JP3563026B2 - Prussic acid gas removing material and method for producing - Google Patents

Prussic acid gas removing material and method for producing Download PDF

Info

Publication number
JP3563026B2
JP3563026B2 JP2000335805A JP2000335805A JP3563026B2 JP 3563026 B2 JP3563026 B2 JP 3563026B2 JP 2000335805 A JP2000335805 A JP 2000335805A JP 2000335805 A JP2000335805 A JP 2000335805A JP 3563026 B2 JP3563026 B2 JP 3563026B2
Authority
JP
Japan
Prior art keywords
activated carbon
acid gas
hydrocyanic acid
removing material
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000335805A
Other languages
Japanese (ja)
Other versions
JP2002136866A (en
Inventor
詔一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koken Co Ltd
Original Assignee
Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co Ltd filed Critical Koken Co Ltd
Priority to JP2000335805A priority Critical patent/JP3563026B2/en
Publication of JP2002136866A publication Critical patent/JP2002136866A/en
Application granted granted Critical
Publication of JP3563026B2 publication Critical patent/JP3563026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、クロムを含有しない活性炭を用いて青酸ガスを吸着除去する除去材およびその製造方法に関する。
【0002】
【従来の技術】
青酸ガスを有効に除去するため、活性炭に銅とクロムを含有させた活性炭を使用することはよく知られている。
このため、現在存在する青酸ガス除去材は、そのほとんどが重金属である銅とクロムを含むことになるが、このクロムは、6価であるため人体に健康障害を起こす可能性がある。したがって、6価のクロムを含む青酸ガス除去材を使用すると、その使用者は6価のクロムにより健康に重大な悪影響を受ける虞がある。
また、クロムを含む青酸ガス除去材は使用後に廃棄すると、環境を汚染する可能性がある。
【0003】
しかし、クロムは、青酸ガスを除去する過程においてシアノゲン(ジシアン)ガスを除去する働きがあるため、クロムを含む青酸ガス除去材からクロムを除くと、有害なクロムが除かれるものの、逆に、青酸ガスを除去する過程で発生するシアノゲンガスの除去ができなくなる。そして、このシアノゲンガスは青酸ガスと同程度に有毒である。
【0004】
そこで、クロムを使用することなく青酸ガス、及び青酸ガスを除去する過程で発生するシアノゲンガスを除去できる青酸ガス除去材として、銅を添着した活性炭層とアルカリ性活性炭層とを交互に組み合わせて配置することが、すでに本発明者等で開発されている(特開平11−179199号公報)。
【0005】
【発明が解決しようとする課題】
しかし、この青酸ガス除去材は、銅を添着した活性炭層とアルカリ性活性炭層との組合せ層が大きい時には十分な青酸ガス除去性能を有するが、組合せ層が小さい時には著しく青酸ガス除去性能が低下する。このため、この青酸ガス除去材は、銅を添着した活性炭層とアルカリ性活性炭層とを交互に充填できる充填層が大きい製品、例えば、有害物質除去用車載キャニスタ、隔離式吸収缶などには使用することができるが、これら活性炭層を充填できる充填層が小さい製品、例えば、防毒マスク等の直結式吸収缶、直結式小型吸収缶などには使用できないという問題があった。
【0006】
また、この青酸ガス除去材は、銅を添着した活性炭層とアルカリ性活性炭層との組合せであるため、青酸ガスを効率的に除去し、また発生するシアノゲンガスを除去するには、各活性炭層の組合せがほぼ均質になるように組合わせる必要があるため、取り扱いが煩雑であり、操作が複雑になると言う問題があった。
本発明は、このような従来の青酸ガス除去材が有する問題を解決し、しかも
充填層が小さくても効率良く青酸ガスを除去することが可能な青酸ガス除去材およびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
かかる目的を達成するため、本発明者等は、鋭意研究したところ、銅を添着した活性炭層とアルカリ性活性炭層の充填層が小さいほど青酸ガス除去性能が低下するのは、青酸ガスが添着物や吸着剤に接触する頻度が少ないことが原因となっていることを見出した。
【0008】
すなわち、銅を添着した活性炭層とアルカリ性活性炭層とを交互に組合せてなる充填層では、銅を添着した活性炭層で青酸の酸化が行われ、アルカリ性活性炭層でシアノゲンガスの加水分解が行われるが、充填層が小さいと青酸ガスが添着物や吸着剤に接触する頻度が少なすぎ、このため青酸ガスが充分に除去されず漏れが生じることが原因であることを見出し、青酸ガスが添着物や吸着剤に接触する頻度が向上する除去材を開発すれば、充填層が小さくても青酸ガスを充分に除去できることを見出し本発明を完成した。
【0009】
具体的には、本発明に係る青酸ガス除去材は、銅を添着した粉末状の活性炭とアルカリ性の粉末状の活性炭との混合物をバインダーで結合して造粒したことを特徴とする。
更に、本発明に係る青酸ガス除去材の製造方法は、活性炭を水酸化カリウム水溶液で処理してアルカリ性の活性炭を形成することを特徴とする。
【0010】
【発明の実施の形態】
本発明に使用する活性炭は、市販されている粉末状の活性炭(例えば、クラレコールGG48/100、クラレケミカル社製)を使用できるが48メッシュ以下が好ましい。また、本発明に係る銅を添着した粉末状の活性炭としては、例えば、硝酸第2銅3水和物、酢酸銅、炭酸銅等の銅含有化合物を溶解した溶解液を粉末状の活性炭に添着した後、熱処理したものを用いる。なお、銅を添着した粉末状の活性炭を、更にアルカリ処理しアルカリ性とすることもできる。このようにすると、青酸ガス吸着効果が高まる。
【0011】
また、アルカリ性の粉末状の活性炭としては、粉末状の活性炭を水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、アンモニア等のアルカリ性水溶液で処理したものを用いる。なお、水酸化カリウム水溶液で処理した活性炭は、特に青酸ガス吸着効果およびシアノゲンガスの除去効果が高い。
【0012】
本発明においては、銅を添着した粉末状の活性炭とアルカリ性の粉末状の活性炭の混合物、あるいは、銅を添着した後アルカリ水溶液で処理した活性炭とアルカリ性の粉末状の活性炭の混合物は、バインダーを加えられて造粒される。使用するバインダーには、ポリビニルアルコール、フェノール樹脂等があるがこれらに限定されるものではない。造粒するメッシュの大きさは、適宜設定できるが、メッシュが細かすぎると青酸ガス除去材として使用したとき、青酸ガスの流通が悪くなり除去時間がかかりすぎて効率が低下する。また大きくなり過ぎると青酸ガスとの接触頻度が低下するため、除去効果が低下する。従って10〜20メッシュが好ましい。なお、造粒後にアルカリ水溶液で処理することもある、
【0013】
次に、本発明の実施の形態を、実験結果と共に説明する。
実施例1
硝酸第2銅3水和物160gを160ccの水に溶かし、この中に48〜100メッシュの活性炭(クラレコールGG48/100 クラレケミカル社製)100gを入れる。目視により活性炭の表面が乾いたと認められるまで室温で放置する。その後、空気中200℃で3時間加熱処理する。これを銅添着炭と呼ぶ。48〜100メッシュの活性炭(クラレコールGG48/100 クラレケミカル社製)を1N KOH水溶液に入れ16時間撹拌した後ろ過し、115℃で16時間乾燥させる。これをKOH処理活性炭と呼ぶ。
【0014】
前記銅添着炭とKOH処理活性炭を容量比1:1で混合し、これにポリビニルアルコール水溶液を加え、直径1mmの柱状に造粒する。この造粒炭を2日間室内に放置した後、90℃で3時間、180℃で2時間熱処理をする。熱処理後、1N KOH水溶液中で32時間撹拌した後ろ過し、115℃で16時間乾燥し、10〜20メッシュに篩い分ける。
【0015】
このようにして調製した造粒炭の青酸ガス除去性能を確認するため、内径20mmの試料充填管に、この造粒炭を層高2.5cmになるように充填する。そして、温度20℃、相対湿度50%、青酸ガス濃度5000ppmの空気を1.571/minで試料充填管を通過させた。試料充填管の下流側に、通過した空気中の青酸ガスを感知する検知紙を設置し、この検知紙の変色により青酸ガスの漏れを検出して青酸ガス除去性能を決定した。
【0016】
この検知紙は、O−トリジン(JIS K 8668)0.4gと氷酢酸4gを水70mlに溶かした溶液と、酢酸銅(JIS K 8370)0.1gとグリセリン5gを水100mlに溶かした溶液とを等量混合した溶液を、細長く切ったろ紙(JIS P 3801)にしみ込ませたものである。試験結果を表1に示す。
【0017】
実施例2
硝酸第2銅3水和物160gを160ccの水に溶かし、この中に48〜100メッシュの活性炭(クラレコールGG48/100 クラレケミカル社製)100gを入れる。目視により活性炭の表面が乾いたと認められるまで室温で放置する。その後、空気中200℃で3時間加熱処理する。加熱処理後、1N NaOH水溶液に入れ、1時間加熱した後ろ過し、115℃で16時間乾燥する。これをNaOH処理銅添着炭と呼ぶ。
48〜100メッシュの活性炭(クラレコールGG48/100 クラレケミカル社製)を1N KOH水溶液に入れ16時間撹拌した後ろ過し、115℃で16時間乾燥させる。これをKOH処理活性炭と呼ぶ。
【0018】
前記NaOH処理銅添着炭とKOH処理活性炭を容量比1:1で混合し、これにポリビニルアルコール水溶液を加え、直径1mmの柱状に造粒する。この造粒炭を2目間室内に放置した後、90℃で3時間、180℃で2時間熱処理をする。熱処理後、1N KOH水溶液中で20時間撹拌した後ろ過し、115℃で16時間乾燥し、10〜20メッシュに篩い分ける。
【0019】
このようにして調製した造粒炭の青酸ガス除去性能を確認するため、内径20mmの試料充填管にこの造粒炭を層高2.5cmになるように充填する。そして、温度20℃、相対湿度50%、青酸ガス濃度5000ppmの空気を1.571/minで試料充填管を通過させた。試料充填管の下流側に、通過した空気中に青酸ガスを感知する検知紙を設置し、この検知紙の変色を検出して青酸ガス除去性能を決定した。なお、この検知紙は、実施例1と同じものを使用した。試験結果を表1に示す。
【0020】
実施例1及び実施例2の効果を確認するため、以下の参考例1乃至参考例3を実施した。
参考例1
硝酸第2銅3水和物40gを水160gに溶かした水溶液20gを、10〜20メッシュの活性炭(クラレコールGG10/20 クラレケミカル社製)50gに撹拌しながら加え10分放置後エバポレータで47℃25分乾燥という操作を繰返しながら、すべての硝酸第2銅水溶液を活性炭に添着した後、空気中100℃で1時間200℃で12時間加熱処理する。この添着炭を1N NaOH水溶液に入れ1時間撹拌した後、115℃で16時間乾燥させる。これをNaOH処理銅添着炭と呼ぶ。
10〜20メッシュの活性炭(クラレコールGG10/20 クラレケミカル社製)を1N KOH水溶液に入れ16時間撹拌した後ろ過し、115℃で16時間乾燥させる。これをKOH処理活性炭と呼ぶ。
【0021】
内径20mmの試料充填管にNaOH処理銅添着炭とKOH処理活性炭を容量比1:1で混合した混合物を層高2.5cmになるように充填する。そして、温度20℃、相対湿度50%、青酸ガス濃度5000ppmの空気を1.571/minで試料充填管を通過させた。試料充填管の下流側に通過した空気中の青酸ガスを感知する検知紙を設置し、この検知紙の変色を検出して青酸ガス除去性能を決定した。なお、この検知紙は、実施例1と同じものを使用した。試験結果を表1に示す。
【0022】
参考例2
硝酸第2銅3水和物60gを水240gに溶かした水溶液20gを、10〜20メッシュの活性炭(クラレコールGG10/20 クラレケミカル社製)50gに撹拌しながら加え10分放置後エバポレータで47℃25分乾燥という操作を繰返しながら、すべての硝酸第2銅水溶液を活性炭に添着した後、空気中100℃で1時間200℃で12時間加熱処理する。この添着炭を1N NaOH水溶液に入れ1時間撹拌した後、115℃で16時間乾燥させる。これをNaOH処理銅添着炭と呼ぶ。
10〜20メッシュの活性炭(クラレコールGG10/20 クラレケミカル社製)を1N KOH水溶液に入れ16時間撹絆した後ろ過し、115℃で16時間乾燥させる。これをKOH処理活性炭と呼ぶ。
【0023】
内径20mmの試料充填管にNaOH処理銅添着炭とKOH処理活性炭を容量比1:1で混合した混合物を層高2.5cmになるように充填する。そして、温度20℃、相対湿度50%、青酸ガス濃度5000ppmの空気を1.571/minで試料充填管を通過させた。試料充填管の下流側には、通過した空気中に青酸ガスを感知する検知紙を設置し、この検知紙の変色を検出して青酸ガス除去性能を決定した。なお、この検知紙は、実施例1と同じものを使用した。試験結果を表1に示す。
【0024】
【表1】

Figure 0003563026
【0025】
実施例1,実施例2の本発明に係る除去材の試験結果と、特開平11−179199号公報に従って調製した参考例1、参考例2に係る除去材の試験結果とを比較すると、同じ層高であっても、本発明に係る除去材の青酸ガス除去性能は、参考例1,参考例2の除去材より格段に優れた青酸ガス除去性能を有することがわかる。また、本発明に係る除去材は、実施例1,実施例2の試験結果から、層高が小さくても参考例のような青酸ガス除去性能の低下は見られない。
【0026】
実施例3
硝酸第2銅3水和物160gを160ccの水に溶かし、この中に48〜100メッシュの活性炭(クラレコールGG48/100 クラレケミカル社製)100gを入れる。目視により活性炭の表面が乾いたと認められるまで室温で放置する。その後、空気中200℃で3時間加熱処理する。これを、銅添着炭と呼ぶ。
48〜100メソシュの活性炭(クラレコールGG48/100 クラレケミカル社製)を1N KOH水溶液に入れ16時間撹拌した後ろ過し、115℃で16時間乾燥させる。これをKOH処理活性炭と呼ぶ。
【0027】
銅添着炭とKOH処理活性炭とフェノール樹脂(ベルパールS−870 鐘紡株式会社製)を容量比1:2:0.5で混合し、200kg/cm、160℃で1時間加圧加熱し成形する。この成形品を破砕し、10〜20メッシュに篩分け、300℃で1時間加熱処理をする。熱処理後、この造粒炭を1N KOH水溶液中で16時間撹拌した後ろ過し、115℃で16時間乾燥する。
【0028】
このようにして調製した造粒炭の青酸ガス除去性能を確認するため、内径20mmの試料充填管にこの造粒炭を層高2.5cmになるように充填する。そして、温度20℃、相対湿度50%、青酸ガス浪度5000ppmの空気を1.571/minで試料充填管を通過させた。試料充填管の川下側に通過した空気中の青酸ガスを感知する検知紙を設置し、この検知紙の変色を検出して青酸ガス除去性能を決定した。なお、この検知紙は、実施例1と同じものを使用した。試験結果を表2に示す。
【0029】
実施例4
硝酸第2銅3水和物160gを160ccの水に溶かし、この中に48〜100メッシュの活性炭(クラレコールGG48/100 クラレケミカル社製)100gを入れる。目視により活性炭の表面が乾いたと認められるまで室温で放置する。その後、空気中200℃で3時間加熱処理する。これを、銅添着炭と呼ぶ。
48〜100メッシュの活性炭(クラレコールGG48/100 クラレケミカル社製)を1N KOH水溶液に入れ16時間撹拌した後ろ過し、115℃で16時間乾燥させる。これをKOH処理活性炭と呼ぶ。
【0030】
銅添着炭とKOH処理活性炭とフェノール樹脂(ベルパールS−870鐘紡株式会社製)を容量比1:2:0.5で混合し、200kg/cm、160℃で1時間加圧加熱し成形する。この成形品を破砕し、10〜20メッシュに篩分け造粒炭を調製した。
【0031】
このようにして調製した造粒炭の青酸ガス除去性能を確認するため、内径20mmの試料充填管にこの造粒炭を層高2.5cmになるように充填する。そして、温度20℃、相対湿度50%、青酸ガス濃度5000ppmの空気を1.571/minで試料充填管を通過させた。試料充填管の下流側には、通過した空気中の青酸ガスを感知する検知紙を設置し、この検知紙の変色を検出して青酸ガス除去性能を決定した。なお、この検知紙は、実施例1と同じものを使用した。試験結果を表2に示す。
【0032】
実施例5
硝酸第2銅3水和物160gを160ccの水に溶かし、この中に48〜100メッシュの活性炭(クラレコールGG48/100 クラレケミカル社製)100gを入れる。目視により活性炭の表面が乾いたと認められるまで室温で放置する。その後、空気中200℃で3時間加熱処理する。これを、銅添着炭と呼ぶ。
48〜100メッシュの活性炭(クラレコールGG48/100 クラレケミカル社製)を1N KOH水溶液に入れ16時間撹拌した後ろ過し、115℃で16時間乾燥させる。これをKOH処理活性炭と呼ぶ。
銅添着炭とKOH処理活性炭とフェノール樹脂(ベルパールS−830 鐘紡株式会社製)を容量比1:2:0.5で混合し、300kg/cm、160℃で1時間加圧加熱し成形する。この成形品を破砕し、10〜20メッシュに篩分け、造粒炭を調製した。
【0033】
このようにして調製した造粒炭の青酸ガス除去性能を確認するため、内径20mmの試料充填管にこの造粒炭を層高2.5cmになるように充填する。そして、温度20℃、相対湿度50%、青酸ガス濃度5000ppmの空気を1.571/minで試料充填管を通過させた。試料充填管の下流側には、通過した空気中に青酸ガスを感知する検知紙を設置し、この検知紙の変色を検出して青酸ガス除去性能を決定した。なお、この検知紙は、実施例1と同じものを使用した。試験結果を表2に示す。
【0034】
【表2】
Figure 0003563026
【0035】
実施例3〜5の試験結果より、バインダー及び造粒方法を変えても充填する層高が小さくても高い青酸ガス除去性能を有することがわかる。
【0036】
【発明の効果】
本発明によれば、クロムを使用せずに青酸ガスを除去することができ、しかも、充填層が小さくても効率良く青酸ガスを除去できる。
このため、小型の充填層を有する直結式吸収缶、直結式小型吸収缶等にも使用でき使用範囲が拡大する。
【0037】
また、本発明によれば、造粒された造粒炭は、単独で青酸ガスを除去する機能と青酸ガス除去過程で発生するジアノゲンガスを除去する機能とを併せ持っているため、この造粒炭をランダムに充填するだけの簡単な操作で両機能を有する青酸ガス除去機を得ることができる。更に、本発明の青酸ガス除去材は、活性炭への銅の添着過程から造粒過程まで連続した一連の工程で調製できるため、生産性が良い。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a removing material for adsorbing and removing hydrocyanic acid gas using activated carbon not containing chromium, and a method for producing the same.
[0002]
[Prior art]
It is well known to use activated carbon containing copper and chromium in activated carbon in order to effectively remove hydrocyanic acid gas.
For this reason, most of the existing hydrocyanic acid gas removing materials include copper and chromium, which are heavy metals, and since chromium is hexavalent, there is a possibility of causing health problems to humans. Therefore, when a hydrocyanic acid gas removing material containing hexavalent chromium is used, the user may have a serious adverse effect on health due to hexavalent chromium.
In addition, if the hydrocyanic acid gas removing material containing chromium is discarded after use, it may pollute the environment.
[0003]
However, chromium has the function of removing cyanogen (dicyanic) gas in the process of removing hydrocyanic acid gas. Therefore, if chromium is removed from the hydrocyanic acid gas removing material containing chromium, harmful chromium is removed. Cyanogen gas generated in the process of removing gas cannot be removed. And, this cyanogen gas is as toxic as hydrocyanic acid gas.
[0004]
Therefore, as a hydrocyanic acid gas removing material capable of removing hydrocyanic acid gas and cyanogen gas generated in the process of removing hydrocyanic acid gas without using chromium, an activated carbon layer to which copper is attached and an alkaline activated carbon layer are alternately arranged. Have already been developed by the present inventors (JP-A-11-179199).
[0005]
[Problems to be solved by the invention]
However, this hydrocyanic acid gas removing material has sufficient hydrocyanic acid gas removing performance when the combined layer of the activated carbon layer impregnated with copper and the alkaline activated carbon layer is large, but when the combined layer is small, the hydrocyanic acid gas removing performance is significantly reduced. For this reason, this hydrocyanic acid gas removing material is used for products having a large filling layer capable of alternately filling an activated carbon layer impregnated with copper and an alkaline activated carbon layer, for example, an in-vehicle canister for removing harmful substances, an isolated absorption can, and the like. However, there is a problem that the product cannot be used for products having a small filling layer capable of filling the activated carbon layer, for example, a direct connection type absorbent can such as a gas mask or a direct connection type small absorbent can.
[0006]
Further, since this hydrocyanic acid gas removing material is a combination of an activated carbon layer impregnated with copper and an alkaline activated carbon layer, a combination of activated carbon layers is required to efficiently remove hydrocyanic acid gas and to remove generated cyanogen gas. Must be combined so as to be substantially homogeneous, so that there is a problem that the handling is complicated and the operation becomes complicated.
An object of the present invention is to provide a hydrocyanic acid gas removing material capable of solving such problems of the conventional hydrocyanic acid gas removing material and efficiently removing hydrocyanic acid gas even with a small filling layer, and a method for producing the same. With the goal.
[0007]
[Means for Solving the Problems]
To achieve this object, the present inventors have conducted intensive studies and found that the smaller the packed layer of the activated carbon layer and the alkaline activated carbon layer to which copper is attached, the lower the hydrocyanic acid gas removal performance is. It has been found that the cause is that the frequency of contact with the adsorbent is low.
[0008]
That is, in a packed bed formed by alternately combining an activated carbon layer and an alkaline activated carbon layer with copper, oxidation of hydrocyanic acid is performed on the activated carbon layer with copper and hydrolysis of cyanogen gas is performed on the alkaline activated carbon layer. When the packed bed is small, the frequency of contact of the hydrocyanic acid gas with the adhering substance and the adsorbent is too low, and it is found that this is because the hydrocyanic acid gas is not sufficiently removed and leakage occurs. The present inventors have found that, by developing a removing material that increases the frequency of contact with the agent, it is possible to sufficiently remove hydrocyanic acid gas even with a small filling layer, and completed the present invention.
[0009]
Specifically, the hydrocyanic acid gas removing material according to the present invention is characterized in that a mixture of powdered activated carbon impregnated with copper and alkaline powdered activated carbon is bound with a binder and granulated.
Furthermore, the method for producing a hydrocyanic acid gas removing material according to the present invention is characterized in that activated carbon is treated with an aqueous potassium hydroxide solution to form alkaline activated carbon.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
As the activated carbon used in the present invention, commercially available powdered activated carbon (for example, Kuraray Coal GG48 / 100, manufactured by Kuraray Chemical Co., Ltd.) can be used. Examples of the powdered activated carbon impregnated with copper according to the present invention include, for example, a solution in which a copper-containing compound such as cupric nitrate trihydrate, copper acetate, or copper carbonate is dissolved is impregnated with powdered activated carbon. After the heat treatment, a heat-treated one is used. The activated carbon powder impregnated with copper may be further alkali-treated to make it alkaline. In this case, the cyanide gas adsorption effect is enhanced.
[0011]
Further, as the alkaline powdered activated carbon, one obtained by treating powdered activated carbon with an alkaline aqueous solution of sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, calcium carbonate, ammonia, or the like is used. Activated carbon treated with an aqueous potassium hydroxide solution has a particularly high cyanide gas adsorption effect and a cyanogen gas removal effect.
[0012]
In the present invention, a mixture of powdered activated carbon impregnated with copper and alkaline powdered activated carbon, or a mixture of activated carbon treated with an aqueous alkali solution after copper is impregnated and alkaline powdered activated carbon is added with a binder. And granulated. The binder used includes, but is not limited to, polyvinyl alcohol and phenol resin. The size of the mesh to be granulated can be set as appropriate. However, if the mesh is too fine, when used as a cyanide gas removing material, the flow of the cyanide gas becomes poor and the removal time is too long, resulting in a decrease in efficiency. On the other hand, if it is too large, the frequency of contact with the hydrocyanic acid gas decreases, and the removal effect decreases. Therefore, 10 to 20 mesh is preferable. In addition, it may be treated with an aqueous alkali solution after granulation,
[0013]
Next, embodiments of the present invention will be described together with experimental results.
Example 1
160 g of cupric nitrate trihydrate is dissolved in 160 cc of water, and 100 g of 48 to 100 mesh activated carbon (Kuraray Coal GG48 / 100, manufactured by Kuraray Chemical Co., Ltd.) is added thereto. Leave at room temperature until the surface of the activated carbon is visually observed to be dry. Then, it heat-processes at 200 degreeC in air for 3 hours. This is called copper impregnated carbon. 48 to 100 mesh activated carbon (Kuraray Coal GG48 / 100, manufactured by Kuraray Chemical Co., Ltd.) is put into a 1N KOH aqueous solution, stirred for 16 hours, filtered, and dried at 115 ° C. for 16 hours. This is called KOH-treated activated carbon.
[0014]
The copper impregnated carbon and the KOH-treated activated carbon are mixed at a volume ratio of 1: 1, and an aqueous solution of polyvinyl alcohol is added thereto, and the mixture is granulated into a column having a diameter of 1 mm. After leaving the granulated coal in a room for 2 days, heat treatment is performed at 90 ° C. for 3 hours and at 180 ° C. for 2 hours. After the heat treatment, the mixture is stirred in a 1N KOH aqueous solution for 32 hours, filtered, dried at 115 ° C. for 16 hours, and sieved to 10 to 20 mesh.
[0015]
In order to confirm the hydrogen cyanide gas removal performance of the granulated coal thus prepared, the granulated coal is filled into a sample filling tube having an inner diameter of 20 mm so as to have a layer height of 2.5 cm. Then, air having a temperature of 20 ° C., a relative humidity of 50% and a hydrocyanic acid gas concentration of 5000 ppm was passed through the sample filling tube at 1.571 / min. A detection paper for detecting the hydrocyanic acid gas in the air that passed through was installed on the downstream side of the sample filling tube. Leakage of the hydrocyanic acid gas was detected by the discoloration of the detecting paper, and the hydrocyanic acid gas removal performance was determined.
[0016]
This detection paper is composed of a solution in which 0.4 g of O-tolidine (JIS K 8668) and 4 g of glacial acetic acid are dissolved in 70 ml of water, and a solution in which 0.1 g of copper acetate (JIS K 8370) and 5 g of glycerin are dissolved in 100 ml of water. Is mixed with an equal amount of a solution and impregnated into filter paper (JIS P 3801) cut into a long and thin shape. Table 1 shows the test results.
[0017]
Example 2
160 g of cupric nitrate trihydrate is dissolved in 160 cc of water, and 100 g of 48 to 100 mesh activated carbon (Kuraray Coal GG48 / 100, manufactured by Kuraray Chemical Co., Ltd.) is added thereto. Leave at room temperature until the surface of the activated carbon is visually observed to be dry. Then, it heat-processes at 200 degreeC in air for 3 hours. After the heat treatment, the mixture is placed in a 1N NaOH aqueous solution, heated for 1 hour, filtered, and dried at 115 ° C. for 16 hours. This is called NaOH-treated copper impregnated carbon.
48 to 100 mesh activated carbon (Kuraray Coal GG48 / 100, manufactured by Kuraray Chemical Co., Ltd.) is put into a 1N KOH aqueous solution, stirred for 16 hours, filtered, and dried at 115 ° C. for 16 hours. This is called KOH-treated activated carbon.
[0018]
The NaOH-treated copper impregnated carbon and the KOH-treated activated carbon are mixed at a volume ratio of 1: 1. An aqueous polyvinyl alcohol solution is added to the mixture, and the mixture is granulated into a column having a diameter of 1 mm. After leaving the granulated coal in the room for a second time, heat treatment is performed at 90 ° C. for 3 hours and at 180 ° C. for 2 hours. After the heat treatment, the mixture is stirred in a 1N KOH aqueous solution for 20 hours, filtered, dried at 115 ° C. for 16 hours, and sieved to 10 to 20 mesh.
[0019]
In order to confirm the hydrogen cyanide gas removal performance of the granulated coal thus prepared, a granulated coal having a bed height of 2.5 cm is filled into a sample filling tube having an inner diameter of 20 mm. Then, air having a temperature of 20 ° C., a relative humidity of 50% and a hydrocyanic acid gas concentration of 5000 ppm was passed through the sample filling tube at 1.571 / min. On the downstream side of the sample filling tube, a detection paper for detecting hydrocyanic acid gas in the passed air was installed, and the discoloration of the detection paper was detected to determine the hydrocyanic acid gas removal performance. The same detection paper as that used in Example 1 was used. Table 1 shows the test results.
[0020]
In order to confirm the effects of Example 1 and Example 2, the following Reference Examples 1 and 3 were implemented.
Reference Example 1
20 g of an aqueous solution prepared by dissolving 40 g of cupric nitrate trihydrate in 160 g of water was added to 50 g of activated carbon (Kuraray Coal GG10 / 20, manufactured by Kuraray Chemical Co., Ltd.) while stirring for 10 minutes. After repeating the operation of drying for 25 minutes, all the aqueous cupric nitrate solutions are impregnated with activated carbon, and then heat-treated in air at 100 ° C. for 1 hour and 200 ° C. for 12 hours. The impregnated carbon is put into a 1N aqueous solution of NaOH, stirred for 1 hour, and then dried at 115 ° C. for 16 hours. This is called NaOH-treated copper impregnated carbon.
10 to 20 mesh activated carbon (Kuraray Coal GG10 / 20, manufactured by Kuraray Chemical Co., Ltd.) is placed in a 1N KOH aqueous solution, stirred for 16 hours, filtered, and dried at 115 ° C. for 16 hours. This is called KOH-treated activated carbon.
[0021]
A sample filling tube having an inner diameter of 20 mm is filled with a mixture of NaOH-treated copper impregnated carbon and KOH-treated activated carbon mixed at a volume ratio of 1: 1 to a layer height of 2.5 cm. Then, air having a temperature of 20 ° C., a relative humidity of 50% and a hydrocyanic acid gas concentration of 5000 ppm was passed through the sample filling tube at 1.571 / min. A detection paper for detecting the hydrocyanic acid gas in the air passing through the sample filling tube was installed, and the discoloration of the detection paper was detected to determine the hydrocyanic acid gas removal performance. The same detection paper as that used in Example 1 was used. Table 1 shows the test results.
[0022]
Reference Example 2
20 g of an aqueous solution obtained by dissolving 60 g of cupric nitrate trihydrate in 240 g of water was added to 50 g of activated carbon (Kuraray Coal GG10 / 20, manufactured by Kuraray Chemical Co., Ltd.) while stirring for 10 minutes. After repeating the operation of drying for 25 minutes, all the aqueous cupric nitrate solutions are impregnated with activated carbon, and then heat-treated in air at 100 ° C. for 1 hour and 200 ° C. for 12 hours. The impregnated carbon is put into a 1N aqueous solution of NaOH, stirred for 1 hour, and then dried at 115 ° C. for 16 hours. This is called NaOH-treated copper impregnated carbon.
10 to 20 mesh activated carbon (Kuraray Coal GG10 / 20 manufactured by Kuraray Chemical Co., Ltd.) is placed in a 1N KOH aqueous solution, stirred for 16 hours, filtered, and dried at 115 ° C. for 16 hours. This is called KOH-treated activated carbon.
[0023]
A sample filling tube having an inner diameter of 20 mm is filled with a mixture of NaOH-treated copper impregnated carbon and KOH-treated activated carbon mixed at a volume ratio of 1: 1 to a layer height of 2.5 cm. Then, air having a temperature of 20 ° C., a relative humidity of 50% and a hydrocyanic acid gas concentration of 5000 ppm was passed through the sample filling tube at 1.571 / min. On the downstream side of the sample filling tube, a detection paper for detecting hydrocyanic acid gas in the passed air was installed, and the discoloration of the detection paper was detected to determine the hydrocyanic acid gas removal performance. The same detection paper as that used in Example 1 was used. Table 1 shows the test results.
[0024]
[Table 1]
Figure 0003563026
[0025]
Comparing the test results of the removing materials according to the present invention of Examples 1 and 2 with the test results of the removing materials according to Reference Examples 1 and 2 prepared according to JP-A-11-179199, the same layer was obtained. It can be seen that even when the removal material is high, the removal material according to the present invention has remarkably superior hydrocyanic acid gas removal performance than the removal materials of Reference Examples 1 and 2. Further, from the test results of Example 1 and Example 2, the removal material according to the present invention does not show a decrease in hydrocyanic acid gas removal performance as in the reference example even if the layer height is small.
[0026]
Example 3
160 g of cupric nitrate trihydrate is dissolved in 160 cc of water, and 100 g of 48 to 100 mesh activated carbon (Kuraray Coal GG48 / 100, manufactured by Kuraray Chemical Co., Ltd.) is added thereto. Leave at room temperature until the surface of the activated carbon is visually observed to be dry. Then, it heat-processes at 200 degreeC in air for 3 hours. This is called copper impregnated carbon.
48 to 100 Mesoche activated carbon (Kuraray Coal GG48 / 100, manufactured by Kuraray Chemical Co., Ltd.) is placed in a 1N KOH aqueous solution, stirred for 16 hours, filtered, and dried at 115 ° C. for 16 hours. This is called KOH-treated activated carbon.
[0027]
Copper impregnated charcoal and KOH treatment activated carbon and phenol resin (manufactured by BELLPEARL S-870 Kanebo Ltd.) volume ratio of 1: 2 were mixed with 0.5 to heated 1 hour pressurized and molded at 200 kg / cm 2, 160 ° C. . This molded product is crushed, sieved to 10 to 20 mesh, and heated at 300 ° C. for 1 hour. After the heat treatment, the granulated coal is stirred in a 1N KOH aqueous solution for 16 hours, filtered, and dried at 115 ° C. for 16 hours.
[0028]
In order to confirm the hydrogen cyanide gas removal performance of the granulated coal thus prepared, a granulated coal having a bed height of 2.5 cm is filled into a sample filling tube having an inner diameter of 20 mm. Then, air having a temperature of 20 ° C., a relative humidity of 50%, and a cyanide gas discharge of 5000 ppm was passed through the sample filling tube at 1.571 / min. A detection paper for detecting the hydrocyanic acid gas in the air that passed through was installed downstream of the sample filling tube, and the discoloration of the detection paper was detected to determine the hydrocyanic acid gas removal performance. The same detection paper as that used in Example 1 was used. Table 2 shows the test results.
[0029]
Example 4
160 g of cupric nitrate trihydrate is dissolved in 160 cc of water, and 100 g of 48 to 100 mesh activated carbon (Kuraray Coal GG48 / 100, manufactured by Kuraray Chemical Co., Ltd.) is added thereto. Leave at room temperature until the surface of the activated carbon is visually observed to be dry. Then, it heat-processes at 200 degreeC in air for 3 hours. This is called copper impregnated carbon.
48 to 100 mesh activated carbon (Kuraray Coal GG48 / 100, manufactured by Kuraray Chemical Co., Ltd.) is put into a 1N KOH aqueous solution, stirred for 16 hours, filtered, and dried at 115 ° C. for 16 hours. This is called KOH-treated activated carbon.
[0030]
Copper impregnated carbon, KOH-treated activated carbon, and phenol resin (Bellepearl S-870 manufactured by Kanebo Co., Ltd.) are mixed at a volume ratio of 1: 2: 0.5, and heated and heated at 200 kg / cm 2 at 160 ° C. for 1 hour for molding. . This molded product was crushed and sieved to 10 to 20 mesh to prepare granulated coal.
[0031]
In order to confirm the hydrogen cyanide gas removal performance of the granulated coal thus prepared, a granulated coal having a bed height of 2.5 cm is filled into a sample filling tube having an inner diameter of 20 mm. Then, air having a temperature of 20 ° C., a relative humidity of 50% and a hydrocyanic acid gas concentration of 5000 ppm was passed through the sample filling tube at 1.571 / min. At the downstream side of the sample filling tube, a detecting paper for detecting the hydrocyanic acid gas in the passed air was installed, and the discoloration of the detecting paper was detected to determine the hydrocyanic acid gas removing performance. The same detection paper as that used in Example 1 was used. Table 2 shows the test results.
[0032]
Example 5
160 g of cupric nitrate trihydrate is dissolved in 160 cc of water, and 100 g of 48 to 100 mesh activated carbon (Kuraray Coal GG48 / 100, manufactured by Kuraray Chemical Co., Ltd.) is added thereto. Leave at room temperature until the surface of the activated carbon is visually observed to be dry. Then, it heat-processes at 200 degreeC in air for 3 hours. This is called copper impregnated carbon.
48 to 100 mesh activated carbon (Kuraray Coal GG48 / 100, manufactured by Kuraray Chemical Co., Ltd.) is put into a 1N KOH aqueous solution, stirred for 16 hours, filtered, and dried at 115 ° C. for 16 hours. This is called KOH-treated activated carbon.
Copper impregnated carbon, KOH-treated activated carbon, and phenolic resin (Bellepearl S-830, manufactured by Kanebo Co., Ltd.) are mixed at a volume ratio of 1: 2: 0.5, and heated under pressure at 300 kg / cm 2 at 160 ° C. for 1 hour to form. . This molded product was crushed and sieved to 10 to 20 mesh to prepare granulated coal.
[0033]
In order to confirm the hydrogen cyanide gas removal performance of the granulated coal thus prepared, a granulated coal having a bed height of 2.5 cm is filled into a sample filling tube having an inner diameter of 20 mm. Then, air having a temperature of 20 ° C., a relative humidity of 50% and a hydrocyanic acid gas concentration of 5000 ppm was passed through the sample filling tube at 1.571 / min. On the downstream side of the sample filling tube, a detection paper for detecting hydrocyanic acid gas in the passed air was installed, and the discoloration of the detection paper was detected to determine the hydrocyanic acid gas removal performance. The same detection paper as that used in Example 1 was used. Table 2 shows the test results.
[0034]
[Table 2]
Figure 0003563026
[0035]
From the test results of Examples 3 to 5, it can be seen that even if the binder and the granulation method are changed, the hydrocyanic acid gas removal performance is high even if the packed layer height is small.
[0036]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, a hydrocyanic acid gas can be removed, without using chromium, and also a hydrocyanic acid gas can be efficiently removed even if a filling layer is small.
For this reason, it can be used also for a direct-connection type absorption can having a small filling layer, a direct-connection small absorption can, and the like, and the use range is expanded.
[0037]
Further, according to the present invention, the granulated granulated coal has both a function of removing cyanide gas alone and a function of removing dianogen gas generated in the process of removing cyanide gas. With a simple operation of merely filling at random, a cyanide gas removing machine having both functions can be obtained. Further, the hydrocyanic acid gas removing material of the present invention can be prepared in a series of continuous steps from the step of adding copper to activated carbon to the step of granulating, and thus has high productivity.

Claims (7)

銅を添着した粉末状の活性炭とアルカリ性の粉末状の活性炭との混合物をバインダーで結合して造粒したことを特徴とする青酸ガス除去材。A hydrocyanic acid gas removing material characterized in that a mixture of powdered activated carbon impregnated with copper and alkaline powdered activated carbon is combined with a binder and granulated. 前記銅を添着した粉末状の活性炭がアルカリ性であることを特徴とする請求項1に記載の青酸ガス除去材。2. The hydrocyanic acid gas removing material according to claim 1, wherein the powdered activated carbon to which the copper is attached is alkaline. 前記青酸ガス除去材がアルカリ性であることを特徴とする請求項1又は請求項2に記載の青酸ガス除去材。The hydrocyanic acid gas removing material according to claim 1 or 2, wherein the hydrocyanic acid gas removing material is alkaline. 前記銅を添着した粉末状の活性炭、アルカリ性の粉末状の活性炭の大きさが48メッシュ以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の青酸ガス除去材。The hydrocyanic acid gas removing material according to any one of claims 1 to 3, wherein the size of the powdered activated carbon and the alkaline powdered activated carbon to which copper is attached is 48 mesh or less. 粉末状の活性炭を水酸化カリウム水溶液で処理して、前記アルカリ性の粉末状の活性炭を形成することを特徴とする請求項1又は請求項2のいずれかに記載の青酸ガス除去材の製造方法。The method for producing a cyanide gas removing material according to claim 1, wherein the powdered activated carbon is treated with an aqueous potassium hydroxide solution to form the alkaline powdered activated carbon. 粉末状の活性炭に銅を添着した後、アルカリ水溶液で処理して前記銅を添着した粉末状の活性炭を成形することを特徴とする請求項2に記載の青酸ガス除去材の製造方法。The method for producing a hydrocyanic acid gas removing material according to claim 2, wherein after the powdery activated carbon is impregnated with copper, the powdered activated carbon is treated with an aqueous alkali solution to form the powdered activated carbon impregnated with copper. 請求項1又は請求項2に記載の青酸ガス除去材をアルカリ処理して前記アルカリ性の青酸ガス除去材を形成することを特徴とする請求項3に記載の青酸ガス除去材の製造方法。The method for producing a hydrocyanic acid gas removing material according to claim 3, wherein the hydrocyanic acid gas removing material according to claim 1 or 2 is treated with an alkali to form the alkaline hydrocyanic acid gas removing material.
JP2000335805A 2000-11-02 2000-11-02 Prussic acid gas removing material and method for producing Expired - Fee Related JP3563026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000335805A JP3563026B2 (en) 2000-11-02 2000-11-02 Prussic acid gas removing material and method for producing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000335805A JP3563026B2 (en) 2000-11-02 2000-11-02 Prussic acid gas removing material and method for producing

Publications (2)

Publication Number Publication Date
JP2002136866A JP2002136866A (en) 2002-05-14
JP3563026B2 true JP3563026B2 (en) 2004-09-08

Family

ID=18811488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000335805A Expired - Fee Related JP3563026B2 (en) 2000-11-02 2000-11-02 Prussic acid gas removing material and method for producing

Country Status (1)

Country Link
JP (1) JP3563026B2 (en)

Also Published As

Publication number Publication date
JP2002136866A (en) 2002-05-14

Similar Documents

Publication Publication Date Title
IL172740A (en) Broad spectrum filter system including tungsten-based impregnant and being useful for filtering contaminants from air or other gases
JP2016534825A (en) Protective filtration equipment for laminated or mixed adsorbent beds
JPH07308538A (en) Cleaner for harmful gas
WO1999045971A1 (en) Deodorant composition, deodorizer and filter each containing the same, and method of deodorization
JP3217101B2 (en) Method for producing air purifier
JP3563026B2 (en) Prussic acid gas removing material and method for producing
CA2676548C (en) Filtration media having a chemical reagent
JP3091528B2 (en) Composite adsorbent
JP3572970B2 (en) Adsorption treatment composition, adsorption treatment apparatus and air purification filter using the same, and adsorption treatment method
JP2007014857A (en) Adsorbent and its production method
KR20130105553A (en) Filter impregnated alkali metal compound for removing no2 and air purifier including thereof
JP3605054B2 (en) Prussic acid gas removing material and method for producing the same
CA3108671A1 (en) Process for the removal of heavy metals from liquids
JPH11179199A (en) Prussic acid gas removing material and its production
JP3733679B2 (en) filter
JP3131480B2 (en) Air purifier and method for producing the same
JP3247598B2 (en) Granular phosphorus adsorbent and method for removing phosphorus
JP6982808B2 (en) Deodorant and its manufacturing method
JP3561479B2 (en) Removal material for removing harmful gas or harmful vapor and method for producing the same
JP3198107B2 (en) Adsorbent and method for producing the same
KR200245652Y1 (en) Silver particles stuck cigarette filter
JPH10249144A (en) Method of purifying harmful gas
JP2000246098A (en) Preparation of adsorption treatment agent
JP3567771B2 (en) Adsorption treatment filter, adsorption treatment device and adsorption treatment method using the same
JP2017119271A (en) Method for treating formic acid and apparatus for treating formic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3563026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees