific polyolefin layer 4 having a small volume change in a coating temperature region is formed on the outer surface of a steel pipe 1 on which a base treatment is performed via a primer layer 2 and a polyolefin adhesive layer 3 by 1 to 6 mm. After laminating as anticorrosive coating with a thickness in the range, glass fiber is contained in the range of 10 to 50 wt% in the entire circumferential direction, all or a part of the surface in the longitudinal direction, and the thickness of the unsaturated polyester cured resin. The present invention relates to a high-strength polyolefin anticorrosion-coated steel pipe and a steel pipe pile in which a protective coating layer 5 of 2 to 10 mm and a colored protective layer 6 of an unsaturated polyester cured resin containing a coloring pigment are sequentially laminated.
[0010]
Hereinafter, the present invention will be described in detail.
The steel material used in the present invention is a steel pipe for piping or a steel pipe pile used as a marine or river steel structure. As the steel material, carbon steel, alloy steel such as stainless steel, titanium alloy steel, or clad steel thereof is used. Plating of zinc, aluminum, nickel, copper, etc. on the surface, alloy plating of zinc-iron, zinc-aluminum, zinc-nickel, zinc-nickel-cobalt, etc., or silica, titanium oxide, etc. May be subjected to dispersion plating in which fine particles of an inorganic substance are dispersed.
[0011]
In the surface treatment of the steel pipe surface, first, blast processing is performed using sand, a grid, a shot, or the like to remove surface deposits. However, a method other than blasting may be used as long as it has a function of removing surface oil and scale to impart roughness to the surface. Further, as a base treatment, when the use environment of the coated steel material is severe or when cathodic peeling resistance is required, a chromate treatment is performed on the surface after blasting. The chromate treatment agent used for the chromate treatment may be any one containing chromic acid as a component, and one containing partially reduced chromic acid and dry ultrafine silica as main components, or phosphoric acid or a compound thereof, silane as the main component The use of those to which various additives such as a coupling agent are added provides excellent corrosion resistance such as peeling resistance. The amount of chromium applied is 50 to 1000 mg / m. 2 Is applied so as to fall within the range.
[0012]
A primer treatment agent is applied to the surface of the steel material that has been subjected to the base treatment, and is cured. As the primer treatment agent, one obtained by adding an inorganic pigment to a thermosetting resin is used. The primer treatment agent is supplied in the form of a liquid or a powder, and is applied using roll coating, spray coating, electrostatic powder coating, or the like, and is cured at room temperature or by heating. If the curing is insufficient, a curing promoting method such as irradiation with ultraviolet rays is used. The thickness of the primer-treated layer after curing is preferably from 10 to 150 μm. When the film thickness is 10 μm or less, the steel material surface coverage by the primer decreases. If it is 150 μm or more, the adhesion force decreases due to an increase in the stress of the primer. The thermosetting resin used for the primer treatment agent may be any resin that has excellent adhesion to a steel material such as an epoxy resin or a urethane resin. Particularly, when an epoxy resin is used, the adhesion to a steel material and the corrosion resistance are excellent. The epoxy resin is a diglycidyl ether of bisphenol A or bisphenol F alone or as a mixture. If the paint viscosity does not matter, water resistance is improved by using a polyfunctional epoxy resin such as a phenol novolak type epoxy resin or a cresol novolak type epoxy resin having high heat resistance. As the curing agent for the epoxy resin, an alicyclic amine, an aliphatic amine, dicyandiamide, a modified imidazole, a phenol novolak curing agent or the like is used alone or in combination. On the other hand, when a urethane resin is used, it may be a compound composed of a polyol and an isocyanate, and is used as a two-component reaction curing type or a moisture curing type using a prepolymer. A vinyl ester resin having a bisphenol skeleton in the molecule can also be used as a primer resin. An inorganic fine powder is mainly added to the primer treatment agent as a pigment. Silicon oxide, alumina, titanium oxide, magnesium silicate, calcium carbonate, chromate compounds, phosphate compounds, borate compounds or mixtures thereof can be used. Further, dry ultrafine silica may be added for controlling the thixotropy of the paint and for improving the corrosion resistance. In particular, when impact resistance is required, it is added in the range of 10 to 50% by weight and cured at a high temperature of 120 ° C. or higher.
[0013]
A polyolefin resin layer is laminated via a polyolefin adhesive layer on the surface of the steel pipe subjected to the base treatment and the primer treatment. Polyolefins such as polyethylene and polypropylene do not have a polar group in the molecule. Therefore, in order to bond with other resins, a polyolefin adhesive containing the same components as those used for the anticorrosion layer is required. Any polyolefin adhesive may be used as long as it has an excellent fusion property between the primer layer and the polyolefin layer. The type of the adhesive does not affect the effect of the present invention, but the use of a modified polyolefin resin in which a polyolefin is modified and a polar group is introduced provides excellent adhesiveness. As the modified polyolefin resin, a resin obtained by partially modifying a polyolefin with an unsaturated carboxylic acid such as maleic acid, acrylic acid, itaconic acid, or methacrylic acid or an anhydride thereof is generally used. The polyolefin adhesive is coated on a heated steel pipe by electrostatically coating a pulverized product or extruding it into a film using an extruder and a T die or a round die. At this time, the thickness of the adhesive is desirably 100 to 1000 μm from the viewpoint of coverage and economy.
[0014]
Polyolefin resins used for the anticorrosion layer include polyethylene resins and polypropylene resins. As the polyethylene resin, a low-density to high-density polyethylene or a linear low-density polyethylene obtained by polymerizing ethylene as a main component is used alone or in a blend. When weather resistance is required like a steel pipe pile, 1 to 3% of carbon black is added. The polyethylene resin is coated by extruding into a film shape using an extruder and a T die or a round die. The density of the coated polyethylene is 0.92 g / cm 3 Above, 0.92 to 0.98 g / cm 3 It is desirable to use those in which the molecular branching, molecular weight, and additives are adjusted. When the density of polyethylene is small, the cooling shrinkage ratio is increased due to the difference between the production temperature at which the unsaturated polyester resin layer is formed on the polyethylene layer and the actual use temperature, so that the unsaturated polyester resin layer covering the upper layer is The interlayer adhesion decreases. In addition, since the amount of film thickness shrinkage increases as the coating thickness increases, the coating thickness ranges from 1 mm to a maximum of 6 mm, which can function as a heavy corrosion protection layer. If it is 6 mm or more, the amount of shrinkage in the thickness direction is large, which affects the shear adhesive strength with the polyester resin. On the other hand, the polyethylene for extrusion coating has a high density of 0.96 g / cm. 3 Since the increase in density due to the addition of a large amount of the additive affects the physical properties of polyethylene and the water and corrosion resistance, it is 0.98 g / cm. 3 It is desirable to use polyethylene having the following density:
[0015]
The polypropylene resin is generally used propylene monomer alone or partially copolymerized with various monomers such as ethylene, α-olefin, diolefin and vinyl monomer. In the case where heat resistance is required or weather resistance is required as in steel pipe piles, various antioxidants are appropriately added because polypropylene has a property of easily deteriorating. In particular, when a polyester protective layer is applied to polypropylene, it has an effect of preventing outflow of an antioxidant and an effect of shielding ultraviolet rays, so that durability is improved as compared with polypropylene alone. The polypropylene resin is coated by extruding the resin into a film using an extruder and a T-die. Polypropylene resin generally has higher heat resistance than polyethylene resin, so that the cooling shrinkage due to the temperature difference from the polyester coating does not change significantly depending on the density. For this reason, it is not necessary to limit the density range from the aspect of shrinkage, but from the viewpoint of extrusion moldability and physical properties, it is 0.88 to 0.92 g / cm. 3 It is desirable to use one having a general density range of On the other hand, the coating thickness ranges from 1 mm to a maximum of 6 mm, which can function as a heavy corrosion protection layer. If it is 6 mm or more, the amount of shrinkage in the thickness direction is large, which affects the shear adhesive strength with the polyester resin.
[0016]
For the coating of the unsaturated polyester resin layer containing glass fiber as a protective coating, a method such as a hand lay-up method, a spray-up method, a cold press method, a filament winding method, or injection molding with a mold is used. The unsaturated polyester cured resin used in the present invention may be one having an ester bond and a double bond in the molecule, and orthophthalic acid, isophthalic acid, terephthalic acid, and bisphenol-based unsaturated polyester resins may be used. Can be used. Although there is a problem of material cost, a vinyl ester which is chemically stable and has a double bond at a terminal may be used. A solution in which a polymerizable monomer such as a styrene monomer or the like is dissolved in a proportion of 30 to 60% is prepared by dissolving a polymerizable monomer such as a styrene monomer in a proportion of 30 to 60% with a peroxide catalyst such as ketone peroxide or hydroperoxide and a cobalt-based or vanadium-based catalyst. A thermosetting resin which is cured by an accelerator of manganese type, amine type or the like is used. A monomer having a content of 30% or more to increase the curing shrinkage of the resin to 5% or more is used.
[0017]
The polyester resin anticorrosion layer is filled with glass fibers. If the length of the glass fiber is short, the effect of improving the strength cannot be obtained, so that a glass fiber having a length of 5 mm or more is added in an amount of 10 wt% or more. There is no particular upper limit for the length when using the filament winding method, glass cloth, or glass mat.However, when using short glass fibers in the spray-up method, etc., if the glass fibers are long, the defoaming properties of the paint will decrease. From 5 to 50 mm is desirable. The upper limit of the amount of addition is 50 wt% or less. If the addition amount exceeds 50 wt%, the shear adhesiveness is reduced in the case of coating the steel pipe with polyethylene. As the added fiber, glass fiber is used because it is excellent in price, resin reinforcing effect, and anticorrosion performance. When organic fibers, carbon fibers, metal fibers, or the like are used in combination as fibers other than glass, the total amount added to the resin should be adjusted so as not to exceed a volume ratio corresponding to 10 to 50 wt%, which is the added amount range of glass fibers. , Alone or as a mixture. In addition, the polyester resin layer is colored by adding a coloring pigment to impart design and weather resistance. Examples of the coloring pigment used include, for example, cadmium yellow, iron oxide, polyazo yellow, quinophthalone yellow, isoindolinone yellow, quinacridone yellow, vengara red, polyazo brown, azo lake yellow, perylene red, phthalocyanine blue, phthalocyanine green, and vengara. Yellow, cobalt aluminate, aniline black, carbon black, titanium oxide, ultramarine blue, aluminum fine powder and the like are added. In particular, when used as a steel pipe pile, since the surface layer portion of the unsaturated polyester deteriorates due to exposure, 0.5 to 3% of a coloring pigment is added. In particular, when weather resistance is required, a colored unsaturated polyester cured resin layer containing no glass fiber may be further formed on the outermost surface. For this reason, after forming the glass fiber reinforced polyester protective coating layer, the surface thereof is coated with an unsaturated polyester resin containing a color pigment in a thickness of 100 to 1000 μm. In order to provide the unsaturated polyester cured resin layer having the above composition with a function as a protective layer and adhesion, a film of 2 to 10 mm is formed. If the thickness is less than 2 mm, the impact resistance and the shear adhesiveness decrease. On the other hand, when the thickness exceeds 10 mm, the calorific value at the time of curing increases, so that the amount of shrinkage of the polyolefin anticorrosive coating increases, and the shear adhesion decreases.
[0018]
By laminating the above coatings sequentially as shown in the cross-sectional view of FIG. 1 or 2, even if polyolefin is used for the anticorrosion coating, embossing or spiral stripping is performed to secure the shear adhesive strength with the polyester protective coating on the surface layer. It was found that high-strength polyolefin heavy corrosion-resistant coated steel pipes and steel pipe piles that do not require special shape processing such as projections, have good production efficiency, and have stable impact resistance and excellent corrosion resistance can be obtained. Reached.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
When a protective coating layer of an unsaturated polyester cured resin is coated on the surface of the anticorrosion layer, adhesion to the lower anticorrosion layer becomes a problem. Particularly in the case of piles, a shearing force may be applied due to earth pressure or the like during construction, and the shearing adhesive force is important. In general coating, if the internal stress due to heat and curing shrinkage remains in the coating material, the adhesive force is reduced. Therefore, a method of reducing the internal stress of the coating material is effective. However, the polyolefin-coated steel pipe used in the present invention cannot expect a chemical adhesive action between the polyolefin and the unsaturated polyester. Therefore, in the present invention, film shrinkage, which is an adhesion inhibitory factor, is used in reverse, and as a result of having an effect of improving shear adhesiveness by pressing pressure generated by this, shearing without applying special shape processing to the polyolefin coating. Adhesiveness can be ensured. In this method, the polyolefin resin layer 4 and the unsaturated polyester resin layer 5 have the function by defining the material to be used and the film thickness.
[0020]
If the unsaturated polyester cured resin layer 5 is made of only a resin, curing shrinkage occurs, but the shrinkage decreases as glass fibers are added as a reinforcing material. For this reason, glass fiber is added in the range of 10 to 50% by weight, and the amount of curing shrinkage of the resin is increased to 5% or more by containing the monomer in the amount of 30% or more, thereby generating the pressing pressure by the protective coating material. On the other hand, the curing shrinkage increases as the curing temperature increases, and acts advantageously on the shearing adhesive force. However, when the temperature is high, the polyolefin coating layer 4 expands, and the shrinkage after cooling causes the shearing adhesion with the polyester resin layer 5. Decrease power. Therefore, when polyethylene is used as the polyolefin, 0.92 to 0.98 g / cm 3 0.88 to 0.92 g / cm for polypropylene 3 By using a material having a density in the range of 1 to 6 mm, the expansion to shrinkage of the polyolefin due to the heat generated by curing of the polyester is suppressed, and the shear adhesive force required for the high-strength polyolefin of the present invention is secured. It becomes possible. Therefore, the effects of the present invention can be achieved only by using the polyolefin resin and the unsaturated polyester resin component within the scope described in the claims. Also, any method may be used for coating the polyolefin. However, if the polyolefin is coated by winding it in a spiral shape using a T-die, the projection in the axial direction of the steel pipe can be obtained without forming protrusions and protrusions. The effect of the undulation of the polyolefin film thickness is added, the effect of preventing shrinkage of the polyolefin of the present invention and the effect of shrinkage by the unsaturated polyester resin more effectively act, and a higher shear adhesive force can be obtained than the coating method using a round die.
[0021]
As a result of the above, the shearing adhesive force can be ensured without requiring special processing, so that the uniformity of the coating is improved. Therefore, the minimum film thickness can be easily controlled, and material cost can be reduced and productivity can be improved.
[0022]
【Example】
<Polyethylene Example and Comparative Example 1>
Grid blasting is applied to the outer surface of a steel pipe having an outer diameter of 200A x length of 5500mm x wall thickness of 5.8mm to remove scale etc. to give the surface a roughness, and then apply a chromium-silica-based chromating agent to all chromium. 500mg / m in quantity 2 After applying and drying, a base treatment was performed. Next, 10% by weight of titanium oxide is added, and a primer using a bisphenol A type epoxy resin as a main component using an amine-based curing agent is spray-coated so as to have a thickness of 30 to 60 μm, and the steel material is heated. To cure the primer. Next, a polyethylene resin powder modified with maleic anhydride was electrostatically applied to a thickness of 200 μm, and after melting, the polyethylene resin was extruded into a tube using a round die, coated, cooled, and then coated with polyethylene. Steel pipe was manufactured. Next, a glass roving was applied to the gun by spray-up method while spray-mixing a paint obtained by adding 1% of a coloring pigment to an ortho-unsaturated polyester resin containing 30% of a styrene monomer and a peroxide catalyst-containing curing agent. The pieces cut to a length of 25 mm at the tip were simultaneously spray-painted to form a colored protective layer.
[0023]
Thus, polyethylene-coated steel pipes having high-strength protective coatings of Comparative Example 1-1 and Examples 1-1 to 4 having different densities of polyethylene were manufactured. This coated steel pipe was cut, and the penetration energy of the coating was measured by a falling weight impact test specified in ASTM G14. The shear adhesive strength was applied to the steel pipe portion and the coating portion by the test method shown in FIG. 3, and the maximum load was measured five times. From the average value, the shear adhesive force per unit surface area of the polyethylene coated steel pipe was determined. I asked. The levels and results are shown in Table 1-1.
[0024]
The density of polyethylene used as an anticorrosion layer has a small effect on the overall impact strength, but when the density is low as shown in Comparative Example 1-1, the shear adhesive strength is reduced due to the effect of heat shrinkage of the polyethylene. I do. On the other hand, in the range of the examples, good shear adhesive strength can be obtained.
[0025]
<Polyethylene Example and Comparative Example 2>
Grid blasting is applied to the outer surface of a steel pipe having an outer diameter of 200A x length of 5500mm x wall thickness of 5.8mm to remove scale etc. to give the surface a roughness, and then apply a chromium-silica-based chromating agent to all chromium. 500mg / m in quantity 2 After applying and drying, a base treatment was performed. Next, 16% of crushed silica is added, and a primer using a bisphenol F type epoxy resin as a main component using an amine-based curing agent is spray-coated so as to have a thickness of 30 to 60 μm, and the steel material is heated. The primer was cured. Next, a polyethylene adhesive modified with maleic anhydride (film thickness: 150 μm) and the polyethylene resin for anticorrosion coating of the present invention were extruded and coated in a film shape using a two-layer T-die. Thereafter, the resultant was cooled to produce a polyethylene-coated steel pipe. Next, a glass roving was applied to the gun by spray-up method while spray-mixing a paint obtained by adding 1% of a coloring pigment to an ortho-unsaturated polyester resin containing 30% of a styrene monomer and a peroxide catalyst-containing curing agent. The pieces cut to a length of 25 mm at the tip were simultaneously spray-painted to form a colored protective layer.
[0026]
By the above method, polyethylene-coated steel pipes having high-strength protective coatings of Examples 2-1 to 4 and Comparative example 2-1 in which the thickness of the polyethylene anticorrosive layer was in the range of 1 to 10 mm were produced. This coated steel pipe was cut and subjected to a falling weight impact test and a measurement of shear adhesive force under the same conditions as in Example 1.
[0027]
The results of evaluating the effect of the thickness of the polyethylene anticorrosion layer are shown in Table 1-2. As a result of Table 1-2, the influence of the thickness of the polyethylene on the impact strength is relatively small. On the other hand, in the examples of the present invention in which the thickness of the polyethylene is 1 to 6 mm, the influence of the heat shrinkage is small, so that the shearing adhesive strength is good, but in the comparative example having a large film thickness, the adhesive strength is reduced. In addition, Example 1-1 of Table 1-1 corresponding to claims 3 and 4 of the present invention in which polyethylene coating was performed by using a T die with respect to Example 1-1 of Table 1-1 using a round die. -3 shows high shear adhesive strength.
[0028]
<Polyethylene Example and Comparative Example 3>
Grid blasting is applied to the outer surface of a steel pipe having an outer diameter of 200A x length of 5500mm x wall thickness of 5.8mm to remove scale etc. to give the surface a roughness, and then apply a chromium-silica-based chromating agent to all chromium. 500mg / m in quantity 2 After applying and drying, a base treatment was performed. Next, a primer using as a main component a mixture of bisphenol A type epoxy resin containing 3% of dry ultrafine silica particles and a phenol novolak type epoxy resin mixed with a bisphenol A type epoxy resin using an amine type curing agent in a ratio of 8 to 2 is used. It was spray-coated so as to have a film thickness of 60 μm, and the steel material was heated to harden the primer. Next, a polyethylene adhesive modified with maleic anhydride (film thickness: 150 μm) and the polyethylene resin for anticorrosion coating of the present invention were extruded and coated in a film shape using a two-layer T-die. Thereafter, the resultant was cooled to produce a polyethylene-coated steel pipe. Next, a paint obtained by adding 1% of a coloring pigment to an iso-unsaturated polyester resin whose styrene monomer content was adjusted to 20, 30, 40, 50, and 70% by a spray-up method, and a peroxide catalyst-containing curing. While spray-mixing the agent, a glass roving cut to a length of 25 mm at the tip of the gun was sprayed and applied simultaneously to form a colored protective layer.
[0029]
According to the above method, the polyethylene-coated steel pipe having the high-strength protective coating of Comparative Examples 3-1 and 2 in which the content of the styrene monomer is different from those of Examples 3-1 to 3-3 in which the content of the styrene monomer is within the scope of the present invention is used. Manufactured. This coated steel pipe was cut and subjected to a falling weight impact test and a measurement of shear adhesive force under the same conditions as in Example 1. The results are shown in Table 2-1.
[0030]
Table 2-1 shows the result of evaluating the effect of the monomer contained in the unsaturated polyester resin. As a result of Table 2-1, the monomer content of 30 to 60%, which is in the range of the present invention, is good for impact strength and shear adhesive strength.
[0031]
<Polyethylene Example and Comparative Example 4>
Using a steel pipe having an outer diameter of 200 A × length of 5500 mm × wall thickness of 5.8 mm, under the same conditions as in Example and Comparative Example 3, an iso-unsaturated polyester resin containing 30% of styrene monomer was used. A high-strength polyethylene heavy-corrosion-coated steel pipe and a steel pipe pile with a different polyester coating thickness were manufactured. This coated steel pipe was cut and subjected to a falling weight impact test and a measurement of shear adhesive force under the same conditions as in Example 1. The results are shown in Table 2-2.
[0032]
The impact strength tends to be proportional to the film thickness of the polyester coating layer, but in the region of Comparative Example 4-2 exceeding 10 mm, which is the range of the present invention, the increase in strength with respect to the film thickness is small, and the shear adhesive strength is also low. It tends to decrease from temperature rise due to heat accumulation. Further, when the film thickness is small, the shear adhesive strength decreases as shown in Comparative Example 4-1 due to a decrease in shrinkage force. From these results, the range of the film thickness of 2 to 10 mm, which is the range of the present invention, provides stable performance.
[0033]
<Polyethylene Example and Comparative Example 5>
Using a steel pipe having an outer diameter of 200 A × length of 5500 mm × wall thickness of 5.8 mm, under the same conditions as in Example and Comparative Example 3, an iso-unsaturated polyester resin containing 30% of styrene monomer was used. Then, a high-strength polyethylene heavy-corrosion-coated steel pipe and a steel pipe pile were manufactured by changing the amount of glass fiber added. This coated steel pipe was cut and subjected to a falling weight impact test and a measurement of shear adhesive force under the same conditions as in Example 1. The results are shown in Table 3-1.
[0034]
Since the strength of the coating is increased by the addition of glass fiber, the impact strength is better as the amount of glass fiber added is larger, and 10% or more must be added to maintain the strength as a protective coating. On the other hand, if the addition amount of the glass fiber exceeds 50%, hardening shrinkage hardly occurs, so that the shear adhesive strength is remarkably reduced. For this reason, the addition of 10 to 50% glass fiber, which is the range of the examples of the present invention, shows good results.
[0035]
<Polyethylene Example and Comparative Example 6>
Grid blasting is applied to the outer surface of a steel pipe having an outer diameter of 200A x length of 5500mm x wall thickness of 5.8mm to remove scale etc. to give the surface a roughness, and then apply a chromium-silica-based chromating agent to all chromium. 500mg / m in quantity 2 After applying and drying, a base treatment was performed. Next, a primer using as a main component a mixture of bisphenol A type epoxy resin containing 3% of dry ultrafine silica particles and a phenol novolak type epoxy resin mixed with a bisphenol A type epoxy resin using an amine type curing agent in a ratio of 8 to 2 is used. It was spray-coated so as to have a film thickness of 60 μm, and the steel material was heated to harden the primer. Next, a polyethylene adhesive modified with maleic anhydride (film thickness: 150 μm) and the polyethylene resin for anticorrosion coating of the present invention were extruded and coated in a film shape using a two-layer T-die. Thereafter, the resultant was cooled to produce a polyethylene-coated steel pipe.
[0036]
As a comparative example, the surface was embossed by a water-cooled metal roll having irregularities on the surface immediately after the polyethylene was coated, and then water-cooled, and Comparative Example 6 corresponding to JP-A-6-146271 was performed. A polyethylene-coated steel pipe having an embossed surface was manufactured. The polyethylene-coated steel pipe having spiral projections of Comparative Examples 6-2 and 3 was manufactured by separately coating a part of a T-die.
[0037]
Next, a paint obtained by adding 1% of a coloring pigment to an iso-unsaturated polyester resin containing 30% of a styrene monomer and a curing agent containing a peroxide catalyst are spray-mixed on the surfaces of these coated steel pipes by a spray-up method. Polyethylene having high-strength protective coatings of Example 6-1 and Comparative Examples 6-1 to 3 was formed by simultaneously spraying and coating a glass roving cut to a length of 25 mm at the tip of a gun to form a colored protective layer. A coated steel pipe was manufactured. This coated steel pipe was cut and subjected to a falling weight impact test and a measurement of shear adhesive force under the same conditions as in Example 1. The results are shown in Table 3-2.
[0038]
As is clear from the results of Table 3-2, the high-strength polyethylene heavy-duty corrosion-resistant coated steel pipe of the present invention exhibits a shear adhesive strength equal to or higher than that of the comparative example using the conventional embossing or spiral projection. In addition, since the impact strength is uniform in film thickness, there is little decrease in strength at the projecting portion of polyethylene, and it shows superior performance as compared with conventional products.
[0039]
<Polyethylene Example 7>
Using a steel pipe having an outer diameter of 200 A × length of 5500 mm × wall thickness of 5.8 mm, under the same conditions as in Example and Comparative Example 3, an iso-unsaturated polyester resin containing 30% of styrene monomer was used. Then, after coating the glass fiber-containing protective coating layer, a coating obtained by adding 1% of a coloring pigment to an iso-unsaturated polyester resin is applied to form a surface coloring layer having a thickness of 300 μm. A high-strength polyethylene heavy-corrosion-coated steel pipe and steel pipe pile corresponding to the above were manufactured. This coated steel pipe was cut and subjected to a falling weight impact test and a measurement of shear adhesive force under the same conditions as in Example 1. The coated steel pipe was exposed vertically to the coast near the coast for 8 years, and the change in color difference and the amount of coating loss due to chalking were investigated. The results are shown in Table 4-1.
[0040]
As is clear from the long-term exposure results in Table 4-1, when a protective layer made of only a resin and a color pigment is formed on the surface, choking due to deterioration of the polyester resin surface can be suppressed, and the amount of reduced coating film can be reduced. .
[0041]
<Polypropylene Example and Comparative Example 8>
Underlayer treatment and primer treatment were performed on the outer surface of a steel pipe having an outer diameter of 200 A x length 5500 mm x wall thickness 5.8 mm under the same conditions as in Example 2. Next, a polypropylene adhesive modified with maleic anhydride (film thickness: 150 μm) and the polypropylene resin for anticorrosion coating of the present invention were extruded and coated in a film shape using a two-layer T-die. Then, it cooled and manufactured the polypropylene coating steel pipe. Next, a glass roving was applied to the gun by spray-up method while spray-mixing a paint obtained by adding 1% of a coloring pigment to an ortho-unsaturated polyester resin containing 30% of a styrene monomer and a peroxide catalyst-containing curing agent. The pieces cut to a length of 25 mm at the tip were simultaneously spray-painted to form a colored protective layer.
[0042]
By the above method, polypropylene coated steel pipes having high-strength protective coatings of Examples 8-1 to 4 and Comparative example 8-1 in which the thickness of the polypropylene anticorrosive layer was in the range of 1 to 10 mm were produced. This coated steel pipe was cut and subjected to a falling weight impact test and a measurement of shear adhesive force under the same conditions as in Example 1.
[0043]
The results of evaluating the effect of the thickness of the polypropylene anticorrosion layer are shown in Table 4-2. As a result of Table 4-2, the influence of the thickness of the polypropylene on the impact strength is relatively small. On the other hand, in the examples of the present invention in which the thickness of the polypropylene is 1 to 6 mm, the effect of heat shrinkage is small, so that a good shear adhesive force is exhibited. However, in the comparative example having a large film thickness, the adhesive force is reduced.
[0044]
<Polypropylene Example and Comparative Example 9>
Underlayer treatment and primer treatment were performed on the outer surface of a steel pipe having an outer diameter of 200 A x length 5500 mm x wall thickness 5.8 mm under the same conditions as in Example 3. Next, a polypropylene adhesive modified with maleic anhydride (film thickness: 150 μm) and the polypropylene resin for anticorrosion coating of the present invention were extruded and coated in a film shape using a two-layer T-die. Then, it cooled and manufactured the polypropylene coating steel pipe. Next, a paint obtained by adding 1% of a coloring pigment to an iso-unsaturated polyester resin whose styrene monomer content was adjusted to 20, 30, 40, 50, and 70% by a spray-up method, and a peroxide catalyst-containing curing. While spray-mixing the agent, a glass roving cut to a length of 25 mm at the tip of the gun was sprayed and applied simultaneously to form a colored protective layer.
[0045]
By the above method, the polypropylene-coated steel pipe having the high-strength protective coating of Comparative Examples 9-1 and 2 in which the content of the styrene monomer is different from that of Examples 9-1 to 3 in which the content of the styrene monomer is within the scope of the present invention is used. Manufactured. This coated steel pipe was cut and subjected to a falling weight impact test and a measurement of shear adhesive force under the same conditions as in Example 1. The results are shown in Table 5-1.
[0046]
As a result of Table 5-1, the content of the monomer contained in the unsaturated polyester resin is in the range of 30 to 60% in the range of the present invention, which is good for the impact strength and the shear adhesive strength.
[0047]
<Polypropylene Examples and Comparative Examples 10>
Using a steel pipe having an outer diameter of 200 A × length 5500 mm × wall thickness 5.8 mm, under the same conditions as in Example 9, using an iso-unsaturated polyester resin containing 30% of a styrene monomer, A high-strength polypropylene heavy-corrosion-coated steel pipe and steel pipe pile were manufactured by changing the above. This coated steel pipe was cut and subjected to a falling weight impact test and a measurement of shear adhesive force under the same conditions as in Example 1. The results are shown in Table 5-2. Table 5-2 describes Comparative Example 10-1, Example 10-1, Example 10-2, Example 10-3, Example 10-4, and Comparative Example 10-2 in that order.
[0048]
The impact strength tends to be proportional to the film thickness of the polyester coating layer, but in the region of Comparative Example 10-2 exceeding 10 mm, which is the range of the present invention, the increase in strength with respect to the film thickness is small, and the shear adhesive strength is also low. It tends to decrease from temperature rise due to heat accumulation. Further, when the film thickness is small, the shearing adhesive strength is reduced as shown in Comparative Example 10-1 due to a decrease in shrinkage force. From these results, the range of the film thickness of 2 to 10 mm, which is the range of the present invention, provides stable performance.
[0049]
<Example and Comparative Example 11>
Using a steel pipe having an outer diameter of 200 A, a length of 5,500 mm, and a wall thickness of 5.8 mm, under the same conditions as in Example 9, an iso-unsaturated polyester resin containing 30% of a styrene monomer was used. A high-strength polypropylene heavy-corrosion-coated steel pipe and steel pipe piles with different amounts of addition were produced. This coated steel pipe was cut and subjected to a falling weight impact test and a measurement of shear adhesive force under the same conditions as in Example 1. The results are shown in Table 6-1. Table 6-1 describes Comparative Example 11-1, Example 11-1, Example 11-2, Example 11-3, Example 11-4, and Comparative Example 11-2 in that order.
[0050]
Since the strength of the coating is increased by the addition of glass fiber, the impact strength is better as the amount of glass fiber added is larger, and 10% or more must be added to maintain the strength as a protective coating. On the other hand, if the addition amount of the glass fiber exceeds 50%, hardening shrinkage hardly occurs, so that the shear adhesive strength is remarkably reduced. For this reason, the addition of 10 to 50% glass fiber, which is the range of the examples of the present invention, shows good results.
[0051]
<Polypropylene Example and Comparative Example 12>
Underlayer treatment and primer treatment were performed on the outer surface of a steel pipe having an outer diameter of 200 A x length 5500 mm x wall thickness 5.8 mm under the same conditions as in Example 6. Next, a polypropylene adhesive modified with maleic anhydride (film thickness: 150 μm) and the polypropylene resin for anticorrosion coating of the present invention were extruded and coated in a film shape using a two-layer T-die. Then, it cooled and manufactured the polypropylene coating steel pipe.
[0052]
As a comparative example, immediately after coating with polypropylene, the surface was embossed with an inner surface water-cooled metal roll having irregularities on the surface, then water-cooled, and Comparative Example 12-corresponding to JP-A-6-146271. A polypropylene-coated steel pipe having the embossed surface treatment 1 was produced.
[0053]
Next, a paint obtained by adding 1% of a coloring pigment to an iso-unsaturated polyester resin containing 30% of a styrene monomer and a curing agent containing a peroxide catalyst are spray-mixed on the surfaces of these coated steel pipes by a spray-up method. While the glass roving was cut to a length of 25 mm at the tip of the gun, spray coating was performed simultaneously to form a colored protective layer, and a polypropylene-coated steel pipe having a high-strength protective coating of Example 12-1 and Comparative Example 12-1 Was manufactured. This coated steel pipe was cut and subjected to a falling weight impact test and a measurement of shear adhesive force under the same conditions as in Example 1. The results are shown in Table 6-2. Table 6-2 describes Example 12-1 and Comparative Example 12-1 in that order.
[0054]
As is clear from the results in Table 6-2, the high-strength polypropylene heavy-duty corrosion-resistant coated steel pipe of the present invention has a shear bond strength equal to or higher than that of the comparative example by the conventional embossing or spiral projection and excellent impact resistance. Show.
[0055]
[Table 1]
Figure 0003563954
[0056]
[Table 2]
Figure 0003563954
[0057]
[Table 3]
Figure 0003563954
[0058]
[Table 4]
Figure 0003563954
[0059]
[Table 5]
Figure 0003563954
[0060]
[Table 6]
Figure 0003563954
[0061]
【The invention's effect】
As is clear from the examples, the high-strength polyolefin heavy-corrosion-coated steel pipe and steel pipe pile of the present invention have a special shape processing on the surface of polyolefin like the conventional polyolefin heavy-corrosion-coated steel material having a high-strength protective coating. Without applying, it is possible to ensure shear adhesion. For this reason, when the total coating thickness is the same, it is possible to suppress a decrease in the impact resistance of the processed portion, and the impact resistance is greatly improved. By applying the present invention as a high-strength polyolefin heavy corrosion-resistant coated steel pipe and steel pipe pile having high impact resistance and high corrosion resistance due to polyolefin, construction of heavy corrosion-resistant coated steel material, collision of ships, etc., damage due to discarded stones Can be prevented. In addition, since the minimum film thickness can be easily controlled with respect to the conventional polyester protective coating, the material cost can be reduced and the manufacturing process can be simplified, so that the product can be provided more easily.
[Brief description of the drawings]
FIG. 1 shows a partial circumferential cross section of a high-strength polyolefin heavy duty corrosion-resistant coated steel pipe and steel pipe pile of the present invention.
FIG. 2 is a partial circumferential cross-section of a high-strength polyolefin heavy duty corrosion-resistant coated steel pipe and steel pipe pile of the present invention.
FIG. 3 is a cross-sectional view showing a method of testing the shear adhesion of a coating using a steel pipe.
[Explanation of symbols]
1 Steel pipe with ground treatment
2 Primer layer
3 Polyolefin adhesive layer
4 Polyolefin anticorrosion coating layer
5 Colored protective layer of unsaturated polyester resin containing glass fiber
6 Colored unsaturated polyester resin coating layer
7 Steel tube pushing support
8 Cover cradle

Claims (8)

下地処理を施した鋼管の外面にプライマー層、ポリエチレン接着剤層、0.92〜0.98g/cm3 の密度を持つポリエチレン層を順次積層し、1〜6mmの防食被覆を構成した後、円周方向の全て、長さ方向には全て又は一部の表層に、着色顔料とガラス繊維を10〜50wt%の範囲で含有し、スチレンモノマー等の重合性単量体を30〜60%含有した不飽和ポリエステル硬化樹脂による厚さ2〜10mmの保護被覆層を順次積層したことを特徴とする高強度ポリエチレン重防食被覆鋼管。A primer layer, a polyethylene adhesive layer, and a polyethylene layer having a density of 0.92 to 0.98 g / cm 3 are sequentially laminated on the outer surface of the steel pipe subjected to the base treatment to form a corrosion prevention coating of 1 to 6 mm. Color pigments and glass fibers were contained in the range of 10 to 50 wt%, and polymerizable monomers such as styrene monomers were contained in the range of 30 to 60% in all or part of the surface layer in the circumferential direction and in the length direction . A high-strength polyethylene heavy duty anticorrosion coated steel pipe characterized by sequentially laminating a protective coating layer having a thickness of 2 to 10 mm with an unsaturated polyester cured resin. 下地処理を施した鋼管の外面にプライマー層、ポリエチレン接着剤層、0.92〜0.98g/cm3 の密度を持つポリエチレン層を順次積層し、1〜6mmの防食被覆を構成した後、円周方向の全て、長さ方向には全て又は一部の表層に、着色顔料とガラス繊維を10〜50wt%の範囲で含有し、スチレンモノマー等の重合性単量体を30〜60%含有した不飽和ポリエステル硬化樹脂による厚さ2〜10mmの保護被覆層を順次積層したことを特徴とする高強度ポリエチレン重防食被覆鋼管杭。A primer layer, a polyethylene adhesive layer, and a polyethylene layer having a density of 0.92 to 0.98 g / cm 3 are sequentially laminated on the outer surface of the steel pipe subjected to the base treatment to form a corrosion prevention coating of 1 to 6 mm. Color pigments and glass fibers were contained in the range of 10 to 50 wt%, and polymerizable monomers such as styrene monomers were contained in the range of 30 to 60% in all or part of the surface layer in the circumferential direction and in the length direction . A high-strength polyethylene heavy duty anticorrosion coated steel pipe pile characterized by sequentially laminating a protective coating layer having a thickness of 2 to 10 mm with an unsaturated polyester cured resin. 0.92〜0.98g/cm3 の密度を持つポリエチレン被覆層が、フィルム状に押し出したポリエチレンをスパイラル状に回転巻き付けした被覆であることを特徴とする請求項1記載の高強度ポリエチレン重防食被覆鋼管。2. A high-strength polyethylene heavy duty anticorrosion according to claim 1, wherein the polyethylene coating layer having a density of 0.92 to 0.98 g / cm < 3 > is a coating obtained by rotating and winding a polyethylene film extruded in a spiral shape. Coated steel pipe. 0.92〜0.98g/cm3 の密度を持つポリエチレン被覆層が、フィルム状に押し出したポリエチレンをスパイラル状に回転巻き付けした被覆であることを特徴とする請求項2記載の高強度ポリエチレン重防食被覆鋼管杭。3. A high-strength polyethylene heavy duty anticorrosion according to claim 2, wherein the polyethylene coating layer having a density of 0.92 to 0.98 g / cm < 3 > is a coating obtained by spirally winding polyethylene extruded in a film shape into a spiral shape. Coated steel pipe pile. 下地処理を施した鋼管の外面にプライマー層、ポリプロピレン接着剤層、フィルム状に押し出したポリプロピレンをスパイラル状に回転巻き付けしたポリプロピレン層を順次積層し、1〜6mmの防食被覆を構成した後、円周方向の全て、長さ方向の全て又は一部の表層に、着色顔料とガラス繊維を10〜50wt%の範囲で含有し、スチレンモノマー等の重合性単量体を30〜60%含有した不飽和ポリエステル硬化樹脂による厚さ2〜10mmの保護被覆層を順次積層したことを特徴とする高強度ポリプロピレン防食被覆鋼管。A primer layer, a polypropylene adhesive layer, and a polypropylene layer obtained by rotating and winding a polypropylene extruded into a film in a spiral shape are sequentially laminated on the outer surface of the steel pipe subjected to the base treatment to form a 1 to 6 mm anticorrosion coating, and then the circumference is formed. Unsaturation containing color pigment and glass fiber in the range of 10 to 50 wt% and polymerizable monomer such as styrene monomer in the range of 30 to 60% in all or part of the surface in the longitudinal direction. A high-strength polypropylene anticorrosion-coated steel pipe characterized by sequentially laminating a protective coating layer having a thickness of 2 to 10 mm made of a polyester cured resin. 下地処理を施した鋼管の外面にプライマー層、ポリプロピレン接着剤層、フィルム状に押し出したポリプロピレンをスパイラル状に回転巻き付けしたポリプロピレン層を順次積層し、1〜6mmの防食被覆を構成した後、円周方向の全て、長さ方向の全て又は一部の表層に、着色顔料とガラス繊維を10〜50wt%の範囲で含有し、スチレンモノマー等の重合性単量体を30〜60%含有した不飽和ポリエステル硬化樹脂による厚さ2〜10mmの保護被覆層を順次積層したことを特徴とする高強度ポリプロピレン防食被覆鋼管杭。A primer layer, a polypropylene adhesive layer, and a polypropylene layer formed by rotating and winding a polypropylene extruded into a film in a spiral shape are sequentially laminated on the outer surface of the steel pipe subjected to the base treatment, and a corrosion prevention coating of 1 to 6 mm is formed. Unsaturation containing color pigment and glass fiber in the range of 10 to 50 wt% and polymerizable monomer such as styrene monomer in the range of 30 to 60% in all or part of the surface in the longitudinal direction. A high-strength polypropylene anticorrosion-coated steel pipe pile characterized by sequentially laminating a protective coating layer having a thickness of 2 to 10 mm made of a polyester cured resin. 請求項1、3、または5記載のガラス繊維を含有する不飽和ポリエステル硬化樹脂の保護被覆層を持つ高強度ポリオレフィン防食被覆鋼管の表層に、着色顔料を含有し、ガラス繊維を含有しない不飽和ポリエステル硬化樹脂による着色層を積層したことを特徴とする高強度ポリオレフィン重防食被覆鋼管。An unsaturated polyester containing a coloring pigment and containing no glass fiber in a surface layer of a high-strength polyolefin anticorrosion coated steel pipe having a protective coating layer of the unsaturated polyester cured resin containing a glass fiber according to claim 1, 3 or 5. A high-strength polyolefin heavy duty anticorrosion coated steel pipe characterized by laminating a colored layer of a cured resin. 請求項2、4、または6記載のガラス繊維を含有する不飽和ポリエステル硬化樹脂の保護被覆層を持つ高強度ポリオレフィン防食被覆鋼管の表層に、着色顔料を含有し、ガラス繊維を含有しない不飽和ポリエステル硬化樹脂による着色層を積層したことを特徴とする高強度ポリオレフィン重防食被覆鋼管杭。An unsaturated polyester containing a coloring pigment and containing no glass fiber in the surface layer of a high-strength polyolefin anticorrosion-coated steel pipe having a protective coating layer of the unsaturated polyester-cured resin containing the glass fiber according to claim 2, 4, or 6. A high-strength polyolefin heavy duty anti-corrosion coated steel pipe pile characterized by laminating colored layers of cured resin.
JP4687798A 1998-02-27 1998-02-27 High-strength polyolefin heavy duty anticorrosion coated steel pipe and steel pipe pile Expired - Fee Related JP3563954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4687798A JP3563954B2 (en) 1998-02-27 1998-02-27 High-strength polyolefin heavy duty anticorrosion coated steel pipe and steel pipe pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4687798A JP3563954B2 (en) 1998-02-27 1998-02-27 High-strength polyolefin heavy duty anticorrosion coated steel pipe and steel pipe pile

Publications (2)

Publication Number Publication Date
JPH11245333A JPH11245333A (en) 1999-09-14
JP3563954B2 true JP3563954B2 (en) 2004-09-08

Family

ID=12759595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4687798A Expired - Fee Related JP3563954B2 (en) 1998-02-27 1998-02-27 High-strength polyolefin heavy duty anticorrosion coated steel pipe and steel pipe pile

Country Status (1)

Country Link
JP (1) JP3563954B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101569184B1 (en) * 2014-09-04 2015-11-13 한국종합철관(주) Steel post having passive state metals type sheath for base

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29912689U1 (en) * 1999-07-15 1999-09-30 Tdc Thermodur Const Gmbh Body with a convex surface
JP2002273825A (en) * 2001-03-21 2002-09-25 Nippon Steel Corp Heavily anti-corrosive coated steel material showing excellent impact resistance against rubble mound stone
JP4581742B2 (en) * 2004-03-01 2010-11-17 Jfeスチール株式会社 Resin-coated steel pipe excellent in earthquake resistance and corrosion resistance and method for producing the same
FR2994243B1 (en) * 2012-08-06 2016-06-10 Saint-Gobain Pam IRON PIPING ELEMENT FOR BOREHOLE PIPING, COMPRISING AN EXTERIOR COATING
DE102015204926A1 (en) * 2015-03-18 2016-09-22 TDC TECHNICAL DUROPLASTIC CONSTRUCTIONS GmbH Enveloping a lateral surface of a pipe
CN107650435A (en) * 2017-09-04 2018-02-02 河南三杰热电科技有限公司 A kind of fire-retardant pipeline of major diameter
CN114231238A (en) * 2021-12-29 2022-03-25 厦门捌斗新材料科技有限公司 Flexible corrosion-resistant belt and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101569184B1 (en) * 2014-09-04 2015-11-13 한국종합철관(주) Steel post having passive state metals type sheath for base

Also Published As

Publication number Publication date
JPH11245333A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
JP4295216B2 (en) Resin-lined steel pipe and manufacturing method thereof
JP4564194B2 (en) Fiber-reinforced resin-coated steel pipe and method for producing the same
JP3563954B2 (en) High-strength polyolefin heavy duty anticorrosion coated steel pipe and steel pipe pile
JPH0622990B2 (en) Polyolefin coated steel
JP3345321B2 (en) Polyester coated steel
JP3345313B2 (en) Polyester coated heavy duty corrosion resistant steel
JP3709045B2 (en) Heavy-corrosion-coated steel pipe, method for manufacturing heavy-corrosion-coated steel pipe pile, and apparatus for manufacturing the same
JPH0768701A (en) Polyolefin-coated steel material
JP3111908B2 (en) Polyethylene resin coated steel
JPH11291394A (en) High-strength polyurethane heavy-duty corrosionproof coated steel material with protrusions
JP3563984B2 (en) Heavy-duty anticorrosion coated steel with end-fixed high-strength coating
JP2002273825A (en) Heavily anti-corrosive coated steel material showing excellent impact resistance against rubble mound stone
JP2003294174A (en) Resin lining steel pipe and manufacture method
CN109401637B (en) Binding composition for manufacturing steel pipe, composite galvanized steel sheet containing same, and manufacturing method thereof
JPH10286909A (en) Steel pipe and steel-pipe pile with heavy-duty anti-corrosion coating, and its manufacture
JPH08336931A (en) Polyolefin-coated steel material containing metal foil
JP2827815B2 (en) Polyethylene coated steel pipe
JP3943715B2 (en) High strength polyolefin coated steel
JP2000169975A (en) Steel applied with high strength heavy corrosion protective covering with edge cover
EP0656256A1 (en) High-strength polyolefin-coated steel material
JP3163908B2 (en) Polyolefin resin coated steel
JP4299575B2 (en) Heavy anti-corrosion coated steel with excellent anti-peeling resistance
JPH03197134A (en) Laminate of metallic body and ultra-molecular weight polyethylene and manufacture thereof
JP2000167984A (en) High strength heavy corrosionproof coated steel material to which edge coating is applied
JPH0329588B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees