JP3561469B2 - Semiconductor switch circuit for high voltage - Google Patents

Semiconductor switch circuit for high voltage Download PDF

Info

Publication number
JP3561469B2
JP3561469B2 JP2000356313A JP2000356313A JP3561469B2 JP 3561469 B2 JP3561469 B2 JP 3561469B2 JP 2000356313 A JP2000356313 A JP 2000356313A JP 2000356313 A JP2000356313 A JP 2000356313A JP 3561469 B2 JP3561469 B2 JP 3561469B2
Authority
JP
Japan
Prior art keywords
stage
circuit
semiconductor switch
photocoupler
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000356313A
Other languages
Japanese (ja)
Other versions
JP2002165436A (en
Inventor
慎輔 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000356313A priority Critical patent/JP3561469B2/en
Publication of JP2002165436A publication Critical patent/JP2002165436A/en
Application granted granted Critical
Publication of JP3561469B2 publication Critical patent/JP3561469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は半導体スイッチを複数個直列接続して高電圧をスイッチングする高電圧用半導体スイッチ回路に関し、特に各半導体スイッチを駆動する制御信号を伝送するのに光ケーブルを用いないで、導体を用いることを可能にした高電圧用半導体スイッチ回路に関するものである。
【0002】
【従来の技術】
図2は従来の高電圧用半導体スイッチ回路を示す構成図である。図2において、1a,1b,1cは半導体スイッチで、3個直列に接続されている。なお、1aは低電圧部に、1cは高電圧部に接続されている。2a,2b,2c,はスナバ回路で、半導体スイッチ両端に加わるサージ電圧を抑えたり、電圧上昇率や電流上昇率を下げる回路である。このスナバ回路2a,2b,2cの各々は、半導体スイッチ1a,1b,1cの各々に、リターン側を共通にして、並列接続されている。また、スナバ回路2a,2b,2cは、ダイオードD,抵抗R,コンデンサーC1からなるRCスナバ回路の基本形にツェナーダイオードZ,コンデンサーC1からなる電源回路を付加したもので、この明細書では、電源回路を含めたものをスナバ回路と呼ぶことにする。この電源回路は、後述するスイッチ駆動回路3a,3b,3cの電源として用いられる。
【0003】
3a,3b,3cはスイッチ駆動回路で、半導体スイッチ1a,1b,1cにそれぞれ設けられ、光―電気信号変換器4a,4b,4cと、ドライブ回路11a,11b,11cとを備えている。なお、ドライブ回路11a,11b,11cは、光―電気信号変換器4a,4b,4cの出力信号を、スイッチを駆動できる大きさに電力増幅する回路である。なお、光―電気信号変換器4a,4b,4cと、ドライブ回路11a,11b,11cとは、駆動用電源の基準が、1a,1b,1cの各スイッチのリターン側の電位となるように接続されている。すなわち、光―電気信号変換器4a,4b,4cと、ドライブ回路11a,11b,11cとは、各半導体スイッチ及びスナバ回路とリターン回路が共通となるように接続されると共に、各スナバ回路から電源の供給を受けている。5は光ファイバー、6はスイッチON/OFF制御信号の電気―光変換器である。
【0004】
なお、各半導体スイッチは、低電圧部に接続された半導体スイッチ1aを1段目として3段直列接続され、最終段の3段目が高電圧部に接続された半導体スイッチ直列接続体になっているということができる。また、スナバ回路も3段設けられ、光―電気信号変換器及びドライブ回路も3段設けられている。段数は3段に限らず、n段(nは2以上の正の整数)でもよい。
【0005】
次に、動作について説明する。電気―光変換回路6では電気―光変換器6a,6b,6cが半導体スイッチ数に対応した数ほど直列接続されており、入力端子61より入力されたON/OFF制御信号(トリガ信号)によって同時に電気―光変換を行う。光信号は光ファイバー5により各段それぞれに伝達される。各段では受け取った光信号を光―電気信号変換器4a,4b,4cにより電気信号へ変換し、ドライブ回路11a,11b,11cに出力する。ドライブ回路11a,11b,11cでは上記電気信号を増幅し、半導体スイッチ1a,1b,1cに出力する。半導体スイッチ1a,1b,1cは増幅されたON/OFF制御信号に基づきスイッチ動作を行う。
【0006】
【発明が解決しようとする課題】
従来の高電圧用半導体スイッチ回路は以上のように構成されており、光ケーブルは最小曲げ半径が規定されているので、それ以上の曲げ半径で曲げる必要がある。従って、光ケーブルの曲げ半径が大きくなる。また、光ケーブルを絶縁物に固定する必要があるため装置規模が大きくなると共にコストアップに繋がるという問題があった。
【0007】
この発明は上記のような問題点を解決するためになされたもので、低電圧部に接続された半導体スイッチを1段目としてn段半導体スイッチが直列接続されると共に、最終段目が高電圧部に接続された半導体スイッチ直列接続体を有し、各段の半導体スイッチのON/OFF制御信号伝達にフォトカプラを使用すると共に、n段目のON/OFF制御信号はn−1段目のフォトカプラの出力信号に基づいて伝達されるように構成され、フォトカプラで発生する遅延時間は、タイミング調整回路によって調整して、各半導体スイッチが同時にON/OFFするように構成することにより、電気―光変換を行う電気―光変換回路と光ケーブルを省略することができる高電圧用半導体スイッチ回路を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る高電圧用半導体スイッチ回路は、低電圧部に接続された半導体スイッチを1段目として半導体スイッチがn段(nは2以上の正の整数)直列接続され、最終段目が高電圧部に接続された半導体スイッチ直列接続体と、
前記n段の半導体スイッチのそれぞれに接続され、前記半導体スイッチへ駆動信号を出力するn段のドライブ回路と、
前記n段の各半導体スイッチのON/OFF制御信号がそれぞれ入力され、光によって伝達されたON/OFF制御信号を電気信号で出力するとともに、n段目のフォトカプラの発光素子は、n−1段目のフォトカプラの出力回路から出力されるON/OFF制御信号に基づいて駆動されるようにn−1段目のフォトカプラの出力回路に接続されたn段のフォトカプラと、
前記n段目のフォトカプラから出力されるON/OFF制御信号のタイミングが、前記n−1段目に対して順次遅れるのを、全ての半導体スイッチが同時にON/OFFするようにそれぞれ調整し、調整されたON/OFF制御信号を各段の前記ドライブ回路に入力するように構成されたn段のタイミング調整回路と、
1段目の前記フォトカプラの発光素子にON/OFF制御信号を入力するトリガ回路とを備えたものである。
【0009】
また、タイミング調整回路は、ON用制御信号とOFF用制御信号とが別々に調整できるように構成されているものである。
さらに、半導体スイッチ直列接続体の各半導体スイッチに、リターン回路が共通となるように並列接続されサージ電圧の抑制を行うn段のスナバ回路を備え、スナバ回路は、リターン側にツェナーダイオードとコンデンサーとの並列接続体で構成された電源回路が付加され、各段のフォトカプラの出力回路及び各段のドライブ回路は、各段の半導体スイッチ及びスナバ回路とリターン回路が共通となるように接続されると共に、各段のスナバ回路から電源が供給されているものである。
【0010】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1を示す構成図である。図1において、図2と同一符号を付した部分は同一部分又は相当部分を示し、その説明は省略する。
3a,3b,3cはスイッチ駆動回路で、各スイッチ駆動回路は、実施の形態1では、後述するフォトカプラ及びタイミング調整回路と図2と同様のドライブ回路とを備えている。7a,7b,7cはフォトカプラ、71,72,73はフォトカプラ7a,7b,7cの発光素子で、図1では発光ダイオードである。74,75,76はフォトカプラ7a,7b,7cの出力回路で、例えばフォトトランジスタからなっている。
【0011】
8a,8b,8cは各段のON/OFF制御信号のタイミングを一致させるためのタイミング調整回路で、ON及びOFF用制御信号について、それぞれ調整機能を有する。9はトリガ回路で、1段目のフォトカプラの発光ダイオードにON/OFF制御信号を出力する回路である。
1段目のフォトカプラの出力回路74の出力端子は、2段目フォトカプラの発光ダイオード72のカソードへ接続され、また、1段目のフォトカプラの出力回路74用電源は電流制限抵抗R2を介して2段目フォトカプラの発光ダイオード72のアノードに接続されている。同様に、2段目のフォトカプラの出力回路75の出力端子は、3段目フォトカプラの発光ダイオード73のカソードへ接続され、また、2段目のフォトカプラの出力回路75用電源は電流制限抵抗R2を介して3段目フォトカプラの発光ダイオード73のアノードに接続されている。
【0012】
次に、動作を説明する。トリガ回路9から出力されたON/OFF制御信号が、1段目の半導体スイッチ1aのフォトカプラ7aの発光ダイオード71を駆動すると、フォトカプラの出力回路74の出力信号がLOWとなる。その時、1段目のフォトカプラの出力回路74の出力端子は、2段目フォトカプラの発光ダイオード72のカソードへ接続され、また、1段目のフォトカプラの出力回路74用電源は電流制限抵抗R2を介して2段目フォトカプラの発光ダイオード72のアノードに接続されている。従って、2段目のフォトカプラの発光ダイオード72が駆動され、2段目のフォトカプラの出力回路75の出力信号がLOWとなる。これに応じて、3段目のフォトカプラの出力回路76の出力信号がLOWとなる。
【0013】
このように順次高圧側へON/OFF制御信号が伝達されていく。高圧側へ伝達される際、フォトカプラの遅延により高圧側ほど信号電圧が遅くなる。これを解消し、各段一斉にスイッチング動作させるために、フォトカプラの出力回路の出力信号は、タイミング調整回路8にも入力される。タイミング調整回路8では信号の立上り、立下りを検出して遅延回路を動作させる。なお、ON用遅延時間とOFF用遅延時間は別々に調整できるように構成されている。タイミング調整回路8a,8b,8cを経由したON/OFF制御信号は、各段同時にスイッチング動作ができるようにタイミングが調整されており、ドライブ回路11a,11b,11cで信号が増幅され半導体スイッチ1a,1b,1cを駆動する。
【0014】
【発明の効果】
この発明は以上説明したとおり、低電圧部に接続された半導体スイッチを1段目としてn段(nは2以上の正の整数)半導体スイッチが直列接続され、最終段目が高電圧部に接続された半導体スイッチ直列接続体と、この半導体スイッチ直列接続体の各半導体スイッチに、リターン回路が共通となるように並列接続されサージ電圧の抑制を行うn段のスナバ回路と、各段の半導体スイッチのON/OFF制御信号が、それぞれの発光素子に入力され、光によって伝達されたON/OFF制御信号が出力回路から電気信号で出力されるn段のフォトカプラと、各段のフォトカプラから出力されたON/OFF制御信号のタイミングをそれぞれ調整するn段のタイミング調整回路と、各段のタイミング調整回路からの入力信号を、それぞれ増幅して各段の半導体スイッチへ駆動信号を出力するn段のドライブ回路と、1段目のフォトカプラの発光素子にON/OFF制御信号を入力するトリガ回路とを備え、各段のフォトカプラの出力回路及び各段のドライブ回路は、各段の半導体スイッチ及びスナバ回路とリターン回路が共通となるように接続されると共に、各段のスナバ回路から電源が供給され、n段目のフォトカプラの発光素子は、n−1段目のフォトカプラの出力回路から出力されるON/OFF制御信号に基づいて駆動されるようにn−1段目のフォトカプラの出力回路に接続され、各段のタイミング調整回路は、各段のフォトカプラから出力されるON/OFF制御信号のタイミングが、1段目に対して順次遅れるのを、n段全ての半導体スイッチが同時にON/OFFするようにそれぞれ調整し、調整されたON/OFF制御信号を各段のドライブ回路に入力するように構成されているものであるから、直列接続された半導体スイッチへのON/OFF制御信号はフォトカプラを介して順次伝達される。従って、電気―光変換器、及び光ケーブルが省略できるので、高電圧用半導体スイッチ回路の装置規模を小さくできると共に安価に製作できるという効果を有する。
【図面の簡単な説明】
【図1】この発明の実施の形態1による高電圧用半導体スイッチ回路を示す構成図である。
【図2】従来の高電圧用半導体スイッチ回路を示す構成図である。
【符号の説明】
1a,1b,1c 半導体スイッチ、2a,2b,2c スナバ回路、
3a,3b,3c スイッチ駆動回路、7a,7b,7c フォトカプラ、
71,72,73 フォトカプラの発光ダイオード、
74,75,76 フォトカプラの出力回路、
8a,8b,8c タイミング調整回路、9 トリガ回路、
11a,11b,11c ドライブ回路。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-voltage semiconductor switch circuit for switching a high voltage by connecting a plurality of semiconductor switches in series, and more particularly to using a conductor instead of an optical cable to transmit a control signal for driving each semiconductor switch. The present invention relates to a high-voltage semiconductor switch circuit that is enabled.
[0002]
[Prior art]
FIG. 2 is a configuration diagram showing a conventional high-voltage semiconductor switch circuit. In FIG. 2, reference numerals 1a, 1b, and 1c denote semiconductor switches, three of which are connected in series. Note that 1a is connected to the low voltage section and 1c is connected to the high voltage section. Numerals 2a, 2b, 2c denote snubber circuits which suppress a surge voltage applied to both ends of the semiconductor switch and lower a voltage rising rate and a current rising rate. Each of the snubber circuits 2a, 2b, 2c is connected in parallel to each of the semiconductor switches 1a, 1b, 1c, with the return side being common. The snubber circuits 2a, 2b, and 2c are obtained by adding a power supply circuit including a zener diode Z and a capacitor C1 to the basic form of an RC snubber circuit including a diode D, a resistor R, and a capacitor C1. The one including is called a snubber circuit. This power supply circuit is used as a power supply for switch drive circuits 3a, 3b, 3c to be described later.
[0003]
Reference numerals 3a, 3b, and 3c denote switch drive circuits, which are provided in the semiconductor switches 1a, 1b, and 1c, respectively, and include opto-electric signal converters 4a, 4b, and 4c and drive circuits 11a, 11b, and 11c. The drive circuits 11a, 11b, and 11c are circuits that amplify the output signals of the optical-electrical signal converters 4a, 4b, and 4c so that the switches can be driven. The optical-to-electrical signal converters 4a, 4b, 4c and the drive circuits 11a, 11b, 11c are connected such that the reference of the drive power supply is the return-side potential of each of the switches 1a, 1b, 1c. Have been. That is, the optical-electrical signal converters 4a, 4b, 4c and the drive circuits 11a, 11b, 11c are connected so that the semiconductor switch and the snubber circuit and the return circuit are common, and the power supply from each snubber circuit. Is supplied. Reference numeral 5 denotes an optical fiber, and reference numeral 6 denotes an electro-optical converter for a switch ON / OFF control signal.
[0004]
Each semiconductor switch is connected in series in three stages, with the semiconductor switch 1a connected to the low-voltage part as the first stage, and a semiconductor switch series-connected body in which the third stage in the last stage is connected to the high-voltage part. Can be said. Also, three stages of snubber circuits are provided, and three stages of optical-electrical signal converters and drive circuits are also provided. The number of stages is not limited to three, and may be n (n is a positive integer of 2 or more).
[0005]
Next, the operation will be described. In the electro-optical conversion circuit 6, the electro-optical converters 6a, 6b, and 6c are connected in series by the number corresponding to the number of semiconductor switches, and are simultaneously controlled by an ON / OFF control signal (trigger signal) input from the input terminal 61. Performs electrical-optical conversion. The optical signal is transmitted to each stage by the optical fiber 5. At each stage, the received optical signal is converted into an electrical signal by the optical-electrical signal converters 4a, 4b, 4c and output to the drive circuits 11a, 11b, 11c. The drive circuits 11a, 11b, and 11c amplify the electric signals and output the amplified signals to the semiconductor switches 1a, 1b, and 1c. The semiconductor switches 1a, 1b, 1c perform a switching operation based on the amplified ON / OFF control signal.
[0006]
[Problems to be solved by the invention]
The conventional high-voltage semiconductor switch circuit is configured as described above, and the optical cable has a minimum bending radius. Therefore, it is necessary to bend the optical cable at a larger bending radius. Therefore, the bending radius of the optical cable increases. In addition, there is a problem that the optical cable needs to be fixed to an insulator, so that the apparatus scale is increased and the cost is increased.
[0007]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. An n-stage semiconductor switch is connected in series with a semiconductor switch connected to a low-voltage section as a first stage, and a high-voltage semiconductor switch is connected to a final stage. And a photocoupler for transmitting the ON / OFF control signal of the semiconductor switch of each stage, and the ON / OFF control signal of the nth stage is connected to the (n-1) th stage. It is configured to be transmitted based on the output signal of the photocoupler, and the delay time generated in the photocoupler is adjusted by a timing adjustment circuit so that each semiconductor switch is turned on / off at the same time. An object is to provide a high-voltage semiconductor switch circuit that can omit an electric-optical conversion circuit for performing optical conversion and an optical cable.
[0008]
[Means for Solving the Problems]
In the high-voltage semiconductor switch circuit according to the present invention, the semiconductor switches connected to the low-voltage section are the first stage, and the semiconductor switches are connected in n stages (n is a positive integer of 2 or more) in series. A semiconductor switch series-connected body connected to the voltage unit,
An n-stage drive circuit connected to each of the n-stage semiconductor switches and outputting a drive signal to the semiconductor switch;
An ON / OFF control signal of each of the n-stage semiconductor switches is input, an ON / OFF control signal transmitted by light is output as an electric signal, and the light-emitting element of the n-th stage photocoupler is n−1 An n-stage photocoupler connected to the output circuit of the (n-1) th photocoupler so as to be driven based on an ON / OFF control signal output from the output circuit of the photocoupler of the stage;
The timing of the ON / OFF control signal output from the n-th stage photocoupler being sequentially delayed with respect to the (n-1) th stage is adjusted so that all the semiconductor switches are simultaneously turned ON / OFF, An n-stage timing adjustment circuit configured to input the adjusted ON / OFF control signal to the drive circuit of each stage;
A trigger circuit for inputting an ON / OFF control signal to the light emitting element of the photocoupler in the first stage.
[0009]
Further, the timing adjustment circuit is configured so that the ON control signal and the OFF control signal can be adjusted separately.
Further, each semiconductor switch of the semiconductor switch series connection body is provided with an n-stage snubber circuit connected in parallel so that a return circuit becomes common to suppress surge voltage, and the snubber circuit includes a zener diode and a capacitor on the return side. A power supply circuit composed of a parallel connection body is added, and the output circuit of each stage of the photocoupler and the drive circuit of each stage are connected so that the semiconductor switch and the snubber circuit of each stage and the return circuit are common. At the same time, power is supplied from the snubber circuit of each stage.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing Embodiment 1 of the present invention. In FIG. 1, portions denoted by the same reference numerals as those in FIG. 2 indicate the same or corresponding portions, and description thereof will be omitted.
Reference numerals 3a, 3b, and 3c denote switch drive circuits. In the first embodiment, each switch drive circuit includes a photocoupler and a timing adjustment circuit described later and a drive circuit similar to that in FIG. 7a, 7b, 7c are photocouplers, 71, 72, 73 are light emitting elements of the photocouplers 7a, 7b, 7c, and in FIG. 1 are light emitting diodes. Reference numerals 74, 75 and 76 denote output circuits of the photocouplers 7a, 7b and 7c, each comprising, for example, a phototransistor.
[0011]
Reference numerals 8a, 8b, and 8c denote timing adjustment circuits for matching the timings of the ON / OFF control signals of the respective stages, and each has an adjustment function for ON and OFF control signals. A trigger circuit 9 outputs an ON / OFF control signal to the light emitting diode of the first stage photocoupler.
The output terminal of the output circuit 74 of the first-stage photocoupler is connected to the cathode of the light emitting diode 72 of the second-stage photocoupler, and the power supply for the output circuit 74 of the first-stage photocoupler is a current limiting resistor R2. It is connected to the anode of the light-emitting diode 72 of the second-stage photocoupler via the second stage. Similarly, the output terminal of the output circuit 75 of the second-stage photocoupler is connected to the cathode of the light emitting diode 73 of the third-stage photocoupler, and the power supply for the output circuit 75 of the second-stage photocoupler is current-limited. The resistor R2 is connected to the anode of the light emitting diode 73 of the third-stage photocoupler.
[0012]
Next, the operation will be described. When the ON / OFF control signal output from the trigger circuit 9 drives the light emitting diode 71 of the photocoupler 7a of the first-stage semiconductor switch 1a, the output signal of the photocoupler output circuit 74 becomes LOW. At this time, the output terminal of the output circuit 74 of the first-stage photocoupler is connected to the cathode of the light emitting diode 72 of the second-stage photocoupler, and the power supply for the output circuit 74 of the first-stage photocoupler is a current limiting resistor. It is connected to the anode of the light emitting diode 72 of the second stage photocoupler via R2. Therefore, the light emitting diode 72 of the second-stage photocoupler is driven, and the output signal of the output circuit 75 of the second-stage photocoupler becomes LOW. In response, the output signal of the output circuit 76 of the third-stage photocoupler becomes LOW.
[0013]
Thus, the ON / OFF control signal is sequentially transmitted to the high voltage side. When transmitted to the high voltage side, the signal voltage becomes slower toward the higher voltage side due to the delay of the photocoupler. In order to solve this problem and perform a switching operation simultaneously in each stage, the output signal of the output circuit of the photocoupler is also input to the timing adjustment circuit 8. The timing adjustment circuit 8 detects the rise and fall of the signal and operates the delay circuit. The ON delay time and the OFF delay time can be adjusted separately. The timing of the ON / OFF control signal passing through the timing adjustment circuits 8a, 8b, 8c is adjusted so that the switching operation can be performed simultaneously at each stage. The signals are amplified by the drive circuits 11a, 11b, 11c, and the semiconductor switches 1a, 1b and 1c are driven.
[0014]
【The invention's effect】
As described above, according to the present invention, n-stage (n is a positive integer of 2 or more) semiconductor switches are connected in series with the semiconductor switch connected to the low-voltage section as the first stage, and the last stage is connected to the high-voltage section. Semiconductor switch series-connected body, an n-stage snubber circuit connected in parallel so that a return circuit is common to each semiconductor switch of the semiconductor switch series-connected body, and suppressing a surge voltage, and a semiconductor switch of each stage. ON / OFF control signal is input to each light emitting element, and the ON / OFF control signal transmitted by light is output from the output circuit as an electrical signal, and the n stages of photocouplers are output from the photocoupler of each stage. N-stage timing adjustment circuits for respectively adjusting the timings of the ON / OFF control signals, and input signals from the timing adjustment circuits of each stage are amplified. An n-stage drive circuit for outputting a drive signal to each stage of the semiconductor switch, and a trigger circuit for inputting an ON / OFF control signal to the light emitting element of the first-stage photocoupler, and an output circuit for each stage of the photocoupler The drive circuit of each stage is connected so that the semiconductor switch and the snubber circuit of each stage and the return circuit are common, and power is supplied from the snubber circuit of each stage, and the light emitting element of the n-th stage photocoupler Is connected to the output circuit of the (n-1) th photocoupler so as to be driven based on the ON / OFF control signal output from the output circuit of the (n-1) th photocoupler, and the timing of each stage is adjusted. The circuit turns on / off all the n-stage semiconductor switches at the same time so that the timing of the ON / OFF control signal output from the photocoupler of each stage is sequentially delayed with respect to the first stage. And the adjusted ON / OFF control signals are input to the drive circuits of the respective stages, so that the ON / OFF control signals to the semiconductor switches connected in series are separated by a photocoupler. Are sequentially transmitted through Therefore, since the electric-optical converter and the optical cable can be omitted, there is an effect that the device scale of the high-voltage semiconductor switch circuit can be reduced and it can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a high-voltage semiconductor switch circuit according to Embodiment 1 of the present invention;
FIG. 2 is a configuration diagram showing a conventional high-voltage semiconductor switch circuit.
[Explanation of symbols]
1a, 1b, 1c semiconductor switches, 2a, 2b, 2c snubber circuits,
3a, 3b, 3c switch driving circuit, 7a, 7b, 7c photocoupler,
71, 72, 73 Light-emitting diodes of photocouplers,
74, 75, 76 Photocoupler output circuit,
8a, 8b, 8c timing adjustment circuit, 9 trigger circuit,
11a, 11b, 11c Drive circuit.

Claims (3)

低電圧部に接続された半導体スイッチを1段目として半導体スイッチがn段(nは2以上の正の整数)直列接続され、最終段目が高電圧部に接続された半導体スイッチ直列接続体と、
前記n段の半導体スイッチのそれぞれに接続され、前記半導体スイッチへ駆動信号を出力するn段のドライブ回路と、
前記n段の各半導体スイッチのON/OFF制御信号がそれぞれ入力され、光によって伝達されたON/OFF制御信号を電気信号で出力するとともに、n段目のフォトカプラの発光素子は、n−1段目のフォトカプラの出力回路から出力されるON/OFF制御信号に基づいて駆動されるようにn−1段目のフォトカプラの出力回路に接続されたn段のフォトカプラと、
前記n段目のフォトカプラから出力されるON/OFF制御信号のタイミングが、前記n−1段目に対して順次遅れるのを、全ての半導体スイッチが同時にON/OFFするようにそれぞれ調整し、調整されたON/OFF制御信号を各段の前記ドライブ回路に入力するように構成されたn段のタイミング調整回路と、
1段目の前記フォトカプラの発光素子にON/OFF制御信号を入力するトリガ回路とを備えたことを特徴とする高電圧用半導体スイッチ回路。
A semiconductor switch connected in series with n stages (n is a positive integer of 2 or more) of a semiconductor switch connected to the low-voltage section as a first stage, and a semiconductor switch serial connection body connected in the last stage to the high-voltage section; ,
An n-stage drive circuit connected to each of the n-stage semiconductor switches and outputting a drive signal to the semiconductor switch;
An ON / OFF control signal of each of the n-stage semiconductor switches is input, an ON / OFF control signal transmitted by light is output as an electric signal, and the light-emitting element of the n-th stage photocoupler is n−1 An n-stage photocoupler connected to the output circuit of the (n-1) th photocoupler so as to be driven based on an ON / OFF control signal output from the output circuit of the photocoupler of the stage;
The timing of the ON / OFF control signal output from the n-th stage photocoupler being sequentially delayed with respect to the (n-1) th stage is adjusted so that all the semiconductor switches are simultaneously turned ON / OFF, An n-stage timing adjustment circuit configured to input the adjusted ON / OFF control signal to the drive circuit of each stage;
And a trigger circuit for inputting an ON / OFF control signal to a light emitting element of the photocoupler at the first stage .
タイミング調整回路は、ON用制御信号とOFF用制御信号とが別々に調整できるように構成されていることを特徴とする請求項1記載の高電圧用半導体スイッチ回路。2. The high-voltage semiconductor switch circuit according to claim 1, wherein the timing adjustment circuit is configured to adjust the ON control signal and the OFF control signal separately. 半導体スイッチ直列接続体の各半導体スイッチに、リターン回路が共通となるように並列接続されサージ電圧の抑制を行うn段のスナバ回路を備え、上記スナバ回路は、リターン側にツェナーダイオードとコンデンサーとの並列接続体で構成された電源回路が付加され、各段のフォトカプラの出力回路及び各段のドライブ回路は、各段の半導体スイッチ及びスナバ回路とリターン回路が共通となるように接続されると共に、各段のスナバ回路から電源が供給されていることを特徴とする請求項1又は請求項2記載の高電圧用半導体スイッチ回路。Each semiconductor switch of the semiconductor switch series connection body is provided with an n-stage snubber circuit connected in parallel so that a return circuit is common to suppress surge voltage, and the snubber circuit includes a zener diode and a capacitor on a return side. A power supply circuit composed of a parallel connection body is added, and the output circuit of each stage of the photocoupler and the drive circuit of each stage are connected so that the semiconductor switch and the snubber circuit of each stage and the return circuit are common, and 3. The high voltage semiconductor switch circuit according to claim 1, wherein power is supplied from a snubber circuit of each stage.
JP2000356313A 2000-11-22 2000-11-22 Semiconductor switch circuit for high voltage Expired - Fee Related JP3561469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000356313A JP3561469B2 (en) 2000-11-22 2000-11-22 Semiconductor switch circuit for high voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000356313A JP3561469B2 (en) 2000-11-22 2000-11-22 Semiconductor switch circuit for high voltage

Publications (2)

Publication Number Publication Date
JP2002165436A JP2002165436A (en) 2002-06-07
JP3561469B2 true JP3561469B2 (en) 2004-09-02

Family

ID=18828590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000356313A Expired - Fee Related JP3561469B2 (en) 2000-11-22 2000-11-22 Semiconductor switch circuit for high voltage

Country Status (1)

Country Link
JP (1) JP3561469B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047953A (en) 2004-06-28 2006-02-16 Fujitsu Hitachi Plasma Display Ltd Semiconductor integrated circuit, drive circuit, and plasma display device
JP2014033614A (en) * 2013-11-18 2014-02-20 National Institute Of Advanced Industrial & Technology Power conversion apparatus

Also Published As

Publication number Publication date
JP2002165436A (en) 2002-06-07

Similar Documents

Publication Publication Date Title
KR101723094B1 (en) Power device for sub-module controller of mmc converter
US9258861B2 (en) Apparatus for driving multi-color LED strings
US7576345B2 (en) Semiconductor relay
ATE498940T1 (en) DIFFERENTIAL DRIVER STAGE WITH VOLTAGE CONTROL AND METHOD
DE60322605D1 (en) Power supply system and device
DE50204993D1 (en) Optical crossconnect
CN213754305U (en) Switching tube drive circuit, shutoff device and photovoltaic power generation system
JP3561469B2 (en) Semiconductor switch circuit for high voltage
CN216774612U (en) Dead time control circuit integrated on dual-channel gate drive chip
US8569674B2 (en) Multiplexed photocurrent monitoring circuit comprising current mirror circuits
US20050031250A1 (en) Multistage optical switch
CN112332670B (en) Multi-group multi-voltage output flyback converter control circuit
EP4250565A1 (en) Switching module
CN111354300A (en) Driving circuit, driving method and display device
EP1137160A3 (en) Power converter circuit
KR101597056B1 (en) Charge pump type DCDC converter
US7102869B2 (en) Optical semiconductor relay
CN215680543U (en) Relay device
JP2024014974A (en) semiconductor equipment
EP3021471A1 (en) Converter assembly
JP5499937B2 (en) PON system, slave station side device, and data transmission method
TW200520356A (en) Boost converters, power supply apparatuses, electrical energy boost methods and electrical energy supply methods
CN106559106B (en) Signal transmitter
KR100209769B1 (en) A driving apparatus for a switching of inverter in an electric-train
KR101818534B1 (en) LED drive circuit using a PWM signal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees