JP3561546B2 - New 5,6,7,8-tetrahydro-imidazo [1,2-a] pyridine compounds - Google Patents

New 5,6,7,8-tetrahydro-imidazo [1,2-a] pyridine compounds Download PDF

Info

Publication number
JP3561546B2
JP3561546B2 JP01643095A JP1643095A JP3561546B2 JP 3561546 B2 JP3561546 B2 JP 3561546B2 JP 01643095 A JP01643095 A JP 01643095A JP 1643095 A JP1643095 A JP 1643095A JP 3561546 B2 JP3561546 B2 JP 3561546B2
Authority
JP
Japan
Prior art keywords
mmol
intermediate compound
silica
compound
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01643095A
Other languages
Japanese (ja)
Other versions
JPH08188579A (en
Inventor
昌三 三浦
邦明 竜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Original Assignee
Shikoku Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp filed Critical Shikoku Chemicals Corp
Priority to JP01643095A priority Critical patent/JP3561546B2/en
Publication of JPH08188579A publication Critical patent/JPH08188579A/en
Application granted granted Critical
Publication of JP3561546B2 publication Critical patent/JP3561546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、優れた糖加水分解酵素阻害活性を有し、抗肥満薬、抗糖尿病薬等として有用な5,6,7,8−テトラヒドロ−イミダゾ〔1,2−a〕ピリジン化合物に関する。
【0002】
【従来の技術】このような薬効を示す物質として、天然に存在する下式で示されるナグスタチン(Nagstatin)が知られている。
【化

Figure 0003561546
【0003】
ナグスタチンは、ストレプトマイセスチアマクサエンシスMG846−fF3(streptomyces amakusaensis MG846−fF3)の培養液中より単離された化合物で、N−アセチル−β−D−グルコサミニダーゼ(NAG−ase)に対して優れた阻害活性を有している(ジャーナル・オブ・アンチバイオティクス、45巻、1404頁、1992年)。糖タンパク質や糖脂質からN−アセチル−β−D−グルコサミンを切り離すエキソグリコシダーゼであるNAG−aseは、リソゾーム中に局在し、糖尿病、白血病および癌などの疾病時に活性が増加することが報告されている。また、この活性の増加は肝臓病や妊娠の指標でもある。NAG−ase
のふるまいを調べることは、上述の疾病に加えて腎炎や免疫不全などの難病の原因や機構を解明する上で重要なことであり、その際、ナグスタチンのような特定阻害剤の作用が不可欠となるであろうと考えられる。また、イミダゾール環を含む複雑な縮環二環式化合物の合成研究は未だに報告されておらず、イミダゾール環と糖類とが縮環したナグスタチンの骨格を持つ類縁体を得ることは困難であった。
【0004】
【発明が解決しようとする課題】
本発明は、糖加水分解酵素阻害活性を有する物質を、化学合成によって安価に量産することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、このような事情に鑑み鋭意試験検討を重ねた結果、L−リボースあるいはL−キシロース誘導体を出発原料にして、それぞれのC−1位にイミダゾール誘導体を求核反応させ、さらに、導入されたイミダゾール部分と糖鎖水酸基との分子内求核置換反応により、イミダゾール環を含む含窒素糖質であるナグスタチン類縁体を立体選択的に全合成することを可能とし、これらの化合物が種々のグルコシダーゼに対する阻害活性を有することを見いだし、本発明を完遂するに至った。
【0006】
本発明は、以下の構造式によって表される6,7,8−トリヒドロキシ−5−ヒドロキシメチル−5,6,7,8−テトラヒドロイミダゾ〔1,2−a〕ピリジン系化合物及び8−アセトアミド−6,7−ジヒドロキシ−5−ヒドロキシメチル−5,6,7,8−テトラヒドロイミダゾ〔1,2−a〕ピリジン系化合物に関するものである。
【化
Figure 0003561546
【0007】
本発明化合物(イ、ロ、ニ、ホ、ヘ)及び本発明の参考化合物(ハ)の物性は、次のとおりである。
【化
Figure 0003561546
以下これを本発明化合物イという。
【0008】
本発明化合物イの物性
固体,mp=〜80℃、〔α〕D
+29.2°(c1.6,CH3OH)
TLC(シリカG,
クロロホルム/メタノール=1/1,I2 ) Rf=0.00〜0.25
NMR(270MHZ,CD3OD,TMS)
δ
.87(1H,dd,J=7,2Hz),4.03(2H,d,J=5Hz),4.23(1H,dt,J=5,4Hz),4.38(1H,dd,J=4,2Hz),4.76(1H,d,J=7Hz),7.05(1H,d,J=1Hz),7.36(1H,d,J=1Hz)
IR(KBr):νcm-1(%T)
(12),1638(72), 1489(59), 1450(63), 1360(73), 1305(67), 1264(71),1144(61), 1113(41),1086(45), 1065(43), 1051(41), 750(64), 686(66)MS:(FAB+)m/z201(M+1)
【0009】
【化
Figure 0003561546
以下、これを本発明化合物ロという。
【0010】
本発明化合物ロの物性
無色固体、mp=169〜174
℃、〔α〕D −8.0 °(c0.97,CH3OH)
TLC(シリカG,クロロホルム/メタノール=1/1, I2 ) Rf=0.00〜0.17
NMR(270MHZ,D2O)
δ
.85(1H,dd,J=10,9Hz),3.98(1H,J=10,9Hz),4.11(1H,dd,J=13,3Hz),4.12(1H,m),4.27(1H,dd,J=13,3Hz),4.72(1H,d,J=9Hz),7.30(1H,d,J=1.5Hz),7.43(1H,d,J=1.5Hz)IR(KBr):νcm-1(%T)
(7),2913(47), 1491(52), 1448(60), 1419(59), 1319(58), 1268(67),1198(76), 1178(77),1118(42), 1089(44), 1069(48), 1057(48), 1029(46),749(62), 651(68)MS:(FAB+)m/z201(M+1)
【0011】
【化
Figure 0003561546
以下、これを本発明の参考化合物ハという。
【0012】
本発明の参考化合物ハの物性
固体,mp=〜80℃、〔α〕D
+25.3°(c1.8,CH3OH)
TLC(シリカG,クロロホルム/メタノール=1/1, I2 ) Rf=0.00〜0.25
NMR(400MHZ,CD3OD,TMS)
δ
.04(1H,dd,J=4,2Hz),4.07(1H,dd,J=12,6Hz),4.09(1H,dd,J=12,4Hz),4.21(1H,ddd,J=6,4,4Hz),4.34(1H,dd,J=4,2Hz),4.82(1H,d,J=4Hz),7.12(1H,d,J=1.5Hz),7.43(1H,d,J=1.5Hz)
IR(KBr):νcm-1(%T)
(26),2926(47), 1641(73), 1486(67), 1444(70), 1266(73), 1100(59),1075(58), 1048(63),768(72)MS:(FAB+)m/z201(M+1)
【0013】
【化
Figure 0003561546
以下、これを本発明化合物ニという。
【0014】
本発明化合物ニの物性
無色固体、mp=111〜114
℃、〔α〕D −36.2°(c1.01,CH3OH)
TLC(シリカG,クロロホルム/メタノール=1/1)
Rf=0.00〜0.37
NMR(270MHZ,pyridine-d5,TMS)
δ
.39(1H,dd,J=13,4Hz),4.40(1H,dd,J=7.5,4Hz),4.41(1H,dd,J=13,4Hz),4.76(1H,ddd,J=9,4,4Hz),5.04(1H,dd,J=9,75Hz),5.66(1H,d,J=4Hz),7.39(1H,d,J=1.5Hz),7.78(1H,d,J=1.5Hz)
IR(KBr):νcm-1(%T)
(1), 2924(29),2862(30), 1638(55), 1490(30), 1442(34), 1422(37),1372(49), 1327(47), 1281(37),1182(58), 1133(32), 1096(12), 1067(18),1012(52), 900(33), 816(55), 762(27),720(36)
MS:(FAB+)m/z201(M+1)
【0015】
【化
Figure 0003561546
以下これを本発明化合物ホという。
【0016】
本発明化合物ホの物性
無色固体、mp=210〜212
℃(分解)、〔α〕D +75.8°(c1.1,CH3OH)
TLC(シリカG,クロロホルム/メタノール=1/1, I2 ) Rf=0.32〜0.40
NMR(270MHZ,CD3OD,TMS)
δ
.07(3H,s,Ac),4.10(2H,d,J=6Hz),4.15(1H,dd,J=9,2Hz),4.34(1H,m),4.37(1H,dd,J=2,2Hz),5.08(1H,d,J=9Hz),7.39(1H,d,J=2Hz),7.78(1H,d,J=2Hz)
IR(KBr):νcm-1(%T)
(38),1639(51), 1557(63), 1487(77), 1442(78), 1374(77), 1115(72),1057(76)
MS:(FAB+)m/z242(M+1)
【0017】
【化
Figure 0003561546
以下これを本発明化合物ヘという。
【0018】
本発明化合物ヘの物性
無色固体、mp=249〜251
℃、(decomp.), 〔α〕D +52.6°(c0.90,H2O)
TLC(シリカG,クロロホルム/メタノール=1/1, I2 ) Rf=0.34〜0.43
NMR(500MHZ,pyridine-d5 ,TMS)
δ
.11(3H,s,Ac),4.34(1H,ddd,J=9,5,2.5Hz),4.40(1H,dd,J=11,5Hz),4.44(1H,dd,J=9,9Hz),4.57(1H,dd,J=9,9Hz),4.66(1H,dd.J=11,2.5Hz),5.85(1H,dd,J=9,9Hz),7.35(1H,d,J=1.5Hz),7.68(1H,d,J=1.5Hz),9.17(1H,d,J=9Hz,NH)
IR(KBr):νcm-1(%T)
(30),3308(21), 3072(50), 2911(61), 2854(61), 1659(12), 1565(26),1479(50), 1244(50),1135(54), 1103(45), 1052(50), 1003(51), 770(50),730(67), 690(65)
MS:(FAB+)m/z242(M+1)
【0019】
【実施例】
(例1)
中間化合物A及びBの合成
アルゴン雰囲気下、N−トリチルイミダゾール1.98g(6.38mmol) および乾燥テトラヒドロフラン(以下、THFという)80mlからなる溶液に、−5℃で 1.6Mn−ブチルリチウム−ヘキサン溶液4.01ml(6.42mmol)を加え、10分間攪拌した後、次いで2,3,5−トリ−O−ベンジル−L−リボフラノース1.21g(2.90mmol) および乾燥THF8mlから成る溶液を0℃で加え、さらに30分間攪拌した。反応終了後、系に少量のドライアイスを加えた後、飽和食塩水20mlを加えて分液し、有機層を減圧下に乾固した。この乾固物をシリカゲルカラムクロマトグラフィー(シリカG160g, ベンゼン/酢酸エチル=1/1)に付し、下式で示されるL−アロース誘導体(以下、中間化合物Bという)0.821g(1.12mmol,38.7mol%)
を得た。
【0020】
【化
Figure 0003561546
【0021】
次いで、前記反応混合物の他の成分を再度シリカゲルカラムクロマトグラフィ−(シリカG 120g,クロロホルム/酢酸エチル=2/1)に付し、下式で示されるL−アルトロース誘導体(以下、中間化合物Aという)0.994g(1.36mmol,46.9mol%)を得た。
【化10
Figure 0003561546
【0022】
前記中間化合物Aの物性
固体、mp= 62〜67 ℃、〔α〕D −111.8 °(c1.0,CHCl3)
TLC(シリカG,ベンゼン/酢酸エチル=1/1) Rf=0.61〜0.7
NMR(270MHZ,CDCl3 TMS)
δ
.98(1H,br.d,J=6Hz),3.54(1H,dd,J=10,6Hz),3.59(1H,dd,J=10,4Hz),3.83(1H,dd,J=8,2Hz),3.92(1H,ddd,J=8,6,4Hz),4.00(1H,dd,J=8,2Hz),4.25(1H,d,J=11Hz),4.43(1H,d,J=11Hz),4.45(1H,d,J=12Hz),4.51(1H,d,J=12Hz),4.52(2H,s),4.53(dd,J=8,6Hz),6.83(1H,d,J=2Hz),7.09(1H,d,J=2Hz),7.0〜7.4(30H,m)
IR(KBr):νcm-1(%T)
(69),3357(72), 3059(66), 3028(60), 2858(56), 1493(35), 1448(26),1215(55), 1089(19),1069(18), 1029(36), 1000(55), 906(69), 746(12),699(7), 642(53)
MS:(FAB+)m/z731(M+1)
【0023】
前記中間化合物Bの物性
無色結晶、mp=132.5〜133.5
℃、(AcOEt), 〔α〕D −31.0°(c1.05,CHCl3)
TLC(シリカG,ベンゼン/酢酸エチル=1/1) Rf=0.38〜0.50
NMR(270MHZ,CDCl3 ,TMS)
δ
.86(1H,dd,J=8,2Hz),3.29(1H,dd,J=10,2Hz),3.39(1H,dd,J=10,7Hz),3.45(1H,d,J=10Hz),3.50(1H,dd,J=8,4Hz),3.82(1H,ddd,J=7,4,2Hz),3.87(1H,d,J=10Hz),4.05(1H,d,J=10Hz),4.17(1H,d,J=10Hz),4.37(1H,d,J=10Hz),4.45(1H,d,J=12Hz),4.50(1H,dd,J=10,2Hz),4.51(1H,d,J=12Hz),6.9〜6.7(3H,m),7.0〜7.4(29H,m)
IR(KBr):νcm-1(%T)
(75),1493(80), 1448(77), 1102(64), 1030(76), 746(59), 700(51)
MS:(FAB+)m/z731(M+1)
【0024】
(例2)
中間化合物C及びDの合成
アルゴン雰囲気下、N−トリチルイミダゾール1.53g(4.94mmol)および乾燥THF70mlからなる溶液に、−10℃で 1.6Mn−ブチルリチウム−ヘキサン溶液3.10ml(4.96mmol)を加え、10分間攪拌した後、次いで2,3,5−トリ−O−ベンジル−L−キシロフラノース1.02g(2.42mmol) および乾燥THF8mlから成る溶液を−10℃で加え、さらに30分間攪拌した。反応終了後、系に少量のドライアイスを加えた後、飽和食塩水20mlを加えて分液し、有機層を減圧下に乾固した。この乾固物をシリカゲルカラムクロマトグラフィー(シリカG550g, ベンゼン/ 酢酸エチル=1/2)に付し、下式で示されるL−グロース誘導体(以下、中間化合物Cという)0.497g(0.681mmol,28.0mol%) 及びL−イドース誘導体(以下、中間化合物Dという)0.161g(0.22mmol,9.1mol%) を得た。
【0025】
中間化合物Cの構造式は次のとおりであり、
【化11
Figure 0003561546
【0026】
中間化合物Dの構造式は次のとおりである。
【化12
Figure 0003561546
【0027】
中間化合物Cの物性
無色固体、mp=40〜44℃、〔α〕D −55.1°(c0.87,CHCl3)
TLC(シリカG,ベンゼン/酢酸エチル=1/2) Rf=0.58〜0.73
NMR(400MHZ,CDCl3 , TMS)
δ
.01(1H,br.d,J=4Hz,OH),3.45(2H,d,J=6Hz),3.74(1H,dd,J=4,3.5Hz),3.98(1H,dt,J=6,4Hz),4.15(1H,dd,J=9,3.5HzC3-H),4.40(2H,s),4.43(1H,d,J=12Hz),4.48(1H,d,J=12Hz),4.48(1H,d,J=10Hz),4.51(1H,br.dd,J=9,4Hz),4.59(1H,d,J=10Hz),6.85(1H,d,J=2Hz),6.9〜7.4(31H,m)
IR(KBr):νcm-1(%T)
(62),3060(65), 3029(64), 2864(69), 1493(58), 1448(48), 1228(68),1121(51), 1088(45),1068(40), 1029(55), 747(31), 699(18)
MS:(FAB+)m/z731(M+1)
【0028】
中間化合物Dの物性
無色固体、mp=43〜46℃、〔α〕D +18.0°(c1.21,CHCl3)
TLC(シリカG,ベンゼン/酢酸エチル=1/2) Rf=0.65〜0.79
NMR(400MHZ,acetone-d6, TMS)
δ
.19(1H,dd,J=6.5,2.5Hz),3.25(1H,dd,J=6.5,2.5Hz),3.32(1H,dd,J=9,6.5Hz),3.37(1H,dd,J=9,6.5Hz),3.49(1H,d,J=6.5Hz),3.54(1H,m),3.58(1H,d,J=9Hz),4.32(1H,d,J=11.5Hz),4.34(1H,dd,J=9,2.5Hz),4.35(1H,J=10.5Hz),4.37(1H,d,J=12Hz),4.41(1H,d,J=11.5Hz),4.43(1H,d,J=12Hz),4.52(1H,d,J=10.5Hz),6.82(1H,d,J=1.5Hz),7.05(1H.d,J=1.5Hz),7.1〜7.4(30H,m)
IR(KBr):νcm-1(%T)
(36),3059(42), 3029(41), 2918(52), 2862(45), 1598(75), 1493(28),1449(20), 1394(55),1359(58), 1227(41), 1177(61), 1116(13), 1065(17),1030(27), 1003(52), 907(69),748(7), 700(3), 641(66)
MS:(FAB+)m/z731(M+1)
【0029】
(例3)
中間化合物Eの合成
L−アロース誘導体(中間化合物B)1.01g(1.39mmol) およびピリジン30mlからなる溶液に、0℃にてベンジルスルホニルクロライド0.397g(2.08mmol) を加え、0℃で1時間攪拌した。反応終了後、エタノール 0.1mlを加え10分間攪拌した後減圧下に濃縮し、ついで少量のトルエンを加え、減圧下に共沸乾固した。この乾固物をシリカゲルカラムクロマトグラフィー(シリカG50g, ベンゼン/酢酸エチル=4/1)に付し、下式で示される目的物1.02g(1.14mmol, 82.7mol%) を得た。
【0030】
【化13
Figure 0003561546
【0031】
中間化合物Eの物性
固体、mp= 〜60℃、〔α〕D
−43.7°(c1.4,CHCl3 )
TLC(シリカG,ベンゼン/酢酸エチル=4/1) Rf=0.53〜0.60
NMR(400MHZ,CDCl3 , TMS)
δ
.50(1H,d,J=10Hz),3.20(1H,dd,J=12,2Hz),3.54(1H,dd,J=12,9Hz),3.73(1H,dd,J=10,2Hz),3.74(1H,d,J=10Hz),4.03(1H,d,J=10Hz),4.07(1H,dJ=10z),4.31(2H,s),4.37(1H,d,J=10Hz),4.42(1H,J=12Hz),4.45(1H,d,J=12Hz),4.46(1H,s),5.08(1H,ddd,J=9,2,2Hz),6.7〜6.8 & 7.0〜7.5(32H,m)
IR(KBr):νcm-1(%T)
(74),3029(71), 2922(82), 2864(80), 1493(47), 1449(43), 1361(42),1329(62), 1218(55),1174(35), 1098(28), 1030(39), 1001(68), 909(41),747(25), 699(12)
MS:(FAB+)m/z885(M+1)
【0032】
(例4)
中間化合物Fの合成
L−グロース誘導体(中間化合物)1.11g(1.52mmol) およびピリジン34mlからなる溶液に、−10℃にてベンジルスルホニルクロライド0.444g(2.33mmol)を加え、−10℃で30分間攪拌した。反応終了後、飽和炭酸水素ナトリウム水溶液1mlを加え、10分間攪拌した後減圧下に濃縮し、ついで少量のトルエンを加え、減圧下に共沸乾固した。この乾固物を酢酸エチル30mlで抽出した後、抽出液を減圧下に乾固した。この乾固物をシリカゲルカラムクロマトグラフィー(シリカG 120g,ベンゼン/酢酸エチル=4/1)に付し、下式で示される目的物1.05g(1.23mmol, 81.1mol%) を得た。
【0033】
【化14
Figure 0003561546
【0034】
中間化合物Fの物性
無色固体、mp=66〜69℃、〔α〕D −66.4°(c1.06,CHCl3)
TLC(シリカG,ベンゼン/酢酸エチル=3/1) Rf=0.48〜0.55
NMR(270MHZ,CDCl3 , TMS)
δ
.96(1H,br.J=5Hz,OH),3.65(1H,dd,J=12,6Hz),3.74(1H,dd,J=12,3Hz),4.04(1H,dd,J=8,2Hz),4.14(1H,d,J=14Hz),4.19(1H,dd,J=8,2Hz),4.28(1H,d,J=14Hz),4.10(1H,d,J=11Hz),4.42(2H,d,J=12Hz),4.47(1H,d,J=12Hz),4.49(1H,d,J=11Hz),4.54(1H,dd,J=8,4Hz),4.58(1H,d,J=12Hz),5.04(1H,ddd,J=8,6,3Hz),6.82(1H,d,J=2Hz),6.9〜7.4(37H,m)
IR(KBr):νcm-1(%T)
(60),3446(63), 3060(68), 3030(67), 2925(74), 2863(75), 1493(57),1449(50), 1361(42),1173(40), 1122(52), 1086(45), 1071(43), 1028(57),914(50), 747(33), 700(15),
【0035】
(例5)
中間化合物Gの合成
ベンジルスルホニル化合物(中間化合物E)0.224g(0.25mmol)、ピリジン5mlおよび無水酢酸 0.4mlの三者からなる系を60℃で 1.5時間加熱攪拌した。反応終了後、系にエタノール0.5mlを加え、室温で10分間攪拌したのち減圧下に濃縮した。濃縮物を酢酸エチルに溶解し飽和炭酸水素ナトリウム水溶液で中和し、有機層を減圧下に濃縮し、少量のトルエンを加えて共沸乾固した。この乾固物をシリカゲルカラムクロマトグラフィー(
リシカG 11g, ベンゼ/酢酸エチル=1/1)に付し、下式で示される目的物 0.127g(0.249mmol, 98.3mol%)をシラップとして得た。
【0036】
【化15
Figure 0003561546
【0037】
中間化合物Gの物性
油状物質〔α〕D +75.0°(c1.4,CHCl3)
TLC(シリカG,ベンゼン/酢酸エチル=1/2) Rf=0.53〜0.59
NMR(270MHZ,CDCl3 , TMS)
δ
.06(3H,s,Ac),3.81(1H,dd,J=10,8Hz),3.98(1H,dd,J=5,2Hz),4.00(1H,dd,J=10,3Hz),4.21(1H,dd,J=6,2Hz),4.45(1H,ddd,J=8,6,3Hz),4.49(2H,s),4.57(1H,d,J=12Hz),4.69(1H,d,J=12Hz),4.70(1H,d,J=12Hz),4.76(1H,d,J=12Hz),6.22(1H,d,J=5Hz),7.08(1H,d,J=1Hz),7.15(1H,d,J=1Hz),7.2〜7.4(15H,m)
IR(NaCl):νcm-1(%T)
(73),3030(66), 2922(67), 2871(64), 1744(38), 1493(64), 1452(52),1367(46), 1304(64),1227(34), 1093(39), 1079(40), 1044(45), 1026(45),967(69), 740(43), 698(42)
MS:(FAB+)m/z513(M+1)
【0038】
(例6)
中間化合物Hの合成
中間化合物G0.485g(0.947mmol)を乾燥メタノール10mlに溶解し、これに28%ナトリウムメトキシドのメタノール溶液29μl(0.24mmol) を加え室温で1.5時間攪拌した。反応終了後、減圧下に乾固し、乾固物をシリカゲルカラムクロマトグラフィー( シリカG 50g, クロロホルム/アセトン=2/1)に付し、下式で示される目的物0.427g(0.906mmol, 95.7mol%)を得た。
【0039】
【化16
Figure 0003561546
【0040】
中間化合物Hの物性
無色結晶、mp=112〜113
℃、(hexane/AcOEt=1/1), 〔α〕D +38.6°(c1.0,CHCl3)
TLC(シリカG,クロロホルム/アセトン=2/1) Rf=0.26〜0.35
NMR(270MHZ,CDCl3 , TMS)
δ
.84(1H,dd,J=10,7.5Hz),3.94(1H,dd,J=10,3Hz),4.02(1H,dd,J=5.5,2Hz),4.35(1H,dd,J=5,2Hz),4.39(1H,ddd,J=7.5,5,3Hz),4.49(2H,s),4.64(1H,d.J=12Hz),4.75(1H,d,J=12Hz),4.82(1H,d,J=12Hz),4.87(1H,d,J=12Hz),5.17(1H,d,J=5.5Hz),6.98(1H,d,J=1.5Hz),7.10(1H,d,J=1.5Hz),7.2〜7.6(15H,m)
IR(KBr):νcm-1(%T)
(46),2898(48), 2862(48), 1495(41), 1467(47), 1451(33), 1366(38),1327(47), 1311(53),1289(58), 1234(61), 1210(65), 1180(59), 1128(12),1101(8), 1052(34), 1023(29),1006(40), 966(67), 934(65), 907(69),733(6), 694(14)
MS:(FAB+)m/z471(M+1)
【0041】
(例7)
中間化合物Iの合成
L−アルトロース誘導体(中間化合物A)0.535g(0.733mmol) およびピリジン15mlから成る溶液に、−15℃にてベンジルスルホニルクロライド0.279g(1.46mmol) を加え、−15℃で1時間攪拌した。次いでこの系に無水酢酸 0.5mlを加え、0℃で1時間攪拌した後、さらに60℃で 1.5時間加熱攪拌した。次いで例5と同様の後処理を行い、下式で示される目的物0.179g(0.350mmol, 47.9mol%)を得た。
【0042】
【化17
Figure 0003561546
【0043】
中間化合物Iの物性
油状物質〔α〕D −3.0 °(c1.05,CHCl3)
TLC(シリカG,ベンゼン/酢酸エチル=1/2) Rf=0.40〜0.46
NMR(270MHZ,CDCl3 , TMS)
δ
.93(1H,dd,J=10,8Hz),3.97(1H,dd,J=10,4Hz),4.09(1H,dd,J=5,2Hz),4.21(1H,dd,J=4,2Hz),4.35(1H,ddd,J=8,4,4Hz),4.65(1H,d,J=12Hz),4.66(1H,d,J=12Hz),4.76(1H,d,J=12Hz),4.80(1H,d,J=12Hz),6.25(1H,d,J=5Hz),7.18(1H,s),7.20(1H,s),
.2〜7.4(15H,m)IR(NaCl):νcm-1(%T)
(72),3061(59), 3030(55), 2918(56) ,2870(53), 1735(44), 1494(60),1482(62), 1452(53),
(51), 1306(62), 1233(46), 1136(55), 1117(50),1098(50), 1073(48), 1023(52),
(52),698(52)MS:(FAB+)m/z513(M+1)
【0044】
(例8)
中間化合物Jの合成
中間化合物I
.181g(0.353mmol)を感想メタノール10mlに溶解し、これに28%ナトリウムメトキシドのメタノール溶液15μl(0.07mmol) を加え室温で1.5時間攪拌した。反応終了後、減圧下に乾固し、乾固物をシリカゲルカラムクロマトグラフィー(シリカG 10g, クロロホルム/アセトン=2/1)に付し、下式として示される目的物0.139g(0.296mmol, 83.6mol%)を得た。
【0045】
【化18
Figure 0003561546
【0046】
中間化合物Jの物性
無色結晶、mp=77〜78℃、(heaxane/AcOEt=3/1),〔a〕D -78°(cl.O,CHCl3)
TLC(シリカG,クロロホルム/アセトン=2/1) Rf=0.25〜0.36
NMR(270MHz,CDCl3 ,TMS)
δ
.90(2H,d,J=6Hz),3.97(1H,dd,J=4,2Hz),4.24(1H,dd,J=5,2Hz),4.30(1H,dt,J=6,5Hz),4.51(1H,d,J=12Hz),4.54(1H,d,J=12Hz),4.67(1H,d,J=12Hz),4.72(1H,d,J=12Hz),4.90(1h,d,J=12Hz),4.92(1H,d,J=12Hz),5.02(1H,d,J=4Hz),7.07(1H,d,J=2Hz),7.11(1H,d,J=2Hz),7.2〜7.4(15H,m)
IR(KBr):νcm-1(%T)
(17),3029(14), 2880(16), 2864(15), 1493(18), 1452(14), 1406(51),1356(22), 1334(33),1302(35), 1265(34), 1208(41), 1139(15), 1120(5),1077(1), 1026(13), 933(64),733(1), 697(4)
MS:(FAB+)m/z471(M+1)
【0047】
(例9)
中間化合物Kの合成
アルゴン雰囲気下、中間化合物J 60.5mg(0.127mmol)およびトリn-ブチルフォスフィン38.1μl(0.152mmol)の乾燥THF6ml溶液に4%アジ化水素酸−トルエン溶液189μg(0.153mmol)およびジエチルアゾジカルボメート24.1μl(0.152mmol)を加え、室温にて30分間攪拌した。反応終了後、減圧下に乾固し、シリカゲルカラムクロマトグラフィー(シリカG5g ,ベンゼン/酢酸エチル=5/1)に付し、下式で示される目的物 37.4mg(0.076mmol, 59.1mol%)を得た。
【0048】
【化19
Figure 0003561546
【0049】
中間化合物Kの物性
油状物質〔α〕D +98.1°(c1.2,CHCl3)
TLC(シリカG,ベンゼン/酢酸エチル=5/1) Rf=0.38〜0.50
NMR(270MHZ,CDCl3 , TMS)
δ
.81(1H,dd,J=7,1.5Hz),3.83(2H,d,J=6Hz),4.24(1H,dd,J=4,1.5Hz),4.28(1H,dt,J=6,4Hz),4.49(1H,d,J=12Hz),4.52(1H,d,J=12Hz),4.62(1H,d,J=12Hz),4.74(1H,d,J=12Hz),4.77(1H,d,J=12Hz),4.84(1H,d,J=12Hz),5.00(1H,d,J=7Hz),7.07(1H,d,J=1Hz),7.11(1H,d,J=1Hz),7.2〜7.4(15H,m)
IR(NaCl):νcm-1(%T)
(71),3030(61), 2910(56), 2870(52), 2105(22), 1792(47), 1727(67),1495(55), 1481(57),1453(46), 1359(48), 1300(48), 1259(41), 1209(45),1117(35), 1094(30), 1026(48),738(35), 698(36)
MS:(FAB+)m/z496(M+1)
【0050】
(例10)
中間化合物Kの合成
アルゴン雰囲気下、中間化合物H 0.120g(0.255mmol)およびトリn-ブチルフォスフィン 78.0μl(0.306mmol)の乾燥THF12ml溶液に4%アジ化水素酸−トルエン溶液473μg(0.506mmol)およびジエチルアゾジカルボメート49μl(0.306mmol)を加え、室温にて30分間攪拌した。反応終了後、減圧下に乾固し、シリカゲルカラムクロマトグラフィー(シリカG5g , ベンゼン/酢酸エチル=5/1)に付し、目的物 88mg(0.178mmol, 69.2mol%)を得た。
【0051】
(例11)
中間化合物Lの合成
中間化合物K0.171g(0.345mmol)、酢酸4mlおよび10%パラジウム−炭素0.22gを、室温にて水素圧4気圧で15時間攪拌した。反応終了後、メタノールで希釈し遠心分離した後上澄み液をろ過し、さらに沈殿物をメタノールで3回洗浄し同じく上澄み液をろ過し、ろ液を減圧下に乾固し、水で2回共沸乾固して、下式で示される目的物67.0mgを得た。
【0052】
【化20
Figure 0003561546
【0053】
中間化合物Lの物性
TLC(シリカG,クロロホルム/メタノール=1/1, I2 )Rf=0.00〜0.27
NMR(270MHz,CD3OD,TMS)
δ
.09(1H,dd,J=12,7Hz),4.13(1H,dd,J=12,4.5Hz),4.29(1H,dd,J=9.5,2Hz),4.42(1H,dd,J=2,2Hz),4.52(1H,m),4.83(1H,d,J=9.5Hz),7.74(1H,d,J=1.5Hz),8.06(1H,d,J=1.5Hz)
【0054】
(例12)
中間化合物Mの合成
ベンジルスルホニル化合物(中間化合物F)0.997g(1.16mmol), ピリジン20mlおよび無水酢酸2mlの三者から成る系を、50℃で8時間加熱攪拌した。次いで例5と同様の後処理を行い、下式で示される目的物0.501g(0.980mmol,84.0mol%)をシラップとして得た。
【0055】
【化21
Figure 0003561546
【0056】
中間化合物Mの物性
油状物質、〔α〕D −50.2°(c0.96,CHCl3)
TLC(シリカG,ベンゼン/酢酸エチル=1/1) Rf=0.42〜0.48
NMR(270MHz,acetone-d6,TMS)
δ
.84(3H,s,Ac),3.83(1H,dd,J=10,5Hz),4.04(1H,dd,J=10,3Hz),4.16(1H,dd,J=8.5,4Hz),4.24(1H,ddd,J=7,5,3Hz),4.29(1H,dd,J=8.5,7Hz),4.51(1H,d,J=11Hz),4.57(1H,d,J=11Hz),4.63(1H,d,J=11Hz),4.66(1H,d,J=11Hz),4.87(1H,d,J=11Hz),4.92(1H,d,J=11Hz),6.50(1H,d,J=4Hz),6.98(1H,d,J=1.5Hz),7.2〜7.5(16H,m)
IR(NaCl):νcm-1(%T)
(64),
(55), 2922(57), 2868(50), 1742(22), 1493(49), 1452(42),1367(34), 1311(59),1228(22), 1106(25), 1080(30), 1029(33), 947(50),738(30), 699(30)
MS:(FAB+)m/z513(M+1)
【0057】
(例13)
中間化合物Nの合成
中間化合物M0.157g(0.307mmol)を乾燥メタノール4mlに溶解し、これに28%ナトリウムメトキシドのメタノール溶液15μl(0.07mmol) を加え室温で1.5時間攪拌した。反応終了後、減圧下に乾固し、乾固物をシリカゲルカラムクロマトグラフィー(シリカG 10g, クロロホルム/アセトン=2/1)に付し、目的物0.134g(0.285mmol,
.0mol%) を得た。
【0058】
【化22
Figure 0003561546
【0059】
中間化合物Nの物性
無色結晶、mp=116.5〜117.5
℃、(hexane/EtOAc=2/1),〔α〕D −4.0 °(c0.95,CHCl3)
TLC(シリカG,クロロホルム/アセトン=2/1) Rf=0.14〜0.30
NMR(270MHz,CDCl3 , TMS)
δ
.69(1H,dd,J=10,6Hz),3.79(1H,dd,J=10,3.5Hz),3.96(1H,dd,J=8,4Hz),4.15(1H,ddd,J=6,6,3.5Hz),4.20(1H,dd,J=8,6Hz),4.44(1H,d,J=12Hz),4.49(1H,d,J=12Hz),4.60(1H,d,J=11Hz),4.72(1H,d,J=12Hz),4.83(1H,d,J=12Hz),4.92(1H,d,J=11Hz),5.13(1H,d,J=4Hz),7.01(1H,d,J=1.5Hz),7.10(1H,d,J=1.5Hz),7.2〜7.4(15H,m)
IR(KBr):νcm-1(%T)
(75),2890(73), 2861(71), 1453(79), 1143(70), 1117(54), 1084(55),1051(66), 736(51),697(60)
MS:(FAB+)m/z471(M+1)
【0060】
(例14)
中間化合物Oの合成
L−イドース誘導体(中間化合物D)0.106g(0.146mmol) およびピリジン3mlから成る溶液に、−15℃にてベンジルスルホニルクロライド0.052g(0.274mmol)を加え、−15℃で1時間攪拌した。次いでこの系に無水酢酸 0.2mlを加え、0℃で1時間攪拌した後、さらに60℃で 1.5時間加熱攪拌した。以下例5と同様の後処理を行い、下式で示される目的物
.016g(0.031mmol, 21.4mol%)を得た。
【0061】
【化23
Figure 0003561546
【0062】
中間化合物Oの物性
油状物質
TLC(シリカG,ベンゼン/酢酸エチル=1/1) Rf=0.35〜0.38
NMR(400MHz,CDCl3 , TMS)
δ
.08(3H,s,Ac),3.70(1H,dd,J=10,6Hz),3.79(1H,dd,J=10,4Hz),3.96(1H,dd,J=7,7Hz),4.08(1H,dd,J=7,6Hz),4.27(1H,ddd,J=7,6,4Hz),4.43(1H,d,J=12Hz),4.46(1H,d,J=12Hz),4.52(1H,d,J=11.5Hz),4.76(1H,d,J=11.5Hz),4.77(1H,d,J=11.5Hz),4.81(1H,d,J=11.5Hz),6.11(1H,d,J=6Hz),7.04(1H,d,J=1Hz),7.11(1H,d,J=1Hz),7.15〜7.4(15H,m)
【0063】
(例15)
中間化合物Pの合成
中間化合物O7.2mg(0.014mmol) を乾燥メタノール 0.2mlに溶解し、これに28%ナトリウムメトキシドのメタノール溶液2μl(0.01mmol) を加え室温で1.5時間攪拌した。反応終了後、減圧下に乾固し、乾固物をシリカゲルカラムクロマトグラフィー(シリカG 0.5g,クロロホルム/アセトン=2/1)に付し、下式で示される目的物
.1mg(0.009mmol, 62.0mol%) を得た。
【0064】
【化24
Figure 0003561546
【0065】
中間化合物Pの物性
無色固体、〔α〕D +10.3°(c0.95,CHCl3)
TLC(シリカG,クロロホルム/アセトン=2/1)Rf=0.20〜0.28
NMR(400MHz,acetone-d6,TMS)
δ 3.84(1H,dd,J=10,5Hz),3.97(1H,dd,J=7.5,6Hz),4.01(1H,dd,J=10,3.5Hz),4.06(1H,dd,J=7.5,7.5Hz),4.30(1H,m),4.52(1H,d,J=12Hz),4.54(1H,d,J=12Hz),4.63(1H,d,J=11Hz),4.79(1H,d,J=6Hz),4.85(1H,d,J=11Hz),4.92(1H,d,J=11Hz),5.01(1H,d,J=11Hz),6.95(1H,s),7.19(1H,s),7.2〜7.5(15H,m)
IR(NaCl):νcm-1(%T)
(56),3030(54), 2908(56), 2869(53), 1493(58), 1452(57), 1361(62),1311(65), 1282(69),1207(69), 1144(54), 1114(50), 1084(49), 1053(53),1028(55), 736(50), 698(51)
MS:(FAB+)m/z471(M+1)
【0066】
(例16)
中間化合物Qの合成
アルゴン雰囲気下、(中間化合物N)0.141g(0.30mmol)およびトリn-ブチルフォスフィン 112μl(0.45mmol) の乾燥テトラヒドロフラン 1.5ml溶液に4%アジ化水素酸−トルエン溶液558μg(0.45mmol) およびジエチルアゾジカルボメート71μl(0.45mmol) を加え、室温にて30分間攪拌した。反応終了後、減圧下に乾固し、シリカゲルカラムクロマトグラフィー(シリカG35g,ベンゼン/酢酸エチル=3/1)に付し、下式で示される目的物 0.104g(0.210mmol, 70.0mol%)を得た。
【0067】
【化25
Figure 0003561546
【0068】
中間化合物Qの物性
油状物質、〔α〕D +58.8°(c1.06,CHCl3)
TLC(シリカG,ベンゼン/酢酸エチル=3/1) Rf=0.32〜0.40
NMR(270MHz,CDCl3 TMS)
δ
.68(1H,dd,J=10,5Hz),3.79(1H,dd,J=10,3.5Hz),3.88(1H,dd,J=8,7Hz),3.96(1H,dd,J=7,7Hz),4.15(1H,ddd,J=8,5,3.5Hz),4.39(1H,d,J=12Hz),4.45(1H,d,J=12Hz),4.55(1H,d,J=12Hz),4.73(1H,d,J=7Hz),4.80(1H,d,J=11Hz),4.88(1H,d,J=11Hz),4.89(1H,d,J=12Hz),7.02(1H,d,J=1.5Hz),7.13(1H,d,J=1.5Hz),7.2〜7.4(15H,m)
IR(NaCl):νcm-1(%T)
(76),2914(73), 2868(71), 2103(45), 1794(79), 1494(75), 1482(76),1453(67), 1362(70),1312(75), 1279(70), 1260(70), 1209(71), 1140(65),1094(53), 1025(71), 738(58),698(57)
【0069】
(例17)
中間化合物Rの合成
中間化合物Q0.102g(0.206mmol)、酢酸5mlおよび10%パラジウム−炭素0.137gを、室温にて水素圧4気圧で15時間攪拌した。反応終了後、メタノールで希釈し遠心分離した後上澄み液をろ過し、さらに沈殿物をメタノールで3回洗浄し同じく上澄み液をろ過し、ろ液を減圧下に乾固し、水で2回共沸乾固し、下式で示される目的物57.9mgを得た。
【0070】
【化26
Figure 0003561546
【0071】
中間化合物Rの物性
TLC(シリカG,クロロホルム/メタノール=1/1, I2 )Rf=0.00〜0.25
NMR(400MHz,CD3OD,TMS)
δ
.70(1H,dd,J=9,8Hz),3.88(1H,dd,J=8,8Hz),3.92(1H,m),3.95(1H,dd,J=12,4Hz),4.05(1H,d,J=9Hz),4.18(1H,dd,J=12,2Hz),7.06(1H,d,J=1.5Hz),7.34(1H,d,J=1.5Hz)
【0072】
(例18)
中間化合物Sの合成
アルゴン雰囲気下、中間化合物N 0.131g(0.280mmol)およびトリn-ブチルフォスフィン83.8μl(0.336mmol)の乾燥THF溶液に安息香酸41.1mg(0.336mmol)
およびジエチルアゾジカルボメート53.0μl(0.336mmol)の乾燥テトラヒドロフラン溶液を加え、室温にて30分間攪拌した。反応終了後、減圧下に乾固し、シリカゲルカラムクロマトグラフィー(シリカG27g, ベンゼン/酢酸エチル=3/1)に付し、下式で示される目的物 0.140g(0.243mmol, 87.3mol%)を得た。
【0073】
【化27
Figure 0003561546
【0074】
中間化合物Sの物性
固体、〔α〕D +70.9°(c1.06,CHCl3)
TLC(シリカG,ベンゼン/酢酸エチル=3/1) Rf=0.25〜0.37
NMR(270MHz,CDCl3 , TMS)
δ
.74(1H,dd,J=10,6Hz),3.83(1H,dd,J=10,4Hz),4.03(1H,dd,J=6,6Hz),4.25(1H,dd,J=6,5Hz),4.41(1H,ddd,J=6,6,4Hz),4.44(1H,d,J=12Hz),4.49(1H,d,J=12Hz),4.50(1H,d,J=12Hz),4.71(1H,d,J=12Hz),4.77(1H,d,J=12Hz),4.88(1H,d,J=12Hz),6.39(1H,d,J=5Hz),7.08(1H,d,J=1.5Hz),7.1〜7.6(19H,m),7.9〜8.1(2H,m)
IR(NaCl):νcm-1(%T)
(29),3030(22), 2923(23), 2914(23), 2868(20), 1723(8), 1601(47),1492(22), 1451(12),
(20), 1338(26), 1314(17), 1266(7), 1209(27),1178(24), 1155(25), 1107(8),
(8), 1072(8), 1025(14), 743(10),712(11), 699(9)
【0075】
(例19)
中間化合物Pの合成
中間化合物S0.140g(0.243mmol)を乾燥メタノール 3.4mlに溶解し、これに28%ナトリウムメトキシドのメタノール溶液30μl(0.15mmol) を加え室温で1.5時間攪拌した。反応終了後、減圧下に乾固し、乾固物をシリカゲルカラムクロマトグラフィー(シリカG 10g, クロロホルム/アセトン=2/1)に付し、前記、化24として示される化合物
.114g(0.242mmol, 99.4mol%)を得た。
【0076】
(例20)
本発明化合物イの合成中間化合物H 0.119g(0.254mmol)、酢酸5mlおよび10%パラジウム−炭素0.15gを、室温にて水素圧4気圧で15時間攪拌した。反応終了後、メタノールで希釈し遠心分離した後上澄み液をろ過し、さらに沈澱物をメタノールで3回洗浄し同じく上澄み液をろ過し、ろ液を減圧下に乾固し、水で2回共沸乾固した。乾固物をメタノールに溶解し強塩基性陰イオン交換樹脂(IRA400)を通過させて酢酸を除き、溶液を減圧下に乾固した。得られた乾固物をシリカゲルカラムクロマトグラフィー(シリカG6g,クロロホルム/メタノール=1/1)に付し、下式で示される目的物 0.046g(0.227mmol,89.2mol%) を得た。
【0077】
【化28
Figure 0003561546
【0078】
本品の物性は分析の結果、次のとおりであった。
固体、mp= 〜80℃、〔α〕D+29.2°(c1.6,CH3OH)
TLC(シリカG,クロロホルム/メタノール=1/1, I2) Rf=0.00〜0.25
NMR(270MHz,CD3OD,TMS)
δ
.87(1H,dd,J=7,2Hz),4.03(2H,d,J=5Hz),4.23(1H,dt,J=5,4Hz),4.38(1H,dd,J=4,2Hz),4.76(1H.d,J=7Hz),7.05(1H,d,J=1Hz),7.36(1H,d,J=1Hz)
IR(KBr):νcm-1(%T)
(12),1638(72), 1489(59), 1450(63), 1360(73), 1305(67), 1264(71),1144(61), 1113(41),1086(45), 1065(43), 1051(41), 750(64), 686(66)
MS:(FAB+)m/z201(M+1)
【0079】
(例21)
本発明発明物ロの合成
中間化合物P0.102g(0.228mmol)、酢酸5mlおよび10%パラジウム−炭素0.15gを、室温にて水素圧4気圧で15時間攪拌した。以下、例20と同様の後処理を行い、下式で示される目的物0.041g(0.206mmol, 95.6mol%)を得た。
【0080】
【化29
Figure 0003561546
【0081】
本品の物性は、分析の結果次のとおりであった。
無色固体、mp=169〜174
℃、〔α〕D −8.0 °(c0.97,CH3OH)
TLC(シリカG,クロロホルム/メタノール=1/1, I2 Rf=0.00〜0.17
NMR(270MHz,D2O)
δ
.85(1H,dd,J=10,9Hz),3.98(1H,J=10,9Hz),4.11(1H,dd,J=13,3Hz),4.12(1H,m),4.27(1H,dd,J=13,3Hz),4.72(1H,d,J=9Hz),7.30(1H,d,J=1.5Hz),7.43(1H,d,J=1.5Hz)
IR(KBr):νcm-1(%T)
(7),2913(47), 1491(52), 1448(60), 1419(59), 1319(58), 1268(67),1198(76), 1178(77),1118(42), 1089(44), 1069(48), 1057(48), 1029(46),749(62), 651(68)
MS:(FAB+)m/z201(M+1)
【0082】
(例22)
本発明の参考化合物ハの合成
中間化合物J0.164g(0.349mmol)、酢酸 3.2mlおよび10%パラジウム−炭素0.20gを、室温にて水素圧4気圧で15時間攪拌した。以下、例20と同様の後処理を行い、下式で示される目的物53.1mg(0.266mmol,76.3mol%)を得た。
【0083】
【化30
Figure 0003561546
【0084】
本品の物性は、分析の結果次のとおりであった。
固体、mp= 〜80℃、〔α〕D+25.3°(c1.8,CH3OH)
TLC(シリカG,クロロホルム/メタノール=1/1, I2) Rf=0.00〜0.25
NMR(400MHZ,CD3OD, TMS)
δ
.04(1H,dd,J=4,2Hz),4.07(1H,dd,J=12,6Hz),4.09(1H,dd,J=12,4Hz),4.21(1H,ddd,J=6,4,4Hz),4.34(1H,dd,J=4,2Hz),4.82(1H,d,J=4Hz),7.12(1H,d,J=1.5Hz),7.43(1H,d,J=1.5Hz)
IR(KBr):νcm-1(%T)
(26),2926(47), 1641(73), 1486(67), 1444(70), 1266(73), 1100(59),1057(58), 1048(63),768(72)
MS:(FAB+)m/z201(M+1)
【0085】
(例23)
本発明化合物ニの合成
中間化合物N0.107g(0.227mmol)、酢酸5mlおよび10%パラジウム−炭素0.15gを、室温にて水素圧4気圧で15時間攪拌した。以下、例20と同様の後処理を行い、下式で示される目的物0.042g(0.209mmol,91.9mol%)を得た。
【0086】
【化31
Figure 0003561546
【0087】
本品の物性は、分析の結果次のとおりであった。
無色固体、mp=111〜114
℃、〔α〕D −36.2°(c1.01,CH3OH)
TLC(シリカG,クロロホルム/メタノール=1/1 Rf=0.00〜0.37
NMR(270MHz,pyridine-d5 ,TMS)
δ
.39(1H,dd,J=13,4Hz),4.40(1H,dd,J=7.5,4Hz),4.41(1H,dd,J=13,4Hz),4.76(1H,ddd,J=9,4,4Hz),5.04(1H,dd,J=9,7.5Hz),5.66(1H,d,J=4Hz),7.39(1H,d,J=1.5Hz),7.78(1H,d,J=1.5Hz)
IR(KBr):νcm-1(%T)
(1),2924(29), 2862(30), 1638(55), 1490(30), 1442(34), 1422(37),1372(49), 1327(47),1281(37), 1182(58), 1133(32), 1096(12), 1067(18),1012(52), 900(33), 816(55),762(27), 720(36)
MS:(FAB+)m/z201(M+1)
【0088】
(例24)
本発明化合物ホの合成
中間化合物L33.7mg(0.17mmol)をメタノール 0.4mlに溶解し、この溶液に無水酢酸 172μl 加え室温で1時間攪拌した。反応終了後、減圧下に乾固し、少量の水を加えさらに共沸乾固した。乾固物をメタノールに溶解し強塩基性陰イオン交換樹脂(IRA400)を通過させて酢酸を除き、溶液を減圧下に乾固した。得られた乾固物をシリカゲルカラムクロマトグラフィー(シリカG4g、クロロホルム/メタノール=1/1)に付し、下式で示される目的物 33.4g(0.129mmol,76.0 mol%) を得た。
【0089】
【化32
Figure 0003561546
【0090】
本品の物性は、分析の結果次のとおりであった。
無色固体、mp=210〜212℃、(分解)、〔α〕D +75.8°(c1.1,CH3OH)
TLC(シリカG,クロロホルム/メタノール=1/1, I2) Rf=0.32〜0.40
NMR(270MHz,CD3OD,TMS)
δ
.07(3H,s,Ac),4.10(2H,d,J=6Hz),4.15(1H,dd,J=9,2Hz),4.34(1H,m),4.37(1H,dd,J=2,2Hz),5.08(1H,d,J=9Hz),7.39(1H,d,J=2Hz),7.78(1H,d,J=2Hz)
IR(KBr):νcm-1(%T)
(38),1639(51), 1557(63), 1487(77), 1442(78), 1374(77), 1115(72),1057(76)
MS:(FAB+)m/z242(M+1)
【0091】
(例25)
本発明化合物ヘの合成
中間化合物R57.9mgをメタノール0.58mlに溶解し、この溶液に無水酢酸0.270mlを加え室温で1時間攪拌した。以下、例24と同様の後処理を行い、下式で示される目的物17.6mg(0.073mmol, 35.4mol%)を得た。
【0092】
【化33
Figure 0003561546
【0093】
本品の物性は、分析の結果次のとおりであった。
無色固体、mp=249〜251℃、(decomp.) 、〔α〕D +52.6°(c0.90,H2O)
TLC(シリカG,クロロホルム/メタノール=1/1, I2) Rf=0.34〜0.43
NMR(500MHz,pyridine-d5 ,TMS)
δ
.11(3H,s,Ac),4.34(1H,ddd,J=9,5,2.5Hz),4.40(1H,dd,J=11,5Hz),4.44(1H,dd,J=9,9Hz),4.57(1H,dd,J=9,9Hz),4.66(1H,dd.J=11,2.5Hz),5.85(1H,dd,J=9,9Hz),7.35(1H,d,J=1.5Hz),7.68(1H,d,J=1.5Hz),9.17(1H,d,J=9Hz)
IR(KBr):νcm-1(%T)
(30),3308(21), 3072(50), 2911(61), 2854(61), 1659(12), 1565(26),1479(50), 1244(50),1135(54), 1103(45), 1052(50), 1003(51), 770(50),730(67), 690(65)
MS:(FAB+)m/z242(M+1)
【0094】
【発明の効果】
本発明化合物の酵素活性スクリーニング試験の結果は、表1に示したものであり、優れた糖加水分解酵素阻害活性が認められ、これらの化合物は抗肥満薬、抗糖尿病薬などとして有用なものである。
【0095】
【表1】
Figure 0003561546
[0001]
[Industrial applications]
The present invention relates to a 5,6,7,8-tetrahydro-imidazo [1,2-a] pyridine compound having excellent sugar hydrolase inhibitory activity and useful as an antiobesity agent, an antidiabetic agent and the like.
[0002]
2. Description of the Related Art As a substance having such a medicinal effect, there is known a naturally occurring Nagstatin represented by the following formula.
[Change1]
Figure 0003561546
[0003]
Nagstatin is a compound isolated from a culture of streptomyces amakusaensis MG846-fF3, which is superior to N-acetyl-β-D-glucosaminidase (NAG-ase). It has inhibitory activity (Journal of Antibiotics, 45, 1404, 1992). NAG-ase, an exoglycosidase that cleaves N-acetyl-β-D-glucosamine from glycoproteins and glycolipids, has been reported to be localized in lysosomes and increase in activity during diseases such as diabetes, leukemia and cancer. ing. This increase in activity is also an indicator of liver disease and pregnancy. NAG-ase
It is important to investigate the behavior of intractable diseases such as nephritis and immune deficiency in addition to the above-mentioned diseases, and in this case, the action of specific inhibitors such as nagstatin is indispensable. It is thought that it will become. In addition, no studies have been reported on the synthesis of a complex condensed bicyclic compound containing an imidazole ring, and it has been difficult to obtain an analog having a nagstatin skeleton in which an imidazole ring and a saccharide are condensed.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to mass-produce substances having a sugar hydrolase inhibitory activity at low cost by chemical synthesis.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of such circumstances, and as a result, using an L-ribose or L-xylose derivative as a starting material, a nucleophilic reaction of an imidazole derivative at each C-1 position was performed. By the intramolecular nucleophilic substitution reaction between the introduced imidazole moiety and the hydroxyl group of the sugar chain, it has become possible to stereoselectively synthesize the nagstatin analog which is a nitrogen-containing saccharide containing an imidazole ring, and these compounds are They have found that they have inhibitory activity against various glucosidases, and have accomplished the present invention.
[0006]
The present invention provides a 6,7,8-trihydroxy-5-hydroxymethyl-5,6,7,8-tetrahydroimidazo [1,2-a] pyridine compound represented by the following structural formula and 8-acetamide The present invention relates to a -6,7-dihydroxy-5-hydroxymethyl-5,6,7,8-tetrahydroimidazo [1,2-a] pyridine compound.
[Change2]
Figure 0003561546
[0007]
Compound of the present invention(A, b, d, e, f) and the reference compound of the present invention (c)Are as follows.
[Change3]
Figure 0003561546
Hereinafter, this is referred to as Compound A of the present invention.
[0008]
Physical properties of compound A of the present invention
Solid, mp = ~ 80 ℃, [α]D
+ 29.2 ° (c1.6, CHThreeOH)
TLC (silica G,
Chloroform / methanol = 1/1, ITwo ) Rf = 0.00 to 0.25
NMR (270 MHz, CDThreeOD, TMS)
δ
.87 (1H, dd, J = 7.2Hz), 4.03 (2H, d, J = 5Hz), 4.23 (1H, dt, J = 5,4Hz), 4.38 (1H, dd, J = 4,2Hz) , 4.76 (1H, d, J = 7Hz), 7.05 (1H, d, J = 1Hz), 7.36 (1H, d, J = 1Hz)
IR (KBr): νcm-1(% T)
(12), 1638 (72), 1489 (59), 1450 (63), 1360 (73), 1305 (67), 1264 (71), 1144 (61), 1113 (41), 1086 (45), 1065 (43), 1051 (41), 750 (64), 686 (66) MS: (FAB +) m / z 201 (M + 1)
[0009]
[Change4]
Figure 0003561546
Hereinafter, this is referred to as Compound B of the present invention.
[0010]
Physical Properties of Compound B of the Present Invention
Colorless solid, mp = 169-174
° C, [α]D −8.0 ° (c0.97, CHThreeOH)
TLC (silica G, chloroform / methanol = 1/1, ITwo ) Rf = 0.00 to 0.17
NMR (270 MHz, DTwoO)
δ
.85 (1H, dd, J = 10,9Hz), 3.98 (1H, J = 10,9Hz), 4.11 (1H, dd, J = 13,3Hz), 4.12 (1H, m), 4.27 (1H, dd , J = 13,3Hz), 4.72 (1H, d, J = 9Hz), 7.30 (1H, d, J = 1.5Hz), 7.43 (1H, d, J = 1.5Hz) IR (KBr): νcm-1(% T)
(7), 2913 (47), 1491 (52), 1448 (60), 1419 (59), 1319 (58), 1268 (67), 1198 (76), 1178 (77), 1118 (42), 1089 (44), 1069 (48), 1057 (48), 1029 (46), 749 (62), 651 (68) MS: (FAB +) m / z 201 (M + 1)
[0011]
[Change5]
Figure 0003561546
Hereinafter, this is referred to as the present invention.ReferenceIt is called Compound C.
[0012]
The present inventionReferencePhysical properties of compound C
Solid, mp = ~ 80 ℃, [α]D
+ 25.3 ° (c1.8, CHThreeOH)
TLC (silica G, chloroform / methanol = 1/1, ITwo ) Rf = 0.00 to 0.25
NMR (400 MHz, CDThreeOD, TMS)
δ
.04 (1H, dd, J = 4,2Hz), 4.07 (1H, dd, J = 12,6Hz), 4.09 (1H, dd, J = 12,4Hz), 4.21 (1H, ddd, J = 6, 4,4Hz), 4.34 (1H, dd, J = 4,2Hz), 4.82 (1H, d, J = 4Hz), 7.12 (1H, d, J = 1.5Hz), 7.43 (1H, d, J = 1.5 Hz)
IR (KBr): νcm-1(% T)
(26), 2926 (47), 1641 (73), 1486 (67), 1444 (70), 1266 (73), 1100 (59), 1075 (58), 1048 (63), 768 (72) MS: (FAB +) m / z 201 (M + 1)
[0013]
[Change6]
Figure 0003561546
Hereinafter, this is referred to as Compound (d) of the present invention.
[0014]
Physical properties of the compound of the present invention
Colorless solid, mp = 111-114
° C, [α]D −36.2 ° (c1.01, CHThreeOH)
TLC (silica G, chloroform / methanol = 1/1)
Rf = 0.00-0.37
NMR (270 MHz, pyridine-dFive, TMS)
δ
.39 (1H, dd, J = 13,4Hz), 4.40 (1H, dd, J = 7.5,4Hz), 4.41 (1H, dd, J = 13,4Hz), 4.76 (1H, ddd, J = 9, 4,4Hz), 5.04 (1H, dd, J = 9,75Hz), 5.66 (1H, d, J = 4Hz), 7.39 (1H, d, J = 1.5Hz), 7.78 (1H, d, J = 1.5 Hz)
IR (KBr): νcm-1(% T)
(1), 2924 (29), 2862 (30), 1638 (55), 1490 (30), 1442 (34), 1422 (37), 1372 (49), 1327 (47), 1281 (37), 1182 (58), 1133 (32), 1096 (12), 1067 (18), 1012 (52), 900 (33), 816 (55), 762 (27), 720 (36)
MS: (FAB +) m / z 201 (M + 1)
[0015]
[Change7]
Figure 0003561546
This is hereinafter referred to as Compound E of the present invention.
[0016]
Physical properties of compound e of the present invention
Colorless solid, mp = 210-212
° C (decomposition), [α]D + 75.8 ° (c1.1, CHThreeOH)
TLC (silica G, chloroform / methanol = 1/1, ITwo ) Rf = 0.32 to 0.40
NMR (270 MHz, CDThreeOD, TMS)
δ
.07 (3H, s, Ac), 4.10 (2H, d, J = 6Hz), 4.15 (1H, dd, J = 9,2Hz), 4.34 (1H, m), 4.37 (1H, dd, J = 2 , 2Hz), 5.08 (1H, d, J = 9Hz), 7.39 (1H, d, J = 2Hz), 7.78 (1H, d, J = 2Hz)
IR (KBr): νcm-1(% T)
(38), 1639 (51), 1557 (63), 1487 (77), 1442 (78), 1374 (77), 1115 (72), 1057 (76)
MS: (FAB +) m / z 242 (M + 1)
[0017]
[Change8]
Figure 0003561546
Hereinafter, this is referred to as the compound of the present invention.
[0018]
Physical properties of the compound of the present invention
Colorless solid, mp = 249-251
° C, (decomp.), [Α]D + 52.6 ° (c0.90, HTwoO)
TLC (silica G, chloroform / methanol = 1/1, ITwo ) Rf = 0.34 to 0.43
NMR (500 MHz, pyridine-dFive , TMS)
δ
.11 (3H, s, Ac), 4.34 (1H, ddd, J = 9,5,2.5Hz), 4.40 (1H, dd, J = 11,5Hz), 4.44 (1H, dd, J = 9,9Hz ), 4.57 (1H, dd, J = 9,9Hz), 4.66 (1H, dd.J = 11,2.5Hz), 5.85 (1H, dd, J = 9,9Hz), 7.35 (1H, d, J = 1.5Hz), 7.68 (1H, d, J = 1.5Hz), 9.17 (1H, d, J = 9Hz, NH)
IR (KBr): νcm-1(% T)
(30), 3308 (21), 3072 (50), 2911 (61), 2854 (61), 1659 (12), 1565 (26), 1479 (50), 1244 (50), 1135 (54), 1103 (45), 1052 (50), 1003 (51), 770 (50), 730 (67), 690 (65)
MS: (FAB +) m / z 242 (M + 1)
[0019]
【Example】
(Example 1)
Synthesis of intermediate compounds A and B
Under an argon atmosphere, to a solution consisting of 1.98 g (6.38 mmol) of N-trityl imidazole and 80 ml of dry tetrahydrofuran (hereinafter referred to as THF) was added 4.01 ml (6.42 mmol) of a 1.6 Mn-butyllithium-hexane solution at −5 ° C. After stirring for 10 minutes, then a solution consisting of 1.21 g (2.90 mmol) of 2,3,5-tri-O-benzyl-L-ribofuranose and 8 ml of dry THF was added at 0 ° C. and stirred for a further 30 minutes. After completion of the reaction, a small amount of dry ice was added to the system, and then 20 ml of a saturated saline solution was added thereto for liquid separation, and the organic layer was dried under reduced pressure. The dried product was subjected to silica gel column chromatography (silica G 160 g, benzene / ethyl acetate = 1/1), and 0.821 g (1.12 mmol, 38.7 L-allose derivative represented by the following formula (hereinafter referred to as intermediate compound B)) mol%)
Got.
[0020]
[Change9]
Figure 0003561546
[0021]
Next, the other components of the reaction mixture were again subjected to silica gel column chromatography (120 g of silica G, chloroform / ethyl acetate = 2/1) to give an L-altrose derivative represented by the following formula (hereinafter referred to as intermediate compound A). ) 0.994 g (1.36 mmol, 46.9 mol%).
[Change10]
Figure 0003561546
[0022]
Physical properties of the intermediate compound A
Solid, mp = 62-67 ° C, [α]D −111.8 ° (c1.0, CHClThree)
TLC (silica G, benzene / ethyl acetate = 1/1) Rf = 0.61-0.7
NMR (270 MHz, CDClThree TMS)
δ
.98 (1H, br.d, J = 6Hz), 3.54 (1H, dd, J = 10,6Hz), 3.59 (1H, dd, J = 10,4Hz), 3.83 (1H, dd, J = 8, 2Hz), 3.92 (1H, ddd, J = 8,6,4Hz), 4.00 (1H, dd, J = 8,2Hz), 4.25 (1H, d, J = 11Hz), 4.43 (1H, d, J = 11Hz), 4.45 (1H, d, J = 12Hz), 4.51 (1H, d, J = 12Hz), 4.52 (2H, s), 4.53 (dd, J = 8,6Hz), 6.83 (1H, d, J = 2Hz), 7.09 (1H, d, J = 2Hz), 7.0 ~ 7.4 (30H, m)
IR (KBr): νcm-1(% T)
(69), 3357 (72), 3059 (66), 3028 (60), 2858 (56), 1493 (35), 1448 (26), 1215 (55), 1089 (19), 1069 (18), 1029 (36), 1000 (55), 906 (69), 746 (12), 699 (7), 642 (53)
MS: (FAB +) m / z 731 (M + 1)
[0023]
Physical properties of the intermediate compound B
Colorless crystal, mp = 132.5-133.5
° C, (AcOEt), [α]D −31.0 ° (c1.05, CHClThree)
TLC (silica G, benzene / ethyl acetate = 1/1) Rf = 0.38-0.50
NMR (270 MHz, CDClThree , TMS)
δ
.86 (1H, dd, J = 8,2Hz), 3.29 (1H, dd, J = 10,2Hz), 3.39 (1H, dd, J = 10,7Hz), 3.45 (1H, d, J = 10Hz) , 3.50 (1H, dd, J = 8,4Hz), 3.82 (1H, ddd, J = 7,4,2Hz), 3.87 (1H, d, J = 10Hz), 4.05 (1H, d, J = 10Hz) , 4.17 (1H, d, J = 10Hz), 4.37 (1H, d, J = 10Hz), 4.45 (1H, d, J = 12Hz), 4.50 (1H, dd, J = 10,2Hz), 4.51 (1H , d, J = 12Hz), 6.9 ~ 6.7 (3H, m), 7.0 ~ 7.4 (29H, m)
IR (KBr): νcm-1(% T)
(75), 1493 (80), 1448 (77), 1102 (64), 1030 (76), 746 (59), 700 (51)
MS: (FAB +) m / z 731 (M + 1)
[0024]
(Example 2)
Synthesis of intermediate compounds C and D
Under an argon atmosphere, to a solution consisting of 1.53 g (4.94 mmol) of N-trityl imidazole and 70 ml of dry THF, 3.10 ml (4.96 mmol) of a 1.6 Mn-butyllithium-hexane solution was added at -10 ° C, stirred for 10 minutes, and then A solution consisting of 1.02 g (2.42 mmol) of 2,3,5-tri-O-benzyl-L-xylofuranose and 8 ml of dry THF was added at -10 ° C and stirred for another 30 minutes. After completion of the reaction, a small amount of dry ice was added to the system, and then 20 ml of a saturated saline solution was added thereto for liquid separation, and the organic layer was dried under reduced pressure. The dried product was subjected to silica gel column chromatography (Silica G 550 g, benzene / ethyl acetate = 1/2) to give 0.497 g (0.681 mmol, 28.0 g) of an L-growth derivative (hereinafter referred to as an intermediate compound C) represented by the following formula. mol%) and 0.161 g (0.22 mmol, 9.1 mol%) of an L-idose derivative (hereinafter referred to as intermediate compound D).
[0025]
The structural formula of the intermediate compound C is as follows:
[Change11]
Figure 0003561546
[0026]
The structural formula of the intermediate compound D is as follows.
[Change12]
Figure 0003561546
[0027]
Physical properties of intermediate compound C
Colorless solid, mp = 40-44 ° C, [α]D −55.1 ° (c0.87, CHClThree)
TLC (silica G, benzene / ethyl acetate = 1/2) Rf = 0.58 to 0.73
NMR (400 MHz, CDClThree , TMS)
δ
.01 (1H, br.d, J = 4Hz, OH), 3.45 (2H, d, J = 6Hz), 3.74 (1H, dd, J = 4,3.5Hz), 3.98 (1H, dt, J = 6 , 4Hz), 4.15 (1H, dd, J = 9,3.5HzC3-H), 4.40 (2H, s), 4.43 (1H, d, J = 12Hz), 4.48 (1H, d, J = 12Hz), 4.48 (1H, d, J = 10Hz), 4.51 (1H, br.dd, J = 9,4Hz), 4.59 (1H, d, J = 10Hz), 6.85 (1H, d, J = 2Hz), 6.9 ~ 7.4 (31H, m)
IR (KBr): νcm-1(% T)
(62), 3060 (65), 3029 (64), 2864 (69), 1493 (58), 1448 (48), 1228 (68), 1121 (51), 1088 (45), 1068 (40), 1029 (55), 747 (31), 699 (18)
MS: (FAB +) m / z 731 (M + 1)
[0028]
Physical properties of intermediate compound D
Colorless solid, mp = 43-46 ° C, [α]D + 18.0 ° (c1.21, CHClThree)
TLC (silica G, benzene / ethyl acetate = 1/2) Rf = 0.65 to 0.79
NMR (400 MHz, acetone-d6, TMS)
δ
.19 (1H, dd, J = 6.5,2.5Hz), 3.25 (1H, dd, J = 6.5,2.5Hz), 3.32 (1H, dd, J = 9,6.5Hz), 3.37 (1H, dd, J = 9,6.5Hz), 3.49 (1H, d, J = 6.5Hz), 3.54 (1H, m), 3.58 (1H, d, J = 9Hz), 4.32 (1H, d, J = 11.5Hz), 4.34 (1H, dd, J = 9,2.5Hz), 4.35 (1H, J = 10.5Hz), 4.37 (1H, d, J = 12Hz), 4.41 (1H, d, J = 11.5Hz), 4.43 (1H, d, J = 12Hz), 4.52 (1H, d, J = 10.5Hz), 6.82 (1H, d, J = 1.5Hz), 7.05 (1H.d, J = 1.5Hz), 7.1 ~ 7.4 (30H, m )
IR (KBr): νcm-1(% T)
(36), 3059 (42), 3029 (41), 2918 (52), 2862 (45), 1598 (75), 1493 (28), 1449 (20), 1394 (55), 1359 (58), 1227 (41), 1177 (61), 1116 (13), 1065 (17), 1030 (27), 1003 (52), 907 (69), 748 (7), 700 (3), 641 (66)
MS: (FAB +) m / z 731 (M + 1)
[0029]
(Example 3)
Synthesis of intermediate compound E
To a solution consisting of 1.01 g (1.39 mmol) of the L-allose derivative (intermediate compound B) and 30 ml of pyridine was added 0.397 g (2.08 mmol) of benzylsulfonyl chloride at 0 ° C., followed by stirring at 0 ° C. for 1 hour. After completion of the reaction, 0.1 ml of ethanol was added, and the mixture was stirred for 10 minutes, concentrated under reduced pressure, then a small amount of toluene was added, and the mixture was azeotropically dried under reduced pressure. The dried product was subjected to silica gel column chromatography (silica G 50 g, benzene / ethyl acetate = 4/1) to obtain 1.02 g (1.14 mmol, 82.7 mol%) of the target product represented by the following formula.
[0030]
[ChangeThirteen]
Figure 0003561546
[0031]
Physical properties of intermediate compound E
Solid, mp = ~ 60 ° C, [α]D
−43.7 ° (c1.4, CHClThree )
TLC (silica G, benzene / ethyl acetate = 4/1) Rf = 0.53-0.60
NMR (400 MHz, CDClThree , TMS)
δ
.50 (1H, d, J = 10Hz), 3.20 (1H, dd, J = 12,2Hz), 3.54 (1H, dd, J = 12,9Hz), 3.73 (1H, dd, J = 10,2Hz) , 3.74 (1H, d, J = 10Hz), 4.03 (1H, d, J = 10Hz), 4.07 (1H, dJ = 10z), 4.31 (2H, s), 4.37 (1H, d, J = 10Hz), 4.42 (1H, J = 12Hz), 4.45 (1H, d, J = 12Hz), 4.46 (1H, s), 5.08 (1H, ddd, J = 9,2,2Hz), 6.7-6.8 & 7.0-7.5 ( 32H, m)
IR (KBr): νcm-1(% T)
(74), 3029 (71), 2922 (82), 2864 (80), 1493 (47), 1449 (43), 1361 (42), 1329 (62), 1218 (55), 1174 (35), 1098 (28), 1030 (39), 1001 (68), 909 (41), 747 (25), 699 (12)
MS: (FAB +) m / z 885 (M + 1)
[0032]
(Example 4)
Synthesis of intermediate compound F
L-growth derivative (intermediate compoundC) To a solution consisting of 1.11 g (1.52 mmol) and 34 ml of pyridine was added 0.444 g (2.33 mmol) of benzylsulfonyl chloride at -10 ° C, and the mixture was stirred at -10 ° C for 30 minutes. After completion of the reaction, 1 ml of a saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was stirred for 10 minutes, concentrated under reduced pressure, then a small amount of toluene was added, and the mixture was azeotropically dried under reduced pressure. After the dried product was extracted with 30 ml of ethyl acetate, the extract was dried under reduced pressure. The dried product was subjected to silica gel column chromatography (silica G 120 g, benzene / ethyl acetate = 4/1) to obtain 1.05 g (1.23 mmol, 81.1 mol%) of the target product represented by the following formula.
[0033]
[Change14]
Figure 0003561546
[0034]
Physical properties of intermediate compound F
Colorless solid, mp = 66-69 ° C, [α]D −66.4 ° (c1.06, CHClThree)
TLC (silica G, benzene / ethyl acetate = 3/1) Rf = 0.48-0.55
NMR (270 MHz, CDClThree , TMS)
δ
.96 (1H, br.J = 5Hz, OH), 3.65 (1H, dd, J = 12,6Hz), 3.74 (1H, dd, J = 12,3Hz), 4.04 (1H, dd, J = 8, 2Hz), 4.14 (1H, d, J = 14Hz), 4.19 (1H, dd, J = 8,2Hz), 4.28 (1H, d, J = 14Hz), 4.10 (1H, d, J = 11Hz), 4.42 (2H, d, J = 12Hz), 4.47 (1H, d, J = 12Hz), 4.49 (1H, d, J = 11Hz), 4.54 (1H, dd, J = 8,4Hz), 4.58 (1H, d , J = 12Hz), 5.04 (1H, ddd, J = 8,6,3Hz), 6.82 (1H, d, J = 2Hz), 6.9 ~ 7.4 (37H, m)
IR (KBr): νcm-1(% T)
(60), 3446 (63), 3060 (68), 3030 (67), 2925 (74), 2863 (75), 1493 (57), 1449 (50), 1361 (42), 1173 (40), 1122 (52), 1086 (45), 1071 (43), 1028 (57), 914 (50), 747 (33), 700 (15),
[0035]
(Example 5)
Synthesis of intermediate compound G
A system consisting of 0.224 g (0.25 mmol) of a benzylsulfonyl compound (intermediate compound E), 5 ml of pyridine and 0.4 ml of acetic anhydride was heated and stirred at 60 ° C. for 1.5 hours. After completion of the reaction, 0.5 ml of ethanol was added to the system, and the mixture was stirred at room temperature for 10 minutes, and then concentrated under reduced pressure. The concentrate was dissolved in ethyl acetate and neutralized with a saturated aqueous solution of sodium hydrogen carbonate, and the organic layer was concentrated under reduced pressure. The dried product is subjected to silica gel column chromatography (
The resulting product was subjected to 11 g of Rishika G, benzase / ethyl acetate = 1/1) to obtain 0.127 g (0.249 mmol, 98.3 mol%) of the target compound represented by the following formula as a syrup.
[0036]
[ChangeFifteen]
Figure 0003561546
[0037]
Physical properties of intermediate compound G
Oily substance [α]D + 75.0 ° (c1.4, CHClThree)
TLC (silica G, benzene / ethyl acetate = 1/2) Rf = 0.53-0.59
NMR (270 MHz, CDClThree , TMS)
δ
.06 (3H, s, Ac), 3.81 (1H, dd, J = 10,8Hz), 3.98 (1H, dd, J = 5,2Hz), 4.00 (1H, dd, J = 10,3Hz), 4.21 (1H, dd, J = 6.2Hz), 4.45 (1H, ddd, J = 8,6.3Hz), 4.49 (2H, s), 4.57 (1H, d, J = 12Hz), 4.69 (1H, d , J = 12Hz), 4.70 (1H, d, J = 12Hz), 4.76 (1H, d, J = 12Hz), 6.22 (1H, d, J = 5Hz), 7.08 (1H, d, J = 1Hz), 7.15 (1H, d, J = 1Hz), 7.2 ~ 7.4 (15H, m)
IR (NaCl): νcm-1(% T)
(73), 3030 (66), 2922 (67), 2871 (64), 1744 (38), 1493 (64), 1452 (52), 1367 (46), 1304 (64), 1227 (34), 1093 (39), 1079 (40), 1044 (45), 1026 (45), 967 (69), 740 (43), 698 (42)
MS: (FAB +) m / z 513 (M + 1)
[0038]
(Example 6)
Synthesis of intermediate compound H
0.485 g (0.947 mmol) of the intermediate compound G was dissolved in 10 ml of dry methanol, and 29 μl (0.24 mmol) of a 28% sodium methoxide methanol solution was added thereto, followed by stirring at room temperature for 1.5 hours. After completion of the reaction, the residue was dried under reduced pressure, and the dried product was subjected to silica gel column chromatography (silica G 50 g, chloroform / acetone = 2/1) to obtain 0.427 g (0.906 mmol, 95.7 mmol) of the target product represented by the following formula. mol%).
[0039]
[Change16]
Figure 0003561546
[0040]
Physical properties of intermediate compound H
Colorless crystal, mp = 112-113
° C, (hexane / AcOEt = 1/1), [α]D + 38.6 ° (c1.0, CHClThree)
TLC (silica G, chloroform / acetone = 2/1) Rf = 0.26-0.35
NMR (270 MHz, CDClThree , TMS)
δ
.84 (1H, dd, J = 10,7.5Hz), 3.94 (1H, dd, J = 10,3Hz), 4.02 (1H, dd, J = 5.5,2Hz), 4.35 (1H, dd, J = 5 , 2Hz), 4.39 (1H, ddd, J = 7.5,5,3Hz), 4.49 (2H, s), 4.64 (1H, dJ = 12Hz), 4.75 (1H, d, J = 12Hz), 4.82 (1H, d, J = 12Hz), 4.87 (1H, d, J = 12Hz), 5.17 (1H, d, J = 5.5Hz), 6.98 (1H, d, J = 1.5Hz), 7.10 (1H, d, J = 1.5Hz), 7.2-7.6 (15H, m)
IR (KBr): νcm-1(% T)
(46), 2898 (48), 2862 (48), 1495 (41), 1467 (47), 1451 (33), 1366 (38), 1327 (47), 1311 (53), 1289 (58), 1234 (61), 1210 (65), 1180 (59), 1128 (12), 1101 (8), 1052 (34), 1023 (29), 1006 (40), 966 (67), 934 (65), 907 (69), 733 (6), 694 (14)
MS: (FAB +) m / z 471 (M + 1)
[0041]
(Example 7)
Synthesis of intermediate compound I
To a solution consisting of 0.535 g (0.733 mmol) of the L-altrose derivative (intermediate compound A) and 15 ml of pyridine was added 0.279 g (1.46 mmol) of benzylsulfonyl chloride at -15 ° C, and the mixture was stirred at -15 ° C for 1 hour. Then, 0.5 ml of acetic anhydride was added to the system, and the mixture was stirred at 0 ° C for 1 hour, and further heated and stirred at 60 ° C for 1.5 hours. Next, the same post-treatment as in Example 5 was performed to obtain 0.179 g (0.350 mmol, 47.9 mol%) of the target product represented by the following formula.
[0042]
[Change17]
Figure 0003561546
[0043]
Physical properties of intermediate compound I
Oily substance [α]D −3.0 ° (c1.05, CHClThree)
TLC (silica G, benzene / ethyl acetate = 1/2) Rf = 0.40-0.46
NMR (270 MHz, CDClThree , TMS)
δ
.93 (1H, dd, J = 10,8Hz), 3.97 (1H, dd, J = 10,4Hz), 4.09 (1H, dd, J = 5,2Hz), 4.21 (1H, dd, J = 4, 2Hz), 4.35 (1H, ddd, J = 8, 4, 4Hz), 4.65 (1H, d, J = 12Hz), 4.66 (1H, d, J = 12Hz), 4.76 (1H, d, J = 12Hz) , 4.80 (1H, d, J = 12Hz), 6.25 (1H, d, J = 5Hz), 7.18 (1H, s), 7.20 (1H, s),
.2 to 7.4 (15H, m) IR (NaCl): νcm-1(% T)
(72), 3061 (59), 3030 (55), 2918 (56), 2870 (53), 1735 (44), 1494 (60), 1482 (62), 1452 (53),
(51), 1306 (62), 1233 (46), 1136 (55), 1117 (50), 1098 (50), 1073 (48), 1023 (52),
(52), 698 (52) MS: (FAB +) m / z 513 (M + 1).
[0044]
(Example 8)
Synthesis of intermediate compound J
Intermediate compound I
.181 g (0.353 mmol) was dissolved in 10 ml of methanol, and 15 μl (0.07 mmol) of a 28% methanol solution of sodium methoxide was added thereto, followed by stirring at room temperature for 1.5 hours. After completion of the reaction, the residue was dried under reduced pressure, and the dried product was subjected to silica gel column chromatography (silica G 10 g, chloroform / acetone = 2/1) to obtain 0.139 g (0.296 mmol, 83.6 mmol) of the target product represented by the following formula. mol%).
[0045]
[Change18]
Figure 0003561546
[0046]
Physical properties of intermediate compound J
Colorless crystals, mp = 77-78 ° C, (heaxane / AcOEt = 3/1), (a) D -78 ° (cl.O, CHClThree)
TLC (silica G, chloroform / acetone = 2/1) Rf = 0.25-0.36
NMR (270 MHz, CDClThree , TMS)
δ
.90 (2H, d, J = 6Hz), 3.97 (1H, dd, J = 4,2Hz), 4.24 (1H, dd, J = 5,2Hz), 4.30 (1H, dt, J = 6,5Hz) , 4.51 (1H, d, J = 12Hz), 4.54 (1H, d, J = 12Hz), 4.67 (1H, d, J = 12Hz), 4.72 (1H, d, J = 12Hz), 4.90 (1h, d , J = 12Hz), 4.92 (1H, d, J = 12Hz), 5.02 (1H, d, J = 4Hz), 7.07 (1H, d, J = 2Hz), 7.11 (1H, d, J = 2Hz), 7.2 to 7.4 (15H, m)
IR (KBr): νcm-1(% T)
(17), 3029 (14), 2880 (16), 2864 (15), 1493 (18), 1452 (14), 1406 (51), 1356 (22), 1334 (33), 1302 (35), 1265 (34), 1208 (41), 1139 (15), 1120 (5), 1077 (1), 1026 (13), 933 (64), 733 (1), 697 (4)
MS: (FAB +) m / z 471 (M + 1)
[0047]
(Example 9)
Synthesis of intermediate compound K
Under an argon atmosphere, a solution of 60.5 mg (0.127 mmol) of the intermediate compound J and 38.1 μl (0.152 mmol) of tri-n-butylphosphine in 6 ml of dry THF was mixed with 189 μg (0.153 mmol) of a 4% hydroazideic acid-toluene solution and diethylazodicarboate. 24.1 μl (0.152 mmol) of mate was added, and the mixture was stirred at room temperature for 30 minutes. After completion of the reaction, the residue was dried under reduced pressure and subjected to silica gel column chromatography (silica G 5 g, benzene / ethyl acetate = 5/1) to give 37.4 mg (0.076 mmol, 59.1 mol%) of the desired product represented by the following formula. Obtained.
[0048]
[Change19]
Figure 0003561546
[0049]
Physical properties of intermediate compound K
Oily substance [α]D + 98.1 ° (c1.2, CHClThree)
TLC (silica G, benzene / ethyl acetate = 5/1) Rf = 0.38-0.50
NMR (270 MHz, CDClThree , TMS)
δ
.81 (1H, dd, J = 7,1.5Hz), 3.83 (2H, d, J = 6Hz), 4.24 (1H, dd, J = 4,1.5Hz), 4.28 (1H, dt, J = 6, 4Hz), 4.49 (1H, d, J = 12Hz), 4.52 (1H, d, J = 12Hz), 4.62 (1H, d, J = 12Hz), 4.74 (1H, d, J = 12Hz), 4.77 (1H , d, J = 12Hz), 4.84 (1H, d, J = 12Hz), 5.00 (1H, d, J = 7Hz), 7.07 (1H, d, J = 1Hz), 7.11 (1H, d, J = 1Hz) ), 7.2-7.4 (15H, m)
IR (NaCl): νcm-1(% T)
(71), 3030 (61), 2910 (56), 2870 (52), 2105 (22), 1792 (47), 1727 (67), 1495 (55), 1481 (57), 1453 (46), 1359 (48), 1300 (48), 1259 (41), 1209 (45), 1117 (35), 1094 (30), 1026 (48), 738 (35), 698 (36)
MS: (FAB +) m / z 496 (M + 1)
[0050]
(Example 10)
Synthesis of intermediate compound K
Under an atmosphere of argon, a solution of 0.120 g (0.255 mmol) of the intermediate compound H and 78.0 μl (0.306 mmol) of tri-n-butylphosphine in 12 ml of dry THF was added with 473 μg (0.506 mmol) of a 4% hydroazide acid-toluene solution and diethylazodicarbohydrate. 49 μl (0.306 mmol) of mate was added, and the mixture was stirred at room temperature for 30 minutes. After completion of the reaction, the reaction mixture was dried under reduced pressure and subjected to silica gel column chromatography (silica G 5 g, benzene / ethyl acetate = 5/1) to obtain 88 mg (0.178 mmol, 69.2 mol%) of the desired product.
[0051]
(Example 11)
Synthesis of intermediate compound L
0.171 g (0.345 mmol) of the intermediate compound K, 4 ml of acetic acid and 0.22 g of 10% palladium-carbon were stirred at room temperature under a hydrogen pressure of 4 atm for 15 hours. After completion of the reaction, the reaction mixture was diluted with methanol and centrifuged, and the supernatant was filtered. The precipitate was further washed with methanol three times, and the supernatant was filtered again. The filtrate was dried under reduced pressure, and washed twice with water. The residue was evaporated to dryness to obtain 67.0 mg of the desired product represented by the following formula.
[0052]
[Change20]
Figure 0003561546
[0053]
Physical properties of intermediate compound L
TLC (silica G, chloroform / methanol = 1/1, ITwo ) Rf = 0.00-0.27
NMR (270 MHz, CDThreeOD, TMS)
δ
.09 (1H, dd, J = 12,7Hz), 4.13 (1H, dd, J = 12,4.5Hz), 4.29 (1H, dd, J = 9.5,2Hz), 4.42 (1H, dd, J = 2 , 2Hz), 4.52 (1H, m), 4.83 (1H, d, J = 9.5Hz), 7.74 (1H, d, J = 1.5Hz), 8.06 (1H, d, J = 1.5Hz)
[0054]
(Example 12)
Synthesis of Intermediate Compound M
A system consisting of 0.997 g (1.16 mmol) of a benzylsulfonyl compound (intermediate compound F), 20 ml of pyridine and 2 ml of acetic anhydride was heated and stirred at 50 ° C. for 8 hours. Subsequently, the same post-treatment as in Example 5 was performed to obtain 0.501 g (0.980 mmol, 84.0 mol%) of the target product represented by the following formula as a syrup.
[0055]
[Change21]
Figure 0003561546
[0056]
Physical properties of intermediate compound M
Oily substance, [α]D −50.2 ° (c0.96, CHClThree)
TLC (silica G, benzene / ethyl acetate = 1/1) Rf = 0.42-0.48
NMR (270 MHz, acetone-d6, TMS)
δ
.84 (3H, s, Ac), 3.83 (1H, dd, J = 10,5Hz), 4.04 (1H, dd, J = 10,3Hz), 4.16 (1H, dd, J = 8.5,4Hz), 4.24 (1H, ddd, J = 7,5,3Hz), 4.29 (1H, dd, J = 8.5,7Hz), 4.51 (1H, d, J = 11Hz), 4.57 (1H, d, J = 11Hz), 4.63 (1H, d, J = 11Hz), 4.66 (1H, d, J = 11Hz), 4.87 (1H, d, J = 11Hz), 4.92 (1H, d, J = 11Hz), 6.50 (1H, d, J = 4Hz), 6.98 (1H, d, J = 1.5Hz), 7.2 ~ 7.5 (16H, m)
IR (NaCl): νcm-1(% T)
(64),
(55), 2922 (57), 2868 (50), 1742 (22), 1493 (49), 1452 (42), 1367 (34), 1311 (59), 1228 (22), 1106 (25), 1080 (30), 1029 (33), 947 (50), 738 (30), 699 (30)
MS: (FAB +) m / z 513 (M + 1)
[0057]
(Example 13)
Synthesis of intermediate compound N
0.157 g (0.307 mmol) of the intermediate compound M was dissolved in 4 ml of dry methanol, and 15 μl (0.07 mmol) of a 28% methanol solution of sodium methoxide was added thereto, followed by stirring at room temperature for 1.5 hours. After completion of the reaction, the residue was dried under reduced pressure. The dried product was subjected to silica gel column chromatography (silica G 10 g, chloroform / acetone = 2/1) to obtain 0.134 g (0.285 mmol,
.0 mol%).
[0058]
[Change22]
Figure 0003561546
[0059]
Physical properties of intermediate compound N
Colorless crystal, mp = 116.5-117.5
° C, (hexane / EtOAc = 2/1), [α]D −4.0 ° (c0.95, CHClThree)
TLC (silica G, chloroform / acetone = 2/1) Rf = 0.14 to 0.30
NMR (270 MHz, CDClThree , TMS)
δ
.69 (1H, dd, J = 10,6Hz), 3.79 (1H, dd, J = 10,3.5Hz), 3.96 (1H, dd, J = 8,4Hz), 4.15 (1H, ddd, J = 6 , 6,3.5Hz), 4.20 (1H, dd, J = 8,6Hz), 4.44 (1H, d, J = 12Hz), 4.49 (1H, d, J = 12Hz), 4.60 (1H, d, J = 11Hz), 4.72 (1H, d, J = 12Hz), 4.83 (1H, d, J = 12Hz), 4.92 (1H, d, J = 11Hz), 5.13 (1H, d, J = 4Hz), 7.01 (1H , d, J = 1.5Hz), 7.10 (1H, d, J = 1.5Hz), 7.2 ~ 7.4 (15H, m)
IR (KBr): νcm-1(% T)
(75), 2890 (73), 2861 (71), 1453 (79), 1143 (70), 1117 (54), 1084 (55), 1051 (66), 736 (51), 697 (60)
MS: (FAB +) m / z 471 (M + 1)
[0060]
(Example 14)
Synthesis of intermediate compound O
To a solution consisting of 0.106 g (0.146 mmol) of the L-idose derivative (intermediate compound D) and 3 ml of pyridine was added 0.052 g (0.274 mmol) of benzylsulfonyl chloride at -15 ° C, followed by stirring at -15 ° C for 1 hour. Next, 0.2 ml of acetic anhydride was added to the system, and the mixture was stirred at 0 ° C for 1 hour, and further heated and stirred at 60 ° C for 1.5 hours. Thereafter, the same post-treatment as in Example 5 was performed, and the target product represented by the following formula
.016 g (0.031 mmol, 21.4 mol%) was obtained.
[0061]
[Change23]
Figure 0003561546
[0062]
Physical properties of intermediate compound O
Oily substance
TLC (silica G, benzene / ethyl acetate = 1/1) Rf = 0.35-0.38
NMR (400 MHz, CDClThree , TMS)
δ
.08 (3H, s, Ac), 3.70 (1H, dd, J = 10,6Hz), 3.79 (1H, dd, J = 10,4Hz), 3.96 (1H, dd, J = 7,7Hz), 4.08 (1H, dd, J = 7,6Hz), 4.27 (1H, ddd, J = 7,6,4Hz), 4.43 (1H, d, J = 12Hz), 4.46 (1H, d, J = 12Hz), 4.52 (1H, d, J = 11.5Hz), 4.76 (1H, d, J = 11.5Hz), 4.77 (1H, d, J = 11.5Hz), 4.81 (1H, d, J = 11.5Hz), 6.11 (1H , d, J = 6Hz), 7.04 (1H, d, J = 1Hz), 7.11 (1H, d, J = 1Hz), 7.15 ~ 7.4 (15H, m)
[0063]
(Example 15)
Synthesis of intermediate compound P
7.2 mg (0.014 mmol) of the intermediate compound O was dissolved in 0.2 ml of dry methanol, and 2 μl (0.01 mmol) of a 28% methanol solution of sodium methoxide was added thereto, followed by stirring at room temperature for 1.5 hours. After completion of the reaction, the residue is dried under reduced pressure, and the dried product is subjected to silica gel column chromatography (silica G 0.5 g, chloroform / acetone = 2/1) to give the target compound represented by the following formula
.1 mg (0.009 mmol, 62.0 mol%) were obtained.
[0064]
[Change24]
Figure 0003561546
[0065]
Physical properties of intermediate compound P
Colorless solid, [α]D + 10.3 ° (c0.95, CHClThree)
TLC (silica G, chloroform / acetone = 2/1) Rf = 0.20-0.28
NMR (400MHz, acetone-d6, TMS)
δ 3.84 (1H, dd, J = 10,5Hz), 3.97 (1H, dd, J = 7.5,6Hz), 4.01 (1H, dd, J = 10,3.5Hz), 4.06 (1H, dd, J = 7.5 , 7.5Hz), 4.30 (1H, m), 4.52 (1H, d, J = 12Hz), 4.54 (1H, d, J = 12Hz), 4.63 (1H, d, J = 11Hz), 4.79 (1H, d , J = 6Hz), 4.85 (1H, d, J = 11Hz), 4.92 (1H, d, J = 11Hz), 5.01 (1H, d, J = 11Hz), 6.95 (1H, s), 7.19 (1H, s), 7.2-7.5 (15H, m)
IR (NaCl): νcm-1(% T)
(56), 3030 (54), 2908 (56), 2869 (53), 1493 (58), 1452 (57), 1361 (62), 1311 (65), 1282 (69), 1207 (69), 1144 (54), 1114 (50), 1084 (49), 1053 (53), 1028 (55), 736 (50), 698 (51)
MS: (FAB +) m / z 471 (M + 1)
[0066]
(Example 16)
Synthesis of intermediate compound Q
Under an argon atmosphere, a solution of 0.14 g (0.30 mmol) of (intermediate compound N) and 112 μl (0.45 mmol) of tri-n-butylphosphine in 1.5 ml of dry tetrahydrofuran was treated with 558 μg (0.45 mmol) of a 4% hydroazide acid-toluene solution and diethyl ether. 71 μl (0.45 mmol) of azodicarbonate was added, and the mixture was stirred at room temperature for 30 minutes. After completion of the reaction, the reaction product was dried under reduced pressure and subjected to silica gel column chromatography (silica G 35 g, benzene / ethyl acetate = 3/1) to give 0.104 g (0.210 mmol, 70.0 mol%) of the target product represented by the following formula. Obtained.
[0067]
[Change25]
Figure 0003561546
[0068]
Physical properties of intermediate compound Q
Oily substance, [α]D + 58.8 ° (c1.06, CHClThree)
TLC (silica G, benzene / ethyl acetate = 3/1) Rf = 0.32-0.40
NMR (270 MHz, CDClThree TMS)
δ
.68 (1H, dd, J = 10,5Hz), 3.79 (1H, dd, J = 10,3.5Hz), 3.88 (1H, dd, J = 8,7Hz), 3.96 (1H, dd, J = 7 , 7Hz), 4.15 (1H, ddd, J = 8,5,3.5Hz), 4.39 (1H, d, J = 12Hz), 4.45 (1H, d, J = 12Hz), 4.55 (1H, d, J = 12Hz), 4.73 (1H, d, J = 7Hz), 4.80 (1H, d, J = 11Hz), 4.88 (1H, d, J = 11Hz), 4.89 (1H, d, J = 12Hz), 7.02 (1H , d, J = 1.5Hz), 7.13 (1H, d, J = 1.5Hz), 7.2-7.4 (15H, m)
IR (NaCl): νcm-1(% T)
(76), 2914 (73), 2868 (71), 2103 (45), 1794 (79), 1494 (75), 1482 (76), 1453 (67), 1362 (70), 1312 (75), 1279 (70), 1260 (70), 1209 (71), 1140 (65), 1094 (53), 1025 (71), 738 (58), 698 (57)
[0069]
(Example 17)
Synthesis of intermediate compound R
0.102 g (0.206 mmol) of the intermediate compound Q, 5 ml of acetic acid and 0.137 g of 10% palladium-carbon were stirred at room temperature under a hydrogen pressure of 4 atm for 15 hours. After completion of the reaction, the reaction mixture was diluted with methanol and centrifuged, and the supernatant was filtered. The precipitate was further washed with methanol three times, and the supernatant was filtered again. The filtrate was dried under reduced pressure, and washed twice with water. The residue was evaporated to dryness to obtain 57.9 mg of the desired product represented by the following formula.
[0070]
[Change26]
Figure 0003561546
[0071]
Physical properties of intermediate compound R
TLC (silica G, chloroform / methanol = 1/1, ITwo ) Rf = 0.00-0.25
NMR (400 MHz, CDThreeOD, TMS)
δ
.70 (1H, dd, J = 9,8Hz), 3.88 (1H, dd, J = 8,8Hz), 3.92 (1H, m), 3.95 (1H, dd, J = 12,4Hz), 4.05 (1H , d, J = 9Hz), 4.18 (1H, dd, J = 12,2Hz), 7.06 (1H, d, J = 1.5Hz), 7.34 (1H, d, J = 1.5Hz)
[0072]
(Example 18)
Synthesis of intermediate compound S
Under an argon atmosphere, 41.1 mg (0.336 mmol) of benzoic acid was added to a dry THF solution of 0.131 g (0.280 mmol) of the intermediate compound N and 83.8 μl (0.336 mmol) of tri-n-butylphosphine.
Then, a solution of 53.0 μl (0.336 mmol) of diethylazodicarbamate in dry tetrahydrofuran was added, and the mixture was stirred at room temperature for 30 minutes. After completion of the reaction, the reaction product was dried under reduced pressure and subjected to silica gel column chromatography (silica G 27 g, benzene / ethyl acetate = 3/1) to give 0.140 g (0.243 mmol, 87.3 mol%) of the target product represented by the following formula. Obtained.
[0073]
[Change27]
Figure 0003561546
[0074]
Physical properties of intermediate compound S
Solid, [α]D + 70.9 ° (c1.06, CHClThree)
TLC (silica G, benzene / ethyl acetate = 3/1) Rf = 0.25-0.37
NMR (270 MHz, CDClThree , TMS)
δ
.74 (1H, dd, J = 10,6Hz), 3.83 (1H, dd, J = 10,4Hz), 4.03 (1H, dd, J = 6,6Hz), 4.25 (1H, dd, J = 6, 5Hz), 4.41 (1H, ddd, J = 6,6,4Hz), 4.44 (1H, d, J = 12Hz), 4.49 (1H, d, J = 12Hz), 4.50 (1H, d, J = 12Hz) , 4.71 (1H, d, J = 12Hz), 4.77 (1H, d, J = 12Hz), 4.88 (1H, d, J = 12Hz), 6.39 (1H, d, J = 5Hz), 7.08 (1H, d , J = 1.5Hz), 7.1 ~ 7.6 (19H, m), 7.9 ~ 8.1 (2H, m)
IR (NaCl): νcm-1(% T)
(29), 3030 (22), 2923 (23), 2914 (23), 2868 (20), 1723 (8), 1601 (47), 1492 (22), 1451 (12),
(20), 1338 (26), 1314 (17), 1266 (7), 1209 (27), 1178 (24), 1155 (25), 1107 (8),
(8), 1072 (8), 1025 (14), 743 (10), 712 (11), 699 (9)
[0075]
(Example 19)
Synthesis of intermediate compound P
0.140 g (0.243 mmol) of the intermediate compound S was dissolved in 3.4 ml of dry methanol, and 30 μl (0.15 mmol) of a 28% methanol solution of sodium methoxide was added thereto, followed by stirring at room temperature for 1.5 hours. After completion of the reaction, the residue was dried under reduced pressure, and the dried product was subjected to silica gel column chromatography (silica G 10 g, chloroform / acetone = 2/1) to obtain the above compound.24Compound shown as
.114 g (0.242 mmol, 99.4 mol%) were obtained.
[0076]
(Example 20)
0.119 g (0.254 mmol) of Intermediate Compound H, 5 ml of acetic acid and 0.15 g of 10% palladium-carbon were stirred at room temperature under a hydrogen pressure of 4 atm for 15 hours. After completion of the reaction, the mixture was diluted with methanol, centrifuged, and the supernatant was filtered. The precipitate was further washed with methanol three times, and the supernatant was filtered again. The filtrate was dried under reduced pressure, and then washed twice with water. Boil to dryness. The dried product was dissolved in methanol and passed through a strongly basic anion exchange resin (IRA400) to remove acetic acid, and the solution was dried under reduced pressure. The resulting dried product was subjected to silica gel column chromatography (silica G: 6 g, chloroform / methanol = 1/1) to obtain 0.046 g (0.227 mmol, 89.2 mol%) of the target compound represented by the following formula.
[0077]
[Change28]
Figure 0003561546
[0078]
As a result of analysis, the physical properties of this product were as follows.
Solid, mp = ~ 80 ° C, [α]D+ 29.2 ° (c1.6, CHThreeOH)
TLC (silica G, chloroform / methanol = 1/1, ITwo) Rf = 0.00 to 0.25
NMR (270 MHz, CDThreeOD, TMS)
δ
.87 (1H, dd, J = 7.2Hz), 4.03 (2H, d, J = 5Hz), 4.23 (1H, dt, J = 5,4Hz), 4.38 (1H, dd, J = 4,2Hz) , 4.76 (1H.d, J = 7Hz), 7.05 (1H, d, J = 1Hz), 7.36 (1H, d, J = 1Hz)
IR (KBr): νcm-1(% T)
(12), 1638 (72), 1489 (59), 1450 (63), 1360 (73), 1305 (67), 1264 (71), 1144 (61), 1113 (41), 1086 (45), 1065 (43), 1051 (41), 750 (64), 686 (66)
MS: (FAB +) m / z 201 (M + 1)
[0079]
(Example 21)
Synthesis of compound b of the present invention
0.102 g (0.228 mmol) of the intermediate compound P, 5 ml of acetic acid and 0.15 g of 10% palladium-carbon were stirred at room temperature under a hydrogen pressure of 4 atm for 15 hours. Thereafter, the same post-treatment as in Example 20 was performed to obtain 0.041 g (0.206 mmol, 95.6 mol%) of the target product represented by the following formula.
[0080]
[Change29]
Figure 0003561546
[0081]
Physical properties of this product were as follows as a result of the analysis.
Colorless solid, mp = 169-174
° C, [α]D −8.0 ° (c0.97, CHThreeOH)
TLC (silica G, chloroform / methanol = 1/1, ITwo Rf = 0.00-0.17
NMR (270 MHz, DTwoO)
δ
.85 (1H, dd, J = 10,9Hz), 3.98 (1H, J = 10,9Hz), 4.11 (1H, dd, J = 13,3Hz), 4.12 (1H, m), 4.27 (1H, dd , J = 13,3Hz), 4.72 (1H, d, J = 9Hz), 7.30 (1H, d, J = 1.5Hz), 7.43 (1H, d, J = 1.5Hz)
IR (KBr): νcm-1(% T)
(7), 2913 (47), 1491 (52), 1448 (60), 1419 (59), 1319 (58), 1268 (67), 1198 (76), 1178 (77), 1118 (42), 1089 (44), 1069 (48), 1057 (48), 1029 (46), 749 (62), 651 (68)
MS: (FAB +) m / z 201 (M + 1)
[0082]
(Example 22)
The present inventionReferenceSynthesis of compound C
0.164 g (0.349 mmol) of the intermediate compound J, 3.2 ml of acetic acid and 0.20 g of 10% palladium-carbon were stirred at room temperature under a hydrogen pressure of 4 atm for 15 hours. Thereafter, the same post-treatment as in Example 20 was carried out to obtain 53.1 mg (0.266 mmol, 76.3 mol%) of the target product represented by the following formula.
[0083]
[Change30]
Figure 0003561546
[0084]
The physical properties of this product were as follows as a result of the analysis.
Solid, mp = ~ 80 ° C, [α]D+ 25.3 ° (c1.8, CHThreeOH)
TLC (silica G, chloroform / methanol = 1/1, ITwo) Rf = 0.00 to 0.25
NMR (400 MHz, CDThreeOD, TMS)
δ
.04 (1H, dd, J = 4,2Hz), 4.07 (1H, dd, J = 12,6Hz), 4.09 (1H, dd, J = 12,4Hz), 4.21 (1H, ddd, J = 6, 4,4Hz), 4.34 (1H, dd, J = 4,2Hz), 4.82 (1H, d, J = 4Hz), 7.12 (1H, d, J = 1.5Hz), 7.43 (1H, d, J = 1.5 Hz)
IR (KBr): νcm-1(% T)
(26), 2926 (47), 1641 (73), 1486 (67), 1444 (70), 1266 (73), 1100 (59), 1057 (58), 1048 (63), 768 (72)
MS: (FAB +) m / z 201 (M + 1)
[0085]
(Example 23)
Synthesis of compound d of the present invention
0.107 g (0.227 mmol) of the intermediate compound N, 5 ml of acetic acid and 0.15 g of 10% palladium-carbon were stirred at room temperature under a hydrogen pressure of 4 atm for 15 hours. Thereafter, the same post-treatment as in Example 20 was performed to obtain 0.042 g (0.209 mmol, 91.9 mol%) of the target product represented by the following formula.
[0086]
[Change31]
Figure 0003561546
[0087]
The physical properties of this product were as follows as a result of the analysis.
Colorless solid, mp = 111-114
° C, [α]D −36.2 ° (c1.01, CHThreeOH)
TLC (silica G, chloroform / methanol = 1/1 Rf = 0.00-0.37
NMR (270 MHz, pyridine-dFive , TMS)
δ
.39 (1H, dd, J = 13,4Hz), 4.40 (1H, dd, J = 7.5,4Hz), 4.41 (1H, dd, J = 13,4Hz), 4.76 (1H, ddd, J = 9, 4,4Hz), 5.04 (1H, dd, J = 9,7.5Hz), 5.66 (1H, d, J = 4Hz), 7.39 (1H, d, J = 1.5Hz), 7.78 (1H, d, J = 1.5Hz)
IR (KBr): νcm-1(% T)
(1), 2924 (29), 2862 (30), 1638 (55), 1490 (30), 1442 (34), 1422 (37), 1372 (49), 1327 (47), 1281 (37), 1182 (58), 1133 (32), 1096 (12), 1067 (18), 1012 (52), 900 (33), 816 (55), 762 (27), 720 (36)
MS: (FAB +) m / z 201 (M + 1)
[0088]
(Example 24)
Synthesis of compound e of the present invention
33.7 mg (0.17 mmol) of the intermediate compound L was dissolved in 0.4 ml of methanol, and 172 μl of acetic anhydride was added to this solution, followed by stirring at room temperature for 1 hour. After completion of the reaction, the mixture was dried under reduced pressure, a small amount of water was added, and the mixture was further azeotropically dried. The dried product was dissolved in methanol and passed through a strongly basic anion exchange resin (IRA400) to remove acetic acid, and the solution was dried under reduced pressure. The resulting dried product was subjected to silica gel column chromatography (4 g of silica G, chloroform / methanol = 1/1) to obtain 33.4 g (0.129 mmol, 76.0 mol%) of a target product represented by the following formula.
[0089]
[Change32]
Figure 0003561546
[0090]
The physical properties of this product were as follows as a result of the analysis.
Colorless solid, mp = 210-212 ° C, (decomposition), [α]D + 75.8 ° (c1.1, CHThreeOH)
TLC (silica G, chloroform / methanol = 1/1, ITwo) Rf = 0.32 to 0.40
NMR (270 MHz, CDThreeOD, TMS)
δ
.07 (3H, s, Ac), 4.10 (2H, d, J = 6Hz), 4.15 (1H, dd, J = 9,2Hz), 4.34 (1H, m), 4.37 (1H, dd, J = 2 , 2Hz), 5.08 (1H, d, J = 9Hz), 7.39 (1H, d, J = 2Hz), 7.78 (1H, d, J = 2Hz)
IR (KBr): νcm-1(% T)
(38), 1639 (51), 1557 (63), 1487 (77), 1442 (78), 1374 (77), 1115 (72), 1057 (76)
MS: (FAB +) m / z 242 (M + 1)
[0091]
(Example 25)
Synthesis of the compound of the present invention
57.9 mg of the intermediate compound R was dissolved in 0.58 ml of methanol, and 0.270 ml of acetic anhydride was added to this solution, followed by stirring at room temperature for 1 hour. Thereafter, the same post-treatments as in Example 24 were performed to obtain 17.6 mg (0.073 mmol, 35.4 mol%) of the target product represented by the following formula.
[0092]
[Change33]
Figure 0003561546
[0093]
The physical properties of this product were as follows as a result of the analysis.
Colorless solid, mp = 249-251 ° C, (decomp.), (Α)D + 52.6 ° (c0.90, HTwoO)
TLC (silica G, chloroform / methanol = 1/1, ITwo) Rf = 0.34 to 0.43
NMR (500 MHz, pyridine-dFive , TMS)
δ
.11 (3H, s, Ac), 4.34 (1H, ddd, J = 9,5,2.5Hz), 4.40 (1H, dd, J = 11,5Hz), 4.44 (1H, dd, J = 9,9Hz ), 4.57 (1H, dd, J = 9,9Hz), 4.66 (1H, dd.J = 11,2.5Hz), 5.85 (1H, dd, J = 9,9Hz), 7.35 (1H, d, J = 1.5Hz), 7.68 (1H, d, J = 1.5Hz), 9.17 (1H, d, J = 9Hz)
IR (KBr): νcm-1(% T)
(30), 3308 (21), 3072 (50), 2911 (61), 2854 (61), 1659 (12), 1565 (26), 1479 (50), 1244 (50), 1135 (54), 1103 (45), 1052 (50), 1003 (51), 770 (50), 730 (67), 690 (65)
MS: (FAB +) m / z 242 (M + 1)
[0094]
【The invention's effect】
The results of the enzyme activity screening test of the compounds of the present invention are shown in Table 1, and excellent sugar hydrolase inhibitory activity was confirmed. These compounds are useful as antiobesity agents, antidiabetic agents and the like. is there.
[0095]
[Table 1]
Figure 0003561546

Claims (2)

構造式
Figure 0003561546
Figure 0003561546
あるいは
Figure 0003561546
として表される5,6,7,8−テトラヒドロ−イミダゾ〔1,2−a〕ピリジン化合物。
Structural formula
Figure 0003561546
Figure 0003561546
Or
Figure 0003561546
5,6,7,8-tetrahydro-imidazo [1,2-a] pyridine compound represented by the formula:
構造式
Figure 0003561546
あるいは
Figure 0003561546
として表される5,6,7,8−テトラヒドロ−イミダゾ〔1,2−a〕ピリジン化合物。
Structural formula
Figure 0003561546
Or
Figure 0003561546
5,6,7,8-tetrahydro-imidazo [1,2-a] pyridine compound represented by the formula:
JP01643095A 1995-01-06 1995-01-06 New 5,6,7,8-tetrahydro-imidazo [1,2-a] pyridine compounds Expired - Fee Related JP3561546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01643095A JP3561546B2 (en) 1995-01-06 1995-01-06 New 5,6,7,8-tetrahydro-imidazo [1,2-a] pyridine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01643095A JP3561546B2 (en) 1995-01-06 1995-01-06 New 5,6,7,8-tetrahydro-imidazo [1,2-a] pyridine compounds

Publications (2)

Publication Number Publication Date
JPH08188579A JPH08188579A (en) 1996-07-23
JP3561546B2 true JP3561546B2 (en) 2004-09-02

Family

ID=11916031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01643095A Expired - Fee Related JP3561546B2 (en) 1995-01-06 1995-01-06 New 5,6,7,8-tetrahydro-imidazo [1,2-a] pyridine compounds

Country Status (1)

Country Link
JP (1) JP3561546B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741340B2 (en) * 2003-11-12 2010-06-22 Amicus Therapeutics, Inc. Hydroxy piperidine derivatives to treat gaucher disease

Also Published As

Publication number Publication date
JPH08188579A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
US5338837A (en) Glycosylated steroid derivatives for transport across biological membranes and process for making same
JP3794618B2 (en) Aryl-substituted propanolamine derivative, process for producing the same, medicament containing the compound and use thereof
KR100319562B1 (en) Bile-acid derivative, process for preparation thereof and hypolipidemic agent containing the same
FUJITA et al. Fungal metabolites. Part 12. Potent immunosuppressant, 14-deoxomyriogin,(2s, 3r, 4r-(e) 2-amino-3, 4-dihydroxy-2-hydroxymethyleicos-6-enoic acid and structure-activity relationships of myriocin derivatives
JPH09202796A (en) New paclitaxel prodrug, production and use thereof in selective chemotherapy
JP2003518086A (en) Novel acyl-dipeptide-like compounds with additional functionalized side chains
NO166792B (en) SIALIC ACID DERIVATIVES AND BINDING CONTAINING LIKES.
US9481662B2 (en) Seriniquinones, melanoma-specific anticancer agents
JP3725198B2 (en) Pyripyropene derivative
JP2003528851A (en) Ceramide derivatives and methods of use
JPH11502860A (en) Sugar-modified cytostatic
US20230134986A1 (en) Glucose triptolide conjugates and uses thereof
JP3561546B2 (en) New 5,6,7,8-tetrahydro-imidazo [1,2-a] pyridine compounds
CN109096219A (en) A kind of novel anti-PD-L1 compound, its application and the composition containing it
DE69517191T2 (en) WATER-SOLUBLE DERIVATIVES EPIPODOPHYLLOTOXINS, METHOD FOR THE PRODUCTION THEREOF, THEIR USE AS A MEDICINE AND THEIR USE FOR THE PRODUCTION OF AN ANTICRECELLENT
CN115427396A (en) Compounds for preventing or treating lipid metabolism-related diseases
JP2006143716A (en) 2-thiaquinolizidine compound and its production method
JP4233262B2 (en) Carbasugar amine derivatives and glycosidase inhibitors using the same
JP3688337B2 (en) Pyripyropene derivative
AU618536B2 (en) Novel 3',4'-dinitrogen substituted epipodophyllotoxin glucoside derivatives
Uesato et al. Antitumor promoting activities of 3-O-acyl-(−)-epigallocatechins
PH26549A (en) Mannobiose derivatives
KR20010075511A (en) Propanolamine derivatives linked with bile acid used for treating disorders of the lipid metabolism
Li et al. Synthesis, anticancer activities, antimicrobial activities and bioavailability of berberine-bile acid analogues
US5693770A (en) Process for the manufacture of 3-amino-substituted glycosylated bile acids

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees