JP3561309B2 - Boiler combustion control method - Google Patents

Boiler combustion control method Download PDF

Info

Publication number
JP3561309B2
JP3561309B2 JP33578494A JP33578494A JP3561309B2 JP 3561309 B2 JP3561309 B2 JP 3561309B2 JP 33578494 A JP33578494 A JP 33578494A JP 33578494 A JP33578494 A JP 33578494A JP 3561309 B2 JP3561309 B2 JP 3561309B2
Authority
JP
Japan
Prior art keywords
amount
combustion
air
blower
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33578494A
Other languages
Japanese (ja)
Other versions
JPH08178271A (en
Inventor
忠明 阿部
孝則 鳥飼
眞 井戸口
Original Assignee
荏原ボイラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原ボイラ株式会社 filed Critical 荏原ボイラ株式会社
Priority to JP33578494A priority Critical patent/JP3561309B2/en
Publication of JPH08178271A publication Critical patent/JPH08178271A/en
Application granted granted Critical
Publication of JP3561309B2 publication Critical patent/JP3561309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高燃焼、低燃焼、停止の3位置制御を行なうボイラ−の燃焼制御方法に関し、燃焼用空気を送る送風機の制御に回転数制御装置を使用したボイラーの燃焼制御方法に関するものである。
【0002】
【従来技術】
一般にボイラ−は燃料と空気をバーナに送り、燃焼室内で燃焼させるが、空気量が多過ぎると、この余分な空気により燃焼室内の熱を奪われ、また余分な空気を送るため、送風用電力を無駄に消費することになる。また、空気量が足りないと完全燃焼が出来ず発煙状態となり燃料の無駄ともなる。
【0003】
従来より高燃焼、低燃焼、停止を制御する3位置制御のボイラ−では燃料供給は電磁弁の開閉により制御され、空気供給は一定回転数の送風機を設けた風路にダンパを取付け、ダンパの開閉により制御される。燃料供給と空気供給を制御する制御信号は同時出力され、燃料供給を制御する電磁弁は瞬時に作動する。空気供給を制御するダンパも1秒以内に作動するので制御上の問題はない。しかし、送風機は常時、高燃焼に対応した一定回転数で運転されるので特に低燃焼時の電力効率が悪くなると云う問題がある。
【0004】
そこで3位置制御のボイラ−に送風機の回転数を制御する回転数制御装置を設け、送風機の回転数を制御することにより、必要な空気量を送る制御方法が試みられている。しかしながら、燃料供給を制御する電磁弁は瞬時に作動するのに対して、前記回転数制御装置による風量の制御は送風機の加減速特性が図3に示すように応答に遅れがある。即ち、加速時は送風機の実際の加速時間t31=回転数制御装置の加速時間t32+送風機の応答遅れ時間t33となり、また減速時は実際の減速時間t34=回転数制御装置の減速時間t35+送風機の応答遅れ時間t36となり、所定の空気量になるまでの時間は約10秒程度となる。
【0005】
その結果、低燃焼から高燃焼に移る燃料の増加時には燃料過多となり黒煙が発生し、また、逆に燃料の減少時には空気量過多となり吹き消えが発生することがある。なお、図3において、実線は回転数制御装置の出力周波数、破線は送風機の回転数を示す。
【0006】
図4は、従来の制御方法で回転数制御装置を使用した場合の特性を示す図である。これは3位置制御のボイラ−の運転の場合で、送風機を起動し、低燃焼の空気量に達したところで燃料に着火し低燃焼運転を開始する。低燃焼より高燃焼に移る時は、燃料は時間t42経過後(燃料の増加に要する時間)に高燃焼に必要な燃料供給量に達するが、空気量が必要量に達するには時間t41(t42<t41)経過後(空気量の増加に要する時間)となる。従って、この間は燃焼空気が不足し、黒煙が発生し燃焼が不安定になる。
【0007】
また、高燃焼より低燃焼に移る時は、燃料は時間t44経過後(燃料の減少に要する時間)に低燃焼に必要な燃料供給量に減少するが、空気が低燃焼空気量に減少するのは時間t43(t44<t43)後(空気量の減少に要する時間)となる。従って、この間に空気が過剰となり吹き消えが発生することがある。
【0008】
この対策として、特開昭61−276623号公報に開示されるように送風機の回転数制御とダンパによる風量制御とを併用する方法がある。図5はこのボイラ−燃焼炉の制御装置の構成例を示す図である。図示するように、燃焼に必要な空気55は送風機54及びダンパ−63を経てバ−ナ53へ供給される。一方、燃料52は流量調節器51で調節されバ−ナ53へ供給され空気55と混合され燃焼する。燃焼炉58ではボイラ−59が加熱され蒸気65を発生させ、蒸気65は蒸留管64を通して送出される。
【0009】
圧力検出器60は蒸気圧を検出し、その出力信号でモ−タ61を制御してリンク62を介して流量調節器51を調節し、燃料の流入量を調節すると共にダンパ−63の開度を調整して空気量を調節する。更に、ダンパ−63の調節だけでは完全燃焼させるための空気量が得られないために送風機54の回転数を制御し風量を調節する。送風機54は回転数制御装置57の出力周波数で回転数が制御され風量を調節する。周波数設定器56はバ−ナ53の開度に応じて燃焼の状態(O測定器66による酸素濃度、排煙測定器67の出力及び目視による排煙状態)が最良になるように回転数制御装置57を介して送風機54を制御する。なお、同図で符号68は煙突、符号69は煙を表す。
【0010】
【発明が解決しようとする課題】
しかしながら、上記従来技術の殆どは比例制御方法のボイラーに適用されるものであり、3位置制御方法等のボイラーに適用される燃焼制御方法は確立されていない。また、上記に述べた回転数制御装置57による送風機の回転数制御とダンパ−63による風量制御を併用する制御方法は、コストが高くなり回転数制御装置57を利用するメリットが無くなる。また、送風機の駆動モ−タ容量に比べて回転数制御装置57の容量を大きくして加減速時間を早くする方法もあるが駆動モ−タ容量が大きくなると困難となり、高価になると云う問題があった。
【0011】
本発明は上述の点に鑑みてなされたもので、上記問題点を除去し、送風機の回転数を制御し、空気量を調節することにより安定して運転できる3位置制御等を行なうボイラ−の燃焼制御方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決するため本発明は、燃焼用空気を送る送風機、該送風機から送られる燃焼用空気量を調整する空気量調整手段と、高燃焼及び低燃焼で燃料供給量を変えて供給する燃料供給手段及びこれらを制御する制御手段を具備し、ボイラーの燃焼を制御するボイラーの燃焼制御方法において、空気量調整手段として送風機の回転数を制御する回転数制御装置を設け、低燃焼から高燃焼へ移る際は制御手段により回転数制御装置を介して送風機の回転数を上げ、該送風機からの空気量を検出し該空気量が高燃焼に必要な空気量に達する前の適切な空気量になったら、燃料供給手段により高燃焼の燃料量を供給し、高燃焼から低燃焼に移る際は制御手段により回転数制御装置を介して送風機の回転数を下げ、該送風機からの空気量を検出し該空気量が低燃焼に必要な空気量に達する前の適切な空気量になったら、燃料供給手段により低燃焼の燃料量を供給することを特徴とする。
【0013】
【作用】
本発明のボイラー燃焼制御方法では、低燃焼から高燃焼へ移る際は制御手段により回転数制御装置を介して送風機の回転数を上げ、該送風機からの空気量を検出し該空気量が高燃焼に必要な空気量に達する前の適切な空気量になったら、燃料供給手段により高燃焼の燃料量を供給するので、従来のように燃焼用空気の不足により、黒煙を発生することは無い。また、高燃焼から低燃焼に移る際は制御手段により回転数制御装置を介して送風機の回転数を下げ、該送風機からの空気量を検出し該空気量が低燃焼に必要な空気量に達する前の適切な空気量になったら、燃料供給手段により低燃焼の燃料量を供給するので、従来のように空気量過剰による吹き消えが発生することは無くなる。また、送風機により常に燃焼に必要な空気を送るから、電力消費効率も向上する。
【0014】
【実施例】
以下、本発明の一実施例を図面に基づいて詳細に説明する。図1は本発明のボイラ−の燃焼制御方法を実施するボイラ−設備の構成例を示す図である。図1において、11はボイラ−であり、該ボイラ−11の燃焼室22にはバ−ナ21が配置されている。燃焼用空気は送風機13によりケ−シング12を通してバーナ21に供給され、燃料はポンプ18により圧送され、低燃焼油電磁弁19及び高燃焼油電磁弁20を介してバーナ21の噴射ノズル(図示せず)から噴射される。ここで前記燃焼用空気と混合され、燃焼し燃焼室22内に火炎を形成する。
【0015】
ケ−シング12の所定位置には風圧検出器14が設置され、その出力信号は制御部16へ入力される。回転数制御装置15は制御部16の指令を受けて送風機13の回転数を制御し、風量を適切な量に調節する。ボイラ−11には蒸気圧力を検知する蒸気圧スイッチ17が設置され、その出力信号は制御部16へ入力される。該制御部16は低燃焼油電磁弁19及び高燃焼油電磁弁20の開閉制御を行ない、前記ポンプ18からの燃料を低燃焼油電磁弁19及び高燃焼油電磁弁20を通して供給制御する。
【0016】
図2は本発明のボイラ−の燃焼制御方法における空気量変化と燃料供給タイミングを示す図である。本燃焼制御方法は高燃焼、低燃焼、停止を制御する3位置制御方法で、燃料は低燃焼時には低燃焼油電磁弁19から供給され、高燃焼時には更に高燃焼油電磁弁20からも並行して供給される(図1参照)。
【0017】
図2に従って燃料供給タイミングを説明する。制御部16から回転数制御装置15に起動信号aが出力されると、該回転数制御装置15は送風機13を起動し、送風機13からケーシング12を通って送られる空気量は時間t21(加速時間)後に低燃焼に必要な空気量に達する。続いて着火及び低燃焼弁開信号bを出力しバーナ21及び低燃焼油電磁弁19に送り、低燃焼油電磁弁19を開き、着火し低燃焼運転を開始する。
【0018】
制御部16から高燃焼信号cが出力されると回転数制御装置15は図に示すように、送風機13を加速する。これにより時間t22(加速時間)後には、ケーシング12を通って送られる空気量は高燃焼に必要な空気量に達する。また、制御部16は高燃焼信号cを出力し、時間t23経過後、風圧検出器14の出力信号、又は送風機13の回転数から空気量が適切な量に増加したことを検知したら、高燃焼弁開信号dを出力し、高燃焼油電磁弁20を開け高燃焼に必要な燃料を供給し高燃焼運転を開始する。
【0019】
また、高燃焼から低燃焼に移る場合、制御部16から低燃焼信号eが出力されると回転数制御装置15は図に示すように送風機13を減速し、時間t24(減速時間)後にはケーシング12を通って送られる空気量は、低燃焼に必要な空気量になる。制御部16は低燃焼信号eを出力して時間t25経過後、風圧検出器14の出力信号または、送風機13の回転数から空気量が適切な量に減少したことを検知したら、高燃焼弁閉信号fを出力し、高燃焼油電磁弁20を閉じる。消火の際は消火信号gを出力し、低燃焼油電磁弁19を閉じ、その後停止信号hを出力し送風機13を停止する。
【0020】
上記した如く本発明のボイラー燃焼制御方法では、低燃焼から高燃焼に移る際は、制御部16は先ず回転数制御装置15に高燃焼信号cを出力し、送風機13の回転数を上げ空気量が高燃焼に適切な量に達した時に、高燃焼弁開信号dを出力し、高燃焼油電磁弁20を開き、燃料を高燃焼に必要な量に増加させるので、従来のように黒煙を発生することはない。また、高燃焼から低燃焼に移る際は制御部16は低燃焼信号eを回転数制御装置15に出力し、送風機13の回転数を下げ低燃焼に適切な空気量になった時に、高燃焼油電磁弁20を閉めるので従来のように吹き消えが発生することは無くなる。また、電力効率も向上する。
【0021】
なお、上記実施例では高燃焼、低燃焼、停止の3位置制御を例に説明したが、本願発明のボイラー燃焼制御方法はこれに限定するものではなく、例えば4位置制御の燃焼制御にも適用できることは当然である。
【0022】
【発明の効果】
以上、詳細に説明したように本発明によれば、下記のような優れた効果が期待される。
(1)低燃焼から高燃焼へ移る際は制御手段により回転数制御装置を介して送風機の回転数を上げ、該送風機からの空気量を検出し該空気量が高燃焼に必要な空気量に達する前の適切な空気量になったら、燃料供給手段により高燃焼の燃料量を供給するので、黒煙を発生することは無く、又は黒煙の発生による燃焼が不安定になることも無い。また、高燃焼から低燃焼に移る際は制御手段により回転数制御装置を介して送風機の回転数を下げ、該送風機からの空気量を検出し該空気量が低燃焼に必要な空気量に達する前の適切な空気量になったら、燃料供給手段により低燃焼の燃料量を供給するので、従来のように空気量過剰による吹き消えが発生することは無くなる。
【0023】
(2)また、送風機により常に燃焼に必要な空気を送るから、電力消費効率も向上し、ひいてはランニングコストが減少する。
【図面の簡単な説明】
【図1】本発明のボイラ−の燃焼制御方法を実施するボイラ−設備の構成を示す図である。
【図2】本発明のボイラ−の燃焼制御方法における空気量変化と燃料供給タイミングを示す図である。
【図3】回転数制御装置の制御による送風機の加減速特性を示す図である。
【図4】従来の制御方法で回転数制御装置を使用した場合の特性を示す図である。
【図5】従来のボイラ−燃焼炉の制御装置の構成例を示す図である。
【符号の説明】
11 ボイラ−
12 ケ−シング
13 送風機
14 風圧検出器
15 回転数制御装置
16 制御部
17 蒸気圧スイッチ
18 ポンプ
19 低燃焼油電磁弁
20 高燃焼油電磁弁
21 バ−ナ
22 燃焼室
[0001]
[Industrial applications]
The present invention relates to a boiler combustion control method that performs three-position control of high combustion, low combustion, and stop, and more particularly to a boiler combustion control method that uses a rotation speed control device to control a blower that sends combustion air. .
[0002]
[Prior art]
In general, a boiler sends fuel and air to a burner and burns it in a combustion chamber. However, if the amount of air is too large, the excess air deprives the combustion chamber of heat and sends extra air. Will be wasted. If the amount of air is insufficient, complete combustion cannot be performed and a smoke state is caused, resulting in waste of fuel.
[0003]
Conventionally, in a three-position control boiler that controls high combustion, low combustion, and stop, the fuel supply is controlled by opening and closing an electromagnetic valve, and the air supply is provided with a damper in an air passage provided with a blower having a constant rotation speed. It is controlled by opening and closing. The control signals for controlling the fuel supply and the air supply are output simultaneously, and the solenoid valve for controlling the fuel supply operates instantaneously. The damper for controlling the air supply operates within one second, so there is no control problem. However, since the blower is always operated at a constant rotational speed corresponding to high combustion, there is a problem that the power efficiency particularly during low combustion is deteriorated.
[0004]
Therefore, a control method for supplying a required amount of air has been attempted by providing a rotation speed control device for controlling the rotation speed of the blower in a three-position control boiler and controlling the rotation speed of the blower. However, while the solenoid valve for controlling the fuel supply operates instantaneously, the control of the air volume by the rotational speed control device has a delay in the response of the acceleration / deceleration characteristics of the blower as shown in FIG. That is, acceleration deceleration of the actual acceleration time t 31 = response delay time t 33 becomes acceleration time of the rotational speed control device t 32 + blower, also deceleration actual deceleration time t 34 = speed control system of the blower Time t 35 + response delay time t 36 of the blower is obtained, and the time required until the predetermined amount of air is reached is about 10 seconds.
[0005]
As a result, when the amount of fuel that shifts from low combustion to high combustion increases, the amount of fuel becomes excessive and black smoke is generated. On the contrary, when the amount of fuel decreases, the amount of air becomes excessive and blowout may occur. In FIG. 3, the solid line indicates the output frequency of the rotation speed control device, and the broken line indicates the rotation speed of the blower.
[0006]
FIG. 4 is a diagram showing characteristics when a rotation speed control device is used in a conventional control method. This is the operation of the boiler of the three-position control. When the blower is started and the low-combustion air amount is reached, the fuel is ignited and the low-combustion operation is started. When moving to high fire than the low combustion, the fuel reaches the fuel supply amount required for a high combustion (time required to increase the fuel) time t 42 after the elapse, the air amount reaches the amount required time t 41 After (t 42 <t 41 ) has elapsed (the time required for increasing the amount of air). Accordingly, during this time, the combustion air is insufficient, black smoke is generated, and the combustion becomes unstable.
[0007]
Also, when going to the low combustion than high combustion, the fuel is reduced to a fuel supply amount necessary for low combustion after the elapsed time t 44 (time required for reduction of the fuel), but the air is reduced to a low amount of combustion air Is after a time t 43 (t 44 <t 43 ) (time required for reducing the amount of air). Therefore, during this time, the air becomes excessive and blowout may occur.
[0008]
As a countermeasure, there is a method in which the control of the rotation speed of the blower and the control of the air volume by a damper are used in combination as disclosed in Japanese Patent Application Laid-Open No. 61-276623. FIG. 5 is a diagram showing a configuration example of a control device for the boiler-burning furnace. As shown in the figure, air 55 required for combustion is supplied to a burner 53 through a blower 54 and a damper 63. On the other hand, the fuel 52 is adjusted by the flow controller 51, supplied to the burner 53, mixed with the air 55, and burned. In the combustion furnace 58, the boiler 59 is heated to generate steam 65, and the steam 65 is sent out through the distillation tube 64.
[0009]
The pressure detector 60 detects the vapor pressure, controls the motor 61 based on the output signal, controls the flow controller 51 through the link 62, controls the fuel inflow, and opens the damper 63. To adjust the air volume. Furthermore, since the amount of air for complete combustion cannot be obtained only by adjusting the damper 63, the number of rotations of the blower 54 is controlled to adjust the amount of air. The rotation speed of the blower 54 is controlled by the output frequency of the rotation speed control device 57 to adjust the air volume. Rpm as the combustion state in accordance with the opening degree of the Na 53 (oxygen concentration by O 2 meter 66, smoke condition by the output and visual flue gas meter 67) becomes the best - the frequency setting unit 56 Bas The blower 54 is controlled via the control device 57. In the figure, reference numeral 68 represents a chimney, and reference numeral 69 represents smoke.
[0010]
[Problems to be solved by the invention]
However, most of the above prior arts are applied to a boiler of a proportional control method, and a combustion control method applied to a boiler such as a three-position control method has not been established. In addition, the above-described control method using both the rotation speed control of the blower by the rotation speed control device 57 and the air volume control by the damper 63 increases costs and eliminates the merit of using the rotation speed control device 57. There is also a method of increasing the capacity of the rotation speed control device 57 to increase the acceleration / deceleration time as compared with the capacity of the drive motor of the blower. However, if the capacity of the drive motor is increased, it becomes difficult and the cost increases. there were.
[0011]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in consideration of the above problems, and has been made in consideration of the above problems, and has been made in consideration of the above problems. It is an object to provide a combustion control method.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a blower for feeding combustion air, an air amount adjusting means for adjusting an amount of combustion air sent from the blower, and a fuel supplied by changing a fuel supply amount in high combustion and low combustion. In a boiler combustion control method comprising a supply means and a control means for controlling these, and controlling a combustion of a boiler, a rotation speed control device for controlling a rotation speed of a blower is provided as an air amount adjusting means, and a low combustion to a high combustion When moving to, the control means increases the rotation speed of the blower via the rotation speed control device, detects the amount of air from the blower, and adjusts the air amount to an appropriate air amount before reaching the air amount necessary for high combustion. Then, the fuel supply means supplies a high combustion fuel amount, and when shifting from high combustion to low combustion, the control means lowers the rotation speed of the blower via a rotation speed control device and detects the air amount from the blower. Sir Once in the proper amount of air before the air amount reaches the amount of air required to low combustion, and supplying the fuel amount of the low combustion by the fuel supply means.
[0013]
[Action]
In the boiler combustion control method of the present invention, when shifting from low combustion to high combustion, the rotation speed of the blower is increased by the control means via the rotation speed control device, the amount of air from the blower is detected, and the air amount is increased. When the amount of air reaches an appropriate amount before reaching the required amount of air, the fuel supply means supplies a high-combustion amount of fuel, so that there is no black smoke due to lack of combustion air as in the past. . Further, when shifting from high combustion to low combustion, the rotation speed of the blower is reduced by the control means via the rotation speed control device, the amount of air from the blower is detected, and the air amount reaches the air amount necessary for low combustion. When the previous appropriate air amount is reached, the fuel supply means supplies the low-combustion fuel amount, so that the blow-out due to the excess air amount unlike the conventional case is eliminated. Further, since the air required for combustion is always sent by the blower, the power consumption efficiency is improved.
[0014]
【Example】
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a configuration example of a boiler facility for implementing a boiler combustion control method of the present invention. In FIG. 1, reference numeral 11 denotes a boiler, and a burner 21 is disposed in a combustion chamber 22 of the boiler 11. The combustion air is supplied to the burner 21 by the blower 13 through the casing 12, the fuel is pumped by the pump 18, and the injection nozzle (shown in FIG. 1) of the burner 21 is passed through the low combustion oil solenoid valve 19 and the high combustion oil solenoid valve 20. )). Here, it is mixed with the combustion air and burns to form a flame in the combustion chamber 22.
[0015]
A wind pressure detector 14 is provided at a predetermined position of the casing 12, and an output signal thereof is input to a control unit 16. The rotation speed control device 15 receives a command from the control unit 16, controls the rotation speed of the blower 13, and adjusts the air volume to an appropriate amount. A steam pressure switch 17 for detecting a steam pressure is provided in the boiler 11, and an output signal thereof is input to the control unit 16. The control unit 16 controls opening and closing of the low combustion oil solenoid valve 19 and the high combustion oil solenoid valve 20, and controls the supply of fuel from the pump 18 through the low combustion oil solenoid valve 19 and the high combustion oil solenoid valve 20.
[0016]
FIG. 2 is a diagram showing a change in air amount and fuel supply timing in the boiler combustion control method of the present invention. This combustion control method is a three-position control method for controlling high combustion, low combustion, and stop. In low combustion, fuel is supplied from the low combustion oil solenoid valve 19, and during high combustion, the fuel is further supplied from the high combustion oil solenoid valve 20 in parallel. (See FIG. 1).
[0017]
The fuel supply timing will be described with reference to FIG. When a start signal a to the speed control device 15 from the control unit 16 is output, the speed control unit 15 activates the blower 13, the amount of air fed from the blower 13 through the casing 12 is time t 21 (acceleration After time), the air volume required for low combustion is reached. Subsequently, the ignition and low combustion valve open signal b is output and sent to the burner 21 and the low combustion oil solenoid valve 19 to open the low combustion oil solenoid valve 19 to ignite and start the low combustion operation.
[0018]
When the high combustion signal c is output from the control unit 16, the rotation speed control device 15 accelerates the blower 13 as shown in the drawing. After this the time t 22 (acceleration time), the amount of air fed through the casing 12 reaches the amount of air required for high combustion. Further, the control unit 16 outputs a high combustion signal c, when detecting that the increased time t 23 after the output signal of the air pressure detector 14, or the amount the amount of air is appropriate from the rotational speed of the blower 13, the high The combustion valve opening signal d is output, the high combustion oil solenoid valve 20 is opened, and fuel necessary for high combustion is supplied to start high combustion operation.
[0019]
Further, when shifting from high combustion to low combustion, when the low combustion signal e is output from the control unit 16, the rotation speed control device 15 decelerates the blower 13 as shown in the figure, and after a time t 24 (deceleration time). The amount of air sent through the casing 12 is the amount required for low combustion. After the control unit 16 the time t 25 elapses outputs a low combustion signal e, the output signal of the air pressure detector 14, or, when detecting that the air quantity from the rotational speed of the blower 13 is reduced to an appropriate amount, high combustion valve A close signal f is output, and the high combustion oil solenoid valve 20 is closed. At the time of fire extinguishing, a fire extinguishing signal g is output, the low combustion oil solenoid valve 19 is closed, and then a stop signal h is output to stop the blower 13.
[0020]
As described above, in the boiler combustion control method of the present invention, when shifting from low combustion to high combustion, the control unit 16 first outputs the high combustion signal c to the rotation speed control device 15 to increase the rotation speed of the blower 13 and increase the air amount. When the fuel reaches an appropriate amount for high combustion, a high combustion valve open signal d is output, the high combustion oil solenoid valve 20 is opened, and the fuel is increased to the amount required for high combustion. Will not occur. Further, when shifting from the high combustion to the low combustion, the control unit 16 outputs a low combustion signal e to the rotation speed control device 15, and when the rotation speed of the blower 13 is reduced to an appropriate air amount for the low combustion, the high combustion Since the oil solenoid valve 20 is closed, blowout does not occur as in the related art. Also, power efficiency is improved.
[0021]
In the above embodiment, three-position control of high combustion, low combustion, and stop was described as an example. However, the boiler combustion control method of the present invention is not limited to this, and may be applied to, for example, combustion control of four-position control. What you can do is obvious.
[0022]
【The invention's effect】
As described above, according to the present invention, the following excellent effects are expected.
(1) When shifting from low combustion to high combustion, the rotation speed of the blower is increased by the control means via the rotation speed control device, the amount of air from the blower is detected, and the amount of air is reduced to the amount of air necessary for high combustion. When the amount of air reaches an appropriate amount before reaching, the amount of fuel of high combustion is supplied by the fuel supply means, so that no black smoke is generated or combustion due to the generation of black smoke is not unstable. Further, when shifting from high combustion to low combustion, the rotation speed of the blower is reduced by the control means via the rotation speed control device, the amount of air from the blower is detected, and the amount of air reaches the amount of air required for low combustion. When the previous appropriate air amount is reached, the fuel supply means supplies the low-combustion fuel amount, so that the blow-out due to the excess air amount unlike the conventional case is eliminated.
[0023]
(2) Since air necessary for combustion is always sent by the blower, the power consumption efficiency is improved, and the running cost is reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a boiler facility for implementing a boiler combustion control method of the present invention.
FIG. 2 is a diagram showing a change in air amount and fuel supply timing in the boiler combustion control method of the present invention.
FIG. 3 is a diagram showing acceleration / deceleration characteristics of a blower controlled by a rotation speed control device.
FIG. 4 is a diagram showing characteristics when a rotation speed control device is used in a conventional control method.
FIG. 5 is a diagram showing a configuration example of a conventional boiler-burning furnace control device.
[Explanation of symbols]
11 Boiler
DESCRIPTION OF SYMBOLS 12 Case 13 Blower 14 Wind pressure detector 15 Revolution control device 16 Control part 17 Steam pressure switch 18 Pump 19 Low combustion oil solenoid valve 20 High combustion oil solenoid valve 21 Burner 22 Combustion chamber

Claims (3)

燃焼用空気を送る送風機、該送風機から送られる燃焼用空気量を調整する空気量調整手段と、高燃焼及び低燃焼で燃料供給量を変えて供給する燃料供給手段及びこれらを制御する制御手段を具備し、ボイラーの燃焼を制御するボイラーの燃焼制御方法において、
前記空気量調整手段として前記送風機の回転数を制御する回転数制御装置を設け、
前記低燃焼から高燃焼へ移る際は前記制御手段により前記回転数制御装置を介して前記送風機の回転数を上げ、該送風機からの空気量を検出し該空気量が前記高燃焼に必要な空気量に達する前の適切な空気量になったら、前記燃料供給手段により高燃焼の燃料量を供給し、前記高燃焼から低燃焼に移る際は前記制御手段により前記回転数制御装置を介して前記送風機の回転数を下げ、該送風機からの空気量を検出し該空気量が前記低燃焼に必要な空気量に達する前の適切な空気量になったら、前記燃料供給手段により低燃焼の燃料量を供給することを特徴とするボイラーの燃焼制御方法。
A blower that sends combustion air, an air amount adjusting unit that adjusts the amount of combustion air sent from the blower, a fuel supply unit that changes the amount of fuel supply in high combustion and low combustion, and a control unit that controls these. A boiler combustion control method comprising: controlling boiler combustion;
Providing a rotation speed control device for controlling the rotation speed of the blower as the air amount adjustment means,
When shifting from the low combustion to the high combustion, the control means increases the rotation speed of the blower through the rotation speed control device , detects the amount of air from the blower, and detects the amount of air required for the high combustion. When the amount of air reaches an appropriate amount before reaching the amount, the fuel supply means supplies a high combustion fuel amount, and when shifting from the high combustion to low combustion, the control means controls the rotation speed control device via the rotation speed control device. The number of rotations of the blower is reduced, and the amount of air from the blower is detected. When the amount of air reaches an appropriate amount before reaching the amount of air required for the low combustion, the amount of low combustion fuel is increased by the fuel supply means. Boiler combustion control method, characterized in that:
前記空気量は前記送風機の吐出圧力から検出し、該吐出圧力により燃料量の増減を行なうことを特徴とする請求項1に記載のボイラーの燃焼制御方法。The boiler combustion control method according to claim 1, wherein the air amount is detected from a discharge pressure of the blower, and the fuel amount is increased or decreased by the discharge pressure. 前記空気量は前記送風機の回転数から検出し、該回転数により燃料量の増減を行うことを特徴とする請求項1に記載のボイラーの燃焼制御方法。The boiler combustion control method according to claim 1, wherein the amount of air is detected from the number of rotations of the blower, and the amount of fuel is increased or decreased according to the number of rotations.
JP33578494A 1994-12-20 1994-12-20 Boiler combustion control method Expired - Fee Related JP3561309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33578494A JP3561309B2 (en) 1994-12-20 1994-12-20 Boiler combustion control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33578494A JP3561309B2 (en) 1994-12-20 1994-12-20 Boiler combustion control method

Publications (2)

Publication Number Publication Date
JPH08178271A JPH08178271A (en) 1996-07-12
JP3561309B2 true JP3561309B2 (en) 2004-09-02

Family

ID=18292414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33578494A Expired - Fee Related JP3561309B2 (en) 1994-12-20 1994-12-20 Boiler combustion control method

Country Status (1)

Country Link
JP (1) JP3561309B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427440B2 (en) * 2009-03-11 2014-02-26 アズビル株式会社 Burning burner
JP6003792B2 (en) * 2013-05-01 2016-10-05 三浦工業株式会社 boiler
JP6277873B2 (en) * 2014-06-11 2018-02-14 三浦工業株式会社 boiler

Also Published As

Publication number Publication date
JPH08178271A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
JP3795951B2 (en) Low NOx burner and exhaust gas recirculation control method
US5902098A (en) Method for controlling an ignition for a gas boiler
JP3561309B2 (en) Boiler combustion control method
JP4554153B2 (en) Boiler combustion control system
JP4191359B2 (en) Boiler with continuous combustion
JP3335282B2 (en) Air volume adjustment method using boiler inverter device
JP2877498B2 (en) Control device for combustion device
JPH0933036A (en) Boiler for performing adjustment of air supplying volume in ignition time
KR100711814B1 (en) Igniting and combustion system of oil boiler
KR0153711B1 (en) Combustion apparatus
JPH10213320A (en) Combustion control method for three position control boiler
JP3022250B2 (en) Blow control method for three-position combustion control boiler
JPH0317418A (en) Liquid fuel combusting apparatus
KR920009085B1 (en) Combustion controller
JPS60147054A (en) Instantaneous water heater
JPH0227323Y2 (en)
JPH11173546A (en) Combustion control method for combustion apparatus and combustion control device
KR920009084B1 (en) Combustion controller
JP2827469B2 (en) Combustion equipment
JP2675515B2 (en) Incomplete combustion detector for combustion equipment
KR20000032721A (en) Method of controlling supply/exhaust amount of gas boiler
JPH11108348A (en) Method of monitoring control of air-fuel ratio in boiler
JP2006046867A (en) Ignition method for combustion system
JPH0894069A (en) Gas combustion device
JPH04335914A (en) Combustion device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040413

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040420

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees