JP3561519B2 - New peptides and immunostimulants - Google Patents

New peptides and immunostimulants Download PDF

Info

Publication number
JP3561519B2
JP3561519B2 JP2003295576A JP2003295576A JP3561519B2 JP 3561519 B2 JP3561519 B2 JP 3561519B2 JP 2003295576 A JP2003295576 A JP 2003295576A JP 2003295576 A JP2003295576 A JP 2003295576A JP 3561519 B2 JP3561519 B2 JP 3561519B2
Authority
JP
Japan
Prior art keywords
peptide
amino acid
lactoferrin
acid sequence
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003295576A
Other languages
Japanese (ja)
Other versions
JP2004002471A (en
Inventor
功博 川崎
俊一 堂迫
恵子 志水
泰裕 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP2003295576A priority Critical patent/JP3561519B2/en
Publication of JP2004002471A publication Critical patent/JP2004002471A/en
Application granted granted Critical
Publication of JP3561519B2 publication Critical patent/JP3561519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、新規ペプチドおよびこのペプチドを有効成分とする免疫賦活剤に関する。   The present invention relates to a novel peptide and an immunostimulant containing the peptide as an active ingredient.

ラクトフェリン(LF)は、乳中に存在する鉄結合性の蛋白質として知られている。乳以外の種々の分泌液中にも存在し、関節腔内や血清などにも存在し、鉄と結合して溶液中の鉄イオンを奪うことで抗菌作用を示す。また、ラクトフェリンは抗菌活性の他に、ウイルスに対する結合性や老化防止効果を有するなどの活性が知られている。また、ラクトフェリンのアミノ酸配列の一部分に、鉄結合性と異なる抗菌活性があることが確認されている(例えば、特許文献1及び2参照)。このようにラクトフェリンには種々の活性が存在している。ラクトフェリンは、牛乳から大量に調製する方法が開発されている。例えば、ラクトフェリンに対して親和性を有する架橋型ポリサッカライドの硫酸エステルを用いて乳からラクトフェリンを回収する方法が開示されている(例えば、特許文献3参照)。このようにして得たラクトフェリンを用いることによって幾つかの新しい生理作用や詳細な構造が判明している。このようなラクトフェリンの構造と生理活性については島崎らが総説で説明している(例えば、非特許文献1参照)。また、ラクトフェリンが末梢血、特に好中球の貪食能を活性化し、免疫を向上させることが開示されている(例えば、特許文献4参照)。しかし、ラクトフェリン由来のペプチドがリンパ球のマイトージェン活性を誘導し免疫機能を賦活化することは知られていない。   Lactoferrin (LF) is known as an iron-binding protein present in milk. It is also present in various secretions other than milk, in joint cavities and in serum, etc., and exhibits antibacterial action by binding to iron and depriving the solution of iron ions. In addition, lactoferrin is known to have, in addition to antibacterial activity, activities such as binding to viruses and antiaging effects. In addition, it has been confirmed that a part of the amino acid sequence of lactoferrin has an antibacterial activity different from that of iron binding (for example, see Patent Documents 1 and 2). Thus, lactoferrin has various activities. A method for preparing lactoferrin in large amounts from milk has been developed. For example, a method of recovering lactoferrin from milk using a sulfated cross-linked polysaccharide having an affinity for lactoferrin is disclosed (for example, see Patent Document 3). Several new physiological actions and detailed structures have been found by using the lactoferrin thus obtained. Shimazaki et al. Described the structure and physiological activity of lactoferrin in a review (for example, see Non-Patent Document 1). Further, it is disclosed that lactoferrin activates the phagocytic activity of peripheral blood, particularly neutrophils, and improves immunity (for example, see Patent Document 4). However, it is not known that a lactoferrin-derived peptide induces lymphocyte mitogen activity and activates an immune function.

本発明者らはラクトフェリンを酵素分解処理に付すことにより、ラクトフェリンの構造中に存在するペプチドの生理活性を検討してきた。ラクトフェリンの構造中に存在する特定のペプチドが、抗HIV活性や、抗HTLVに対して作用し感染を抑制することを確認し、特許出願を行った(例えば、特許文献5及び6参照)。さらに、ラクトフェリンの酵素分解物について詳細に検討を行った結果、ラクトフェリンのアミノ酸配列中に存在する特定のペプチド構造を含むペプチドが、強いリンパ球のマイトージェン活性を有していることを見いだし、その作用について検討を行った結果、本発明を完成するに至った。
特開平5−78392号公報 特開平5−148296号公報 特開昭63−255300号公報 特開平5−178759号公報 特開平7−69915号公報 特開平7−206701号公報 島崎敬一他、バイオサイエンスとインダストリー,Vol.51, 25-27,1993
The present inventors have studied the physiological activity of a peptide present in the structure of lactoferrin by subjecting lactoferrin to an enzymatic degradation treatment. The inventors confirmed that a specific peptide present in the structure of lactoferrin acts on anti-HIV activity and anti-HTLV to suppress infection, and filed a patent application (for example, see Patent Documents 5 and 6). Furthermore, as a result of a detailed study of the enzymatic degradation product of lactoferrin, it was found that a peptide containing a specific peptide structure present in the amino acid sequence of lactoferrin has strong lymphocyte mitogenic activity. As a result, the present invention has been completed.
JP-A-5-78392 JP-A-5-148296 JP-A-63-255300 JP-A-5-178759 JP-A-7-69915 JP-A-7-206701 Keiichi Shimazaki et al., Bioscience and Industry, Vol.51, 25-27,1993

本発明はウシラクトフェリンのアミノ酸配列中に存在し、マイトージェン活性を有する新規ペプチドを提供することを課題とする。またこのようなペプチドを有効成分とする免疫賦活剤を提供することを課題とする。さらにはこのペプチドを有効成分とするサイトメガロウイルス感染防御剤を提供することを課題とする。   An object of the present invention is to provide a novel peptide which is present in the amino acid sequence of bovine lactoferrin and has mitogenic activity. Another object of the present invention is to provide an immunostimulant containing such a peptide as an active ingredient. Another object of the present invention is to provide a cytomegalovirus infection protective agent comprising this peptide as an active ingredient.

本発明者らは、ラクトフェリンの生理活性について検討を行った結果、ラクトフェリンの酵素分解物中に、強いマイトージェン活性と、強い抗腫瘍活性を有することを見いだした。   The present inventors have studied the physiological activity of lactoferrin, and as a result, have found that enzymatically degraded lactoferrin has strong mitogenic activity and strong antitumor activity.

ラクトフェリンをペプシン、トリプシン、キモトリプシン、パパイン(いずれもシグマ社製)を用いてラクトフェリン/酵素=100/1で37℃、1時間インキュベートした。インキュベート後、ペプシン分解物の反応液を中性に戻し、その他は80℃で5分間加熱することで反応を停止させた。生じた沈殿を遠心分離により除去し、上清を凍結乾燥してラクトフェリンの酵素分解物の粉末を得た。この酵素分解物を試料として以下の実施例に記載した方法でリンパ球の幼若化および抗腫瘍活性を測定したところ、これまで報告のない強い活性を有することを見いだした。この活性測定結果を下記の表1及び表2に示した。   Lactoferrin was incubated for 1 hour at 37 ° C. with lactoferrin / enzyme = 100/1 using pepsin, trypsin, chymotrypsin and papain (all manufactured by Sigma). After the incubation, the reaction solution of the pepsin degradation product was returned to neutral, and the other reaction was stopped by heating at 80 ° C. for 5 minutes. The resulting precipitate was removed by centrifugation, and the supernatant was freeze-dried to obtain a powder of an enzyme-decomposed product of lactoferrin. When the enzymatic degradation product was used as a sample and the lymphocyte blastogenesis and antitumor activity were measured by the methods described in the following Examples, they were found to have a strong activity that has not been reported before. The results of the activity measurement are shown in Tables 1 and 2 below.

Figure 0003561519
Figure 0003561519

Figure 0003561519
このようにラクトフェリンの酵素分解物には強い免疫賦活作用とこれによると推測される強い抗腫瘍効果が存在することが確認できた。
本発明者らは、さらにラクトフェリンのアミノ酸配列中に存在するペプチド構造に関して検討を行った結果、マイトージェン活性を発揮するに必須の構造を初めて解明した。
Figure 0003561519
Thus, it was confirmed that the enzymatically degraded product of lactoferrin has a strong immunostimulatory effect and a strong antitumor effect presumably due to this.
The present inventors have further studied the peptide structure present in the amino acid sequence of lactoferrin, and as a result, have elucidated for the first time the structure essential for exerting mitogen activity.

本発明により、マイトージェン活性を有する新規ペプチド、及びその製造法、更に、このペプチドを有効成分とする免疫賦活剤、サイトメガロウイルス感染防御剤が提供される。   According to the present invention, a novel peptide having mitogenic activity, a method for producing the same, an immunostimulant containing the peptide as an active ingredient, and a cytomegalovirus infection protective agent are provided.

本発明のマイトージェン活性を有するペプチドはペプチド配列中に、次のアミノ酸配列を有することが必要である。
すなわち、ウシラクトフェリン由来のペプチドの場合、次の配列〔I〕を含むペプチドである。
Ala-Pro-Arg-Lys-Asn-Val-Arg-Trp-Cys-Thr-Ile-Ser-Gln-Pro-Asp-Ser-Phe-Lys〔I〕
The peptide having mitogenic activity of the present invention needs to have the following amino acid sequence in the peptide sequence.
That is, in the case of a bovine lactoferrin-derived peptide, it is a peptide containing the following sequence [I].
Ala-Pro-Arg-Lys-Asn-Val-Arg-Trp-Cys-Thr-Ile-Ser-Gln-Pro-Asp-Ser-Phe-Lys [I]

ウシラクトフェリンの全アミノ酸配列はすでに決定されている(P.E. Mead et al.,Nucleic Acid Res., Vol.18, 7167, 1990)。このペプチドはウシラクトフェリンのアミノ酸配列の1−18番目のアミノ酸配列に相当しており、この配列からなるペプチドは、本発明に包含されるものである。以下、ウシラクトフェリン由来のペプチドのアミノ酸配列はこの文献に従い、Ala を1番目として、アミノ酸配列の番号で記載する。
このアミノ酸配列を含むペプチドの例として次の配列〔II〕のペプチドが例示出来る。
The entire amino acid sequence of bovine lactoferrin has already been determined (PE Mead et al., Nucleic Acid Res., Vol. 18, 7167, 1990). This peptide corresponds to the amino acid sequence of positions 1 to 18 in the amino acid sequence of bovine lactoferrin, and a peptide having this sequence is included in the present invention. Hereinafter, the amino acid sequence of the peptide derived from bovine lactoferrin is described by the amino acid sequence number, with Ala as the first, according to this document.
As an example of a peptide containing this amino acid sequence, a peptide having the following sequence [II] can be exemplified.

Figure 0003561519
Figure 0003561519

このペプチドはウシラクトフェリンの1−51番目に相当している。またこのペプチドのSS結合は還元状態のSH基となっていてもよい。
配列〔I〕および配列〔II〕は、N末端アミノ酸1〜3残基が欠失していてもよい。すなわち、ウシラクトフェリン2−18番目、3−18番目、4−18番目、またはウシラクトフェリン2−51番目、3−51番目、4−51番目のアミノ酸配列に相当するものであっても良い。
これらのペプチドはもとの蛋白質と比べて低分子であり、投与にあたって抗原性は低くなっているという利点がある。
This peptide corresponds to positions 1-51 of bovine lactoferrin. Further, the SS bond of this peptide may be a reduced SH group.
In the sequence [I] and the sequence [II], the N-terminal amino acid 1 to 3 residues may be deleted. That is, it may correspond to the amino acid sequence of bovine lactoferrin 2-18, 3-18, 4-18, or bovine lactoferrin 2-51, 3-51, 4-51.
These peptides have the advantage that they are small molecules compared to the original protein and have low antigenicity upon administration.

本発明のペプチドを調製するには、通常のペプチド合成方法が採用できる。ペプチド合成方法としては固相合成方法が一般的であるが、この固相合成方法は「泉谷他著、ペプチド合成の基礎と実験(1985年丸善刊)194〜233頁」などに開示された方法を挙げることができる。またこれ以外の方法であっても良い。
また、ウシラクトフェリンをプロテアーゼによって酵素分解し、クロマトグラフィーにより分取することもできる。また酵素分解に付するためのラクトフェリンは、ウシの乳から容易に回収することができる。例えば上述した特開昭63−255300号公報に開示されたラクトフェリンに対して親和性を有する架橋型ポリサッカライドの硫酸エステルを用いて、乳から回収することができる。
ラクトフェリンの酵素分解に用いる酵素としては、蛋白質の酵素分解に通常用いる酵素であれば、いずれも使用可能である。このような酵素としてはペプシン、トリプシン、キモトリプシン、パパインなどを例示することができる。またこれ以外の酵素であっても使用することが可能である。
このようにして得られた酵素分解物から常法によりクロマト処理することによってこれらのペプチドを採取することができる。
また、他の通常のペプチド製造法に従って製造してもよい。
To prepare the peptide of the present invention, a general peptide synthesis method can be employed. As a peptide synthesis method, a solid phase synthesis method is generally used, and this solid phase synthesis method is disclosed in, for example, "Izumiya et al., Basics and Experiments of Peptide Synthesis (Maruzen, 1985), pp. 194-233". Can be mentioned. Other methods may be used.
Further, bovine lactoferrin can be enzymatically decomposed with a protease and separated by chromatography. Lactoferrin to be subjected to enzymatic degradation can be easily recovered from bovine milk. For example, it can be recovered from milk using a sulfated ester of a cross-linked polysaccharide having an affinity for lactoferrin disclosed in JP-A-63-255300.
As the enzyme used for the enzymatic degradation of lactoferrin, any enzyme that is commonly used for the enzymatic degradation of proteins can be used. Examples of such an enzyme include pepsin, trypsin, chymotrypsin, and papain. Also, other enzymes can be used.
These peptides can be collected by subjecting the enzymatic degradation product thus obtained to a chromatographic treatment in a conventional manner.
Further, the peptide may be produced according to other ordinary peptide production methods.

本発明のペプチドはリンパ球の幼若化を誘導し、抗ウイルス作用、特にサイトメガロウイルスに対して感染防御効果を示す。
本発明のペプチドは単独で投与することができるし、または、安定剤、賦形剤などの製剤化に通常用いる添加剤を使用して製剤化することもできる。
本発明のペプチドは、食品や家畜飼料に添加して投与することができるし、医薬品、化粧品などの用途に使用することもできる。医薬品として用いる場合には経口、注射、座剤などの投与形態で用いることができ、通常成人1日当たり0.1〜5g程度を投与することで、免疫賦活作用や、ウイルス感染防御効果を期待できるものである。
また本発明ペプチドは、経口投与においては毒性を示さないし、また経静脈投与においても、物理的に投与可能最大投与において死亡動物が出現しない安全な物質である。
以下に実施例を示し、さらに本発明を詳細に説明する。
The peptide of the present invention induces lymphocyte blastogenesis and exhibits an antiviral effect, particularly a protective effect against cytomegalovirus.
The peptide of the present invention can be administered alone, or can be formulated using additives usually used for the formulation such as stabilizers and excipients.
The peptide of the present invention can be administered after being added to food or livestock feed, and can also be used for applications such as pharmaceuticals and cosmetics. When used as a pharmaceutical, it can be used in dosage forms such as oral, injection, and suppository. Usually, by administering about 0.1 to 5 g per adult per day, an immunostimulatory effect and a protective effect against virus infection can be expected. Things.
The peptide of the present invention is a safe substance which does not show toxicity when administered orally and which does not produce dead animals at the maximum physically administrable dose even when administered intravenously.
Hereinafter, the present invention will be described in more detail with reference to Examples.

(ラクトフェリン(以下LFと記す)の酵素分解物の調製とマイトージェン活性ペプチドの単離)
特開昭63−255300号公報に記載の方法で牛乳から調製したLFを原料としてペプシン(シグマ社製)酵素分解処理を行った。LF/酵素=100/1の比率で、37℃、1時間インキュベートした。インキュベート後ペプシン分解物は反応液を中性に戻し、その他は80℃で5分間加熱することで反応を停止させた。生じた沈殿を遠心分離により除去し、上清を凍結乾燥してLFの酵素分解物の粉末を得た。この分解組成物をTSKゲルG300SWカラム(21.5mm×300mm:東ソー製)2本を直列につないだカラムを装着したHPLCに付し、分離を行った。溶出は0.015MのNaClを含む1mMリン酸緩衝液(pH7.4)を溶出液とし、214nmの吸収を測定した。このゲル濾過パターンを図1に示した。
(Preparation of lactoferrin (hereinafter referred to as LF) enzymatic degradation product and isolation of mitogen-active peptide)
Pepsin (manufactured by Sigma) was subjected to enzymatic degradation using LF prepared from milk by the method described in JP-A-63-255300. The mixture was incubated at 37 ° C. for 1 hour at a ratio of LF / enzyme = 100/1. After incubation, the pepsin degradation product returned the reaction solution to neutrality, and the others were heated at 80 ° C. for 5 minutes to stop the reaction. The resulting precipitate was removed by centrifugation, and the supernatant was freeze-dried to obtain a powder of an enzymatically degraded LF. This decomposed composition was subjected to HPLC equipped with a column in which two TSK gel G300SW columns (21.5 mm × 300 mm: manufactured by Tosoh) were connected in series, to perform separation. Elution was performed using a 1 mM phosphate buffer (pH 7.4) containing 0.015 M NaCl as an eluent, and the absorption at 214 nm was measured. This gel filtration pattern is shown in FIG.

分離した各フラクションのリンパ球幼若化活性を以下の方法により測定した。C3H/HeNマウス脾臓細胞を採取し洗浄した後、牛胎児血清10%を含むRPMI1640培地に浮遊させた。脾臓細胞を5×10/ウエルになるよう96穴マイクロプレートに分注し、これに試料を最終濃度がそれぞれ1μg/ml、10μg/ml、100μg/mlとなるよう添加した。対照ウエルにはコンカナバリンA(最終濃度1μg/ml)、リポポリサッカライド(最終濃度100μg/ml)を加え、37℃ 48時間 5%CO条件下で培養した。培養後、3−(4,5−ジメチル−2−チアゾリル)2,5−ジフェニル−2Hテトラゾリウムブロマイド(以下MTTと略記)液10μl を添加し、更に3時間培養後、生じたMTTフォルマザンをELISAリーダーを用い、562−595nmで吸光度を測定した(以上の方法はMed. Immunol, 12, 411 (1986)に開示された方法に準じた)。結果は10ウエルの平均値とし、マイトージェン活性比(S.I.)は、次の式に基づいて計算した。 The lymphocyte blastogenic activity of each of the separated fractions was measured by the following method. After collecting and washing C3H / HeN mouse spleen cells, they were suspended in RPMI1640 medium containing 10% fetal calf serum. The spleen cells were dispensed into a 96-well microplate at 5 × 10 5 / well, and the samples were added thereto to give final concentrations of 1 μg / ml, 10 μg / ml, and 100 μg / ml, respectively. Concanavalin A (final concentration 1 μg / ml) and lipopolysaccharide (final concentration 100 μg / ml) were added to control wells, and the cells were cultured at 37 ° C. for 48 hours under 5% CO 2 conditions. After culturing, 10 μl of 3- (4,5-dimethyl-2-thiazolyl) 2,5-diphenyl-2H tetrazolium bromide (hereinafter abbreviated as MTT) solution was added, and after further culturing for 3 hours, the resulting MTT formazan was subjected to ELISA reader. Was used to measure the absorbance at 562-595 nm (the above method was based on the method disclosed in Med. Immunol, 12, 411 (1986)). The results were averaged in 10 wells, and the mitogen activity ratio (SI) was calculated based on the following equation.

S.I.=(試料ウエルの平均吸光度)/(対照ウエルの平均吸光度)×100 S. I. = (Average absorbance of sample well) / (average absorbance of control well) x 100

各フラクションのS.I.値を表3に示した。   S. of each fraction I. The values are shown in Table 3.

Figure 0003561519
各フラクションの内、特に活性の高かったフラクション7について再度HPLCによりその溶出位置を測定し、以下に示した合成ペプチドと比較した結果、このフラクションの溶出時間はウシLF1−18と一致した。またこのフラクションのアミノ酸配列を分析したところウシLF1−18の配列を有することが確認できた。
Figure 0003561519
The elution position of fraction 7, which had particularly high activity, among the fractions was measured again by HPLC, and compared with the synthetic peptide shown below. As a result, the elution time of this fraction coincided with that of bovine LF1-18. When the amino acid sequence of this fraction was analyzed, it was confirmed that it had the sequence of bovine LF1-18.

(活性ペプチドの化学合成)
実施例1で確認したペプチドおよびそのアミノ酸配列を含むペプチドの合成を行った。本実施例ではウシLF1−18、ウシLF1−51の合成例を示した。本明細書に記載したこれ以外のペプチドの合成も、本実施例に準じて合成した。
(Chemical synthesis of active peptide)
The peptide identified in Example 1 and the peptide containing the amino acid sequence thereof were synthesized. In this example, a synthesis example of bovine LF1-18 and bovine LF1-51 was shown. The synthesis of other peptides described in this specification was also performed according to this example.

(1)ウシLF1−18の合成
ペプチドシンセサイザー431A(ABI社)により、パラヒドロキシメチルフェノキシメチルポリスチレン(HMP)樹脂を用い、9−フルオレニルメチルオキシカルボニル(Fmoc)基をアミノ末端の保護基として0.25mmolスケールで直鎖保護ペプチドを合成した。得られたHMP樹脂結合保護ペプチド1455mgをフェノール、1,2−エタンジチオール、チオアニソール存在下、トリフルオロ酢酸(TFA)によりペプチドのHMP樹脂からの切り離しと保護基の除去を同時に行った。減圧濃縮によりTFAを除去した後、エチルエーテルで粗ペプチドを結晶化させ、これを5%酢酸に溶解し凍結乾燥を行った。得られた直鎖粗ペプチド500mgは、HPLC〔カラム:オクタデシル4PW(21.5×150mm,東ソー社),溶出:0.1%TFAを含む水−アセトニトリルにてグラジエント溶出〕により精製し、直鎖精製ペプチド365mgを得た。得られた精製ペプチドの純度は、HPLCによる分析の結果98%であった。
(1) Synthesis of bovine LF1-18 A 9-fluorenylmethyloxycarbonyl (Fmoc) group was used as a protecting group at the amino terminus using a peptide synthesizer 431A (ABI) using parahydroxymethylphenoxymethyl polystyrene (HMP) resin. A linear protected peptide was synthesized on a 0.25 mmol scale. 1455 mg of the obtained HMP resin-bound protective peptide was simultaneously separated from the HMP resin with trifluoroacetic acid (TFA) in the presence of phenol, 1,2-ethanedithiol and thioanisole, and the protective group was removed. After removing TFA by concentration under reduced pressure, the crude peptide was crystallized with ethyl ether, dissolved in 5% acetic acid, and freeze-dried. 500 mg of the obtained crude crude peptide was purified by HPLC [column: octadecyl 4PW (21.5 × 150 mm, Tosoh Corporation), elution: gradient elution with water-acetonitrile containing 0.1% TFA] 365 mg of the purified peptide was obtained. The purity of the obtained purified peptide was 98% as a result of analysis by HPLC.

(2)ウシLF(1−51)、〔19Cys(Acm),36Cys(Acm) 〕ウシLF(1−51)および〔CysSH,19Cys(Acm),36Cys(Acm),45CysSH 〕ウシLF(1−51)の合成
ペプチドシンセサイザー431A(ABI社)により、パラヒドロキシメチルフェノキシメチルポリスチレン(HMP)樹脂を用い、9−フルオレニルメチルオキシカルボニル(Fmoc)基をアミノ末端の保護基とし、20Cys および37Cys のSH基をアセトアミドメチル(Acm)基で保護して0.25mmolスケールで直鎖保護ペプチドを合成した。得られたHMP樹脂結合保護ペプチド2337mgをフェノール、1,2−エタンジチオール、チオアニソール存在下、トリフルオロ酢酸(TFA)によりペプチドのHMP樹脂からの切り離しと保護基の除去を同時に行った。減圧濃縮によりTFAを除去した後、エチルエーテルで粗ペプチドを結晶化させ、これを5%酢酸に溶解し凍結乾燥を行った。得られた直鎖粗ペプチド970mgは、HPLC(カラム:オクタデシル4PW(21.5×150mm,東ソー社),溶出:0.1%TFAを含む水−アセトニトリルにてグラジエント溶出)により精製し直鎖精製ペプチド〔CysSH,19Cys(Acm),36Cys(Acm),45CysSH 〕ウシLF(1−51)を得た。得られた精製ペプチドの純度は、HPLCによる分析の結果82%であった。このペプチドをフェリシアン化カリウム存在下、空気酸化によりCys,45Cys にS−S結合を形成させ、さらにHPLCにて精製することで、純度90%の〔19Cys(Acm),36Cys(Acm) 〕ウシLF(1−51)390mgを得た。さらにこのペプチドをヨウ素処理し、Acm基の除去とS−S結合の形成を同時に行い、HPLCで精製することでウシLF(1−51)576mgを得た。HPLCによる分析の結果、このペプチドの純度は88%であった。
(2) Bovine LF (1-51), [ 19 Cys (Acm), 36 Cys (Acm)] Bovine LF (1-51) and [ 9 CysSH, 19 Cys (Acm), 36 Cys (Acm), 45 CysSH Synthesis of bovine LF (1-51) A 9-fluorenylmethyloxycarbonyl (Fmoc) group was protected with an amino-terminal protecting group using a peptide synthesizer 431A (ABI) using a parahydroxymethylphenoxymethyl polystyrene (HMP) resin. Then, the SH group of 20 Cys and 37 Cys was protected with an acetamidomethyl (Acm) group to synthesize a linear protected peptide on a 0.25 mmol scale. In the presence of phenol, 1,2-ethanedithiol, and thioanisole, 2337 mg of the obtained HMP resin-bound protective peptide was simultaneously cleaved from the HMP resin with trifluoroacetic acid (TFA) and the protective group was removed. After removing TFA by concentration under reduced pressure, the crude peptide was crystallized with ethyl ether, dissolved in 5% acetic acid, and freeze-dried. The obtained linear crude peptide (970 mg) was purified by HPLC (column: octadecyl 4PW (21.5 × 150 mm, Tosoh Corporation), elution: gradient elution with water-acetonitrile containing 0.1% TFA) and linear purification. The peptide [ 9 CysSH, 19 Cys (Acm), 36 Cys (Acm), 45 CysSH] bovine LF (1-51) was obtained. The purity of the obtained purified peptide was 82% as a result of analysis by HPLC. This peptide was subjected to air-oxidation in the presence of potassium ferricyanide to form an SS bond at 9 Cys and 45 Cys, and further purified by HPLC to give 90% pure [ 19 Cys (Acm), 36 Cys (Acm)]. 390 mg of bovine LF (1-51) was obtained. The peptide was further treated with iodine to remove the Acm group and simultaneously form an SS bond, followed by purification by HPLC to obtain 576 mg of bovine LF (1-51). As a result of analysis by HPLC, the purity of the peptide was 88%.

(合成ペプチドのリンパ球幼若化活性の測定)
実施例2で得られた合成ペプチドのリンパ球幼若化作用を測定した。
測定は実施例1に示した方法に従った。測定結果を下記の表4に示した。
各合成ペプチドはいずれも強いS.I.活性を有していた。
(Measurement of lymphocyte blastogenesis activity of synthetic peptide)
The lymphocyte blastogenesis effect of the synthetic peptide obtained in Example 2 was measured.
The measurement was performed according to the method described in Example 1. The measurement results are shown in Table 4 below.
Each synthetic peptide has strong S. cerevisiae. I. Had activity.

Figure 0003561519
Figure 0003561519

(合成ペプチドの抗腫瘍効果の測定)
実施例2で得られた合成ペプチドの免疫賦活効果を確認するため、腹水型腫瘍の増殖抑制効果を指標として実験を行い、免疫マーカーの変化を観察した。
BALB/c雄マウス(1群10匹)に10〜10個の腹水型腫瘍細胞(Meth A 細胞)を腹腔内に移植した。腫瘍移植当日より、隔日に5回にわたり合成ペプチドを腹腔内に投与した。またポジティブコントロールとしてムラミルジペプチド(MDP)3mg/kgを同様に投与し、さらにネガティブコントロールとしてカラギーナンを同様に投与した。
腫瘍移植から20日後のマウスの生存率を表5に示した。サンプルについては0.005g/体重kg以上の投与量で腫瘍増殖抑制効果が認められ、特に合成ペプチド投与群では0.05g/体重kgの投与でマウスの死亡は全く認められなかった。またペプチド投与動物のNK細胞が活性化されていることが確認された。NK細胞活性化の測定は、マウスの脾臓細胞をエフェクター細胞として、標的細胞に51Crをラベルした腫瘍細胞(YAC−1)を用い、100:1の割合で混合し、遊離した51Crの量からNK活性値を測定した。本発明物質投与動物のNK活性値は、コントロールと比べて有意に高値を示していた。
(Measurement of antitumor effect of synthetic peptide)
In order to confirm the immunostimulatory effect of the synthetic peptide obtained in Example 2, an experiment was performed using the growth inhibitory effect of ascites tumor as an index, and changes in immune markers were observed.
BALB / c male mice (10 animals per group) to 10 5 to 10 6 ascites tumors cells (Meth A cells) were transplanted intraperitoneally. From the day of tumor implantation, the synthetic peptide was administered intraperitoneally five times every other day. In addition, muramyl dipeptide (MDP) 3 mg / kg was similarly administered as a positive control, and carrageenan was similarly administered as a negative control.
Table 5 shows the survival rates of the mice 20 days after the tumor implantation. Regarding the sample, a tumor growth inhibitory effect was observed at a dose of 0.005 g / kg or more, and no death of mice was observed at 0.05 g / kg of body weight in the synthetic peptide administration group. In addition, it was confirmed that NK cells of the peptide-administered animal were activated. NK cell activation was measured by using mouse spleen cells as effector cells, using 51 Cr-labeled tumor cells (YAC-1) as target cells, mixing at a ratio of 100: 1, and releasing 51 Cr. The NK activity value was measured from. The NK activity value of the animal to which the substance of the present invention was administered was significantly higher than that of the control.

Figure 0003561519
Figure 0003561519

(合成ペプチドによるサイトメガロウイルス感染防御効果)
ウシLFの各種合成ペプチドを調製し、このペプチドのサイトメガロウイルス感染防御効果を確認した。
実験動物として、SPF−BALB/cA雄、4週齢を1群5匹として用いた。このマウスに、マウスサイトメガロウイルス(MCMV)Smith株のマウス唾液腺を10回以上通過したものを感染させて、その延命率を求めて判定を行った。
ウイルスの感染は1×10PFU/マウスの濃度で腹腔内に接種して行い、感染と同時に各ペプチドのPBS溶液を腹腔内に0.25、0.125、0.025、0.005g/k g(体重)で投与した。また生存動物は解剖を行い、脾臓を摘出し、脾臓細胞のNK細胞活性を測定した。
結果を表6に示した。
(Protective effect of synthetic peptide on cytomegalovirus infection)
Various synthetic peptides of bovine LF were prepared, and the protective effect of this peptide on cytomegalovirus infection was confirmed.
As experimental animals, SPF-BALB / cA male, 4 weeks old, were used as 5 animals per group. The mouse was infected with a mouse cytomegalovirus (MCMV) Smith strain that had passed the mouse salivary gland 10 times or more, and the survival rate was determined to determine the survival rate.
Virus infection was performed by intraperitoneal inoculation at a concentration of 1 × 10 6 PFU / mouse. Simultaneously with infection, PBS solutions of each peptide were intraperitoneally injected at 0.25, 0.125, 0.025, and 0.005 g / mouse. Kg (body weight) was administered. Surviving animals were dissected, their spleens were excised, and NK cell activity of spleen cells was measured.
The results are shown in Table 6.

Figure 0003561519
Figure 0003561519

本発明のペプチドはウシLFのN末端側に活性が存在することが確認できた。またこの活性はN末端から3残基まで削除しても、影響がないことが確認できた。さらに本発明ペプチドを投与した動物はいずれもNK細胞活性が上昇していた。この活性もサイトメガロウイルスの感染防御活性と一致していた。   It was confirmed that the peptide of the present invention has activity on the N-terminal side of bovine LF. It was also confirmed that this activity had no effect even if three residues from the N-terminal were deleted. Furthermore, all animals to which the peptide of the present invention was administered had increased NK cell activity. This activity was also consistent with the cytomegalovirus protective activity.

本実施例は、本発明ペプチドを製剤化した例を示す。
(1)錠剤
乳糖 170g、馬鈴薯澱粉 5g、実施例2で合成したウシLF1−18 20g、ステアリン酸タルク 5gを混合し、常法により打錠し、ペプチド100mgを含有する1gの錠剤を200個製造した。
(2)注射剤
100ml中にマンニトール 5g、実施例2で合成したウシLF1−18 100mg、ヒト血清アルブミン 100mg、カプリル酸ナトリウム 2mgを含む水溶液を無菌的に調製し、1mlずつバイアルに分注し、凍結乾燥し密封した。
This example shows an example in which the peptide of the present invention is formulated.
(1) Tablets 170 g of lactose, 5 g of potato starch, 20 g of bovine LF1-18 synthesized in Example 2, and 5 g of talc stearate were mixed, and the mixture was tableted by a conventional method to produce 200 1 g tablets containing 100 mg of peptide. did.
(2) An aqueous solution containing 5 g of mannitol, 100 mg of bovine LF1-18 synthesized in Example 2, 100 mg of human serum albumin, and 2 mg of sodium caprylate in 100 ml of injection was aseptically prepared, and dispensed into vials 1 ml at a time. Lyophilized and sealed.

ウシラクトフェリンのペプシンによる酵素分解物のHPLCパターンを示す。図中の↓印のピークに本発明のペプチドが存在する。3 shows an HPLC pattern of an enzymatic degradation product of bovine lactoferrin with pepsin. The peptide of the present invention is present in the peak marked with ↓ in the figure.

Claims (6)

次のアミノ酸配列〔I〕で表されるアミノ酸配列からなるペプチド。
Ala-Pro-Arg-Lys-Asn-Val-Arg-Trp-Cys-Thr-Ile-Ser-Gln-Pro-Asp-Ser-Phe-Lys 〔I〕
A peptide comprising the amino acid sequence represented by the following amino acid sequence [I].
Ala-Pro-Arg-Lys-Asn-Val-Arg-Trp-Cys-Thr-Ile-Ser-Gln-Pro-Asp-Ser-Phe-Lys (I)
アミノ酸配列〔I〕のN末端のアミノ酸残基が1〜3残基欠失したものである請求項1記載のペプチド。   2. The peptide according to claim 1, wherein the N-terminal amino acid residue of the amino acid sequence [I] is deleted by 1 to 3 residues. 次のアミノ酸配列〔II〕で表されるアミノ酸配列からなるペプチド。
Figure 0003561519
但しS−S結合は還元状態のSH基となっていてもよい。
A peptide comprising the amino acid sequence represented by the following amino acid sequence [II]:
Figure 0003561519
However, the SS bond may be a reduced SH group.
請求項1〜3のいずれかに記載のペプチドまたはその薬理学的に許容される塩を有効成分とする免疫賦活剤。   An immunostimulator comprising the peptide according to claim 1 or a pharmacologically acceptable salt thereof as an active ingredient. 請求項1〜3のいずれかに記載のペプチドまたはその薬理学的に許容される塩を有効成分とするサイトメガロウイルス感染防御剤。   A cytomegalovirus infection protective agent comprising the peptide according to claim 1 or a pharmacologically acceptable salt thereof as an active ingredient. ウシラクトフェリンを、プロテアーゼにより酵素分解し、酵素分解物から請求項1〜3記載のいずれかのペプチドを採取することを特徴とするペプチドの製造法。
A method for producing a peptide, which comprises subjecting bovine lactoferrin to enzymatic degradation with a protease and collecting the peptide according to any one of claims 1 to 3 from the enzymatic degradation product.
JP2003295576A 2003-08-19 2003-08-19 New peptides and immunostimulants Expired - Fee Related JP3561519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295576A JP3561519B2 (en) 2003-08-19 2003-08-19 New peptides and immunostimulants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295576A JP3561519B2 (en) 2003-08-19 2003-08-19 New peptides and immunostimulants

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23202694A Division JP3506274B2 (en) 1994-09-01 1994-09-01 New peptides and immunostimulants

Publications (2)

Publication Number Publication Date
JP2004002471A JP2004002471A (en) 2004-01-08
JP3561519B2 true JP3561519B2 (en) 2004-09-02

Family

ID=30438874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295576A Expired - Fee Related JP3561519B2 (en) 2003-08-19 2003-08-19 New peptides and immunostimulants

Country Status (1)

Country Link
JP (1) JP3561519B2 (en)

Also Published As

Publication number Publication date
JP2004002471A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JPS62501011A (en) Hirudin-PA and its derivatives, their production methods and applications
MX2008003552A (en) Process for production of bivalirudin.
US4777243A (en) Immuno stimulant substances derived from bovine casein and compositions containing the same
JP3506274B2 (en) New peptides and immunostimulants
JP3561519B2 (en) New peptides and immunostimulants
CA2195053C (en) Agents for inhibiting accumulation of visceral fat
JP2007161696A (en) New heptapeptide and prolyl endopeptidase inhibitor
JP2973621B2 (en) Novel Toxoplasma growth inhibitor
JP3119674B2 (en) New peptides, their production methods and applications
JP2863898B2 (en) New peptides and immunostimulants
JP3009718B2 (en) New peptides, their production methods and applications
JP3770624B2 (en) Virus infection / proliferation inhibitor
JP3012291B2 (en) Novel peptide, its production method and use
JP2719891B2 (en) Pharmaceutical composition for promoting TNF secretion
JP3009719B2 (en) New peptides, their production methods and applications
JPH05208999A (en) Cerine protease inhibitor and medicine composition containing same
JP2979722B2 (en) Bioactive polypeptide, method for producing the same, and antibacterial agent
JP3009720B2 (en) New peptides, their production methods and applications
US4647554A (en) Biologically active substances from fibrinogen their preparation and compositions containing them
JP3112694B2 (en) Novel peptide, method for producing it and use
JPH08225593A (en) Novel tetrapeptide, pentapeptide and angiotensin-transferase inhibitor
JP2965682B2 (en) New peptides, their production methods and applications
JPH10212245A (en) Inhibitor preparation of angiotensin converting enzyme
KR0150798B1 (en) Novel oligopeptides, pharmaceutical composition and food containing the same, and use of oligopeptides
JPH1036391A (en) New peptide and angiotensin converting enzyme inhibitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees