JP3560404B2 - Leak detection wire - Google Patents

Leak detection wire Download PDF

Info

Publication number
JP3560404B2
JP3560404B2 JP34930595A JP34930595A JP3560404B2 JP 3560404 B2 JP3560404 B2 JP 3560404B2 JP 34930595 A JP34930595 A JP 34930595A JP 34930595 A JP34930595 A JP 34930595A JP 3560404 B2 JP3560404 B2 JP 3560404B2
Authority
JP
Japan
Prior art keywords
polymer layer
expanded
leak detection
leak
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34930595A
Other languages
Japanese (ja)
Other versions
JPH09170961A (en
Inventor
岳信 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabe Industrial Co Ltd
Original Assignee
Kurabe Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabe Industrial Co Ltd filed Critical Kurabe Industrial Co Ltd
Priority to JP34930595A priority Critical patent/JP3560404B2/en
Publication of JPH09170961A publication Critical patent/JPH09170961A/en
Application granted granted Critical
Publication of JP3560404B2 publication Critical patent/JP3560404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、配管等からの液体の漏洩を一本の検知線により電気的に検知する漏液検知電線に係り、特に、いずれの位置で漏洩があっても確実に検知することができるとともに、一時的な濡れに影響されず配管系の故障による漏洩のみを選択的に検知することが可能な漏液検知電線に関する。
【0002】
【従来の技術】
配管等からの漏液を電線状のセンサを使用して検知する試みが従来より数多くなされているが、代表的なものとして、2本の導体を一定間隔で平行に配置し、その間に検知対象の液体が侵入すると導体間が導通して漏液を検知する方法や、例えば、特表平3−500822号公報に開示されているような、透液性の導体と透液性の絶縁体を用いて同心円状に構成し、検知対象の液体がこれらの導体及び絶縁体中に侵入した場合の電気特性の変化をTDR法(time domain reflectometry)などによって測定し、これによって漏液を検知する方法などがある。
【0003】
また、これらとは別の試みとして、検知対象の液体を吸収して膨張する膨潤部材を使用したものも知られている。例えば、特開平6−249743号公報には、高分子による膨潤部材を使用した応力付与部材と、光ファイバーとからなるものが開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、まず、2本の導体を平行に配置した構成のセンサを使用して漏液を検知する方法では、汚れの付着、結露の発生等の影響によって誤動作し易く、導体の腐食や導体線間の絶縁破壊など不可逆的な変化を起こす恐れがあった。この問題に対しては、例えば、特開平5−187955号公報などに耐腐食性導体の使用が開示されているものの、本質的な解決には何ら至っていない。また、特表平3−500822号公報に開示されているようなTDR法を使用して漏液を検知する方法の場合は、光ファイバーの使用が必要となるためセンサ出力を処理する電気回路が高コストになってしまうという欠点がある。
【0006】
【課題を解決するための手段】
本発明はこのような点に基づき鋭意検討を重ねた結果、誤動作が少なく、耐久性に優れるとともに、出力を処理する電気回路も単純で安価である検知電線の開発に成功した。また、検知電線の応答時間が従来よりも長いこと、及びそれを調整する手段を更に設けることにより、結露や降雨などによる一時的な濡れに影響されず、配管系の故障による漏液のような連続的な濡れのみを選択的に検知することが可能になることも見い出した。
【0007】
【課題を解決するための手段】
即ち、本発明による漏液検知電線は、中心導体上に、絶縁材料から成形されたスペーサ、内部導体、漏洩検知対象液体により膨張する膨張高分子層、外径保持手段が順次形成されてなる漏洩検知電線において、内部導体が膨張高分子層に密着しており、膨張高分子層が膨張していない状態では内部導体と中心導体は該中心導体上に取り付けられたスペーサによって空間絶縁状態を保持されているが、膨張高分子層が漏洩検知対象液体と接触して所定量膨張した際にはその内側への膨張圧力により内部導体と中心導体とが電気的に接触することを特徴とするものである。この際、膨張高分子層と外径保持手段との間に、漏洩検知対象液体の侵入速度を制御する高分子組成物層を更に設けることが考えられる。
以上
【0008】
【発明の実施の形態】
本発明において、中心導体としては、銅、銅合金、ニッケル、鉄、アルミニウム、ステンレス、ニッケルクロム合金、更に、これらの金属にスズ、銀、ニッケル等の表面処理を施したものなどからなる金属細線の単線、撚り線など通常の導体または抵抗線が使用される。
【0009】
スペーサは、絶縁材料から構成される。例えば、従来公知のゴム材料や樹脂材料からなり所定の断面形状を備える押出紐、従来公知の繊維の撚り糸などが挙げられる。これらは、縦添え、編組または横巻することによって中心導体上に取り付けられるが、この際、スペーサが中心導体を完全に覆わないようにする必要がある。好ましくは、導体表面の50%以上95%以下の部分が露出するように設計する。中心導体の露出部が50%未満では、膨張高分子層が漏洩検知対象液体と接触して膨張しても、内部導体と充分な電気的接触状態を得ることができない恐れがある。一方、中心導体の露出部が95%を超えると、スペーサによる空間絶縁保持能力が低下してしまう。
【0010】
内部導体は、金属フィルム、金属線状体などの金属材料から構成される。金属フィルムを使用する場合は、高分子接着層を通じて膨張高分子層に密着させることが好ましく、また、金属線状体を使用する場合は、膨張高分子層に接着層を介してまたは介さずに埋め込むことが好ましい。この内部導体は、漏洩検知対象液体を吸収して膨潤した膨張高分子層に比べて十分抵抗が低いことが、漏液位置を検知するうえで好ましい。そのため、金属材料としては、銅、スズメッキ銅、ニッケルメッキ銅、銀メッキ銅及び小量の第二成分を含む銅合金からなるものなどが好ましく用いられる。
【0011】
漏洩検知対象液体との接触により膨張する膨張高分子層は、その高分子自体が膨張する性質を有するものでも良いし、高分子中に膨張する粒子を混合したものであっても良い。このような高分子材料は従来より様々なものが公知となっているので、それらを用いれば良い。例えば、漏洩検知対象液体が水である場合、高分子自体が膨張する性質を有するものとしては、架橋ポリビニルアルコール系があり、特に押出可能なものとして市販されているものが挙げられる。また膨張する粒子を含んだものとしては、アクリル酸系ヒドロゲルの乾燥粒子を含んだ各種ゴム、プラスチックが挙げられる。漏洩検知対象液体がその他の燃料物質(例えば、炭化水素)、薬品類の場合には、それぞれの物質に溶解するポリマーを架橋したものなどが単独、または混合物で用いられるか、または粉末に加工された後、任意の高分子に混合された態様で用いられる。
【0012】
膨張高分子層の厚さ、種類及び漏洩検知対象液体の飽和膨張度は、本発明によって得られる漏洩検知電線の構造、感度、快復の迅速性などを考慮して任意に設定する。例えば、中心導体と内部導体の空間絶縁距離が大きめで、しかも、速めの検知を必要とするときは、膨張高分子層を厚めに、飽和膨張度を大きめに設定することが好ましい。逆の場合は膨張高分子層を薄めに、飽和膨張度を小さめに設定することが好ましい。
【0013】
膨張高分子層上には、外径保持手段が近接した状態で設けられる。外径保持手段は、通常は外側に向かって膨張しようとする膨張高分子層を内側に向かって膨張させるとともに、外傷等から膨張高分子層を保護するためのものである。構成材料としては、漏洩検知対象液体を透過する性質を有するものであれば良く、特に限定されない。例えば、金属等の高強度線の編組によるもの、金属等の高抗張力帯の横巻によるものなどが挙げられる。
【0014】
本発明においては、感度の調整を容易にするために、膨張高分子層と外径保持手段との間に、漏洩検知対象液体の侵入速度を制御する高分子組成物層を更に設けても良い。構成材料は、従来公知の高分子材料の中から、膨張は小さいものの漏洩検知対象液体を容易に透過する性質を有するものを適宜に選択して使用する。例えば、漏洩検知対象液体が水である場合は、好ましくは、ポリアミド6、ポリアミド66等の脂肪族ポリアミド樹脂を選択し、膨張高分子層上に連続して被覆形成する。また、漏洩検知対象液体が石油系の液体である場合は、好ましくは、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂を選択し、膨張高分子層上に連続して被覆形成する。
【0015】
【実施例】
以下に実施例を示し本発明の内容を更に詳細に説明する。
【0016】
実施例1
まず、断面積0.5mmのニッケルメッキ軟銅線からなる中心導体の周上に、スペーサとして直径1mmの半円の断面を有するポリエステルエラストマーからなる押出紐を中心導体表面が略75%露出するように横巻し、同時に熱処理を施して押出紐にスパイラル状の癖を付け、両者を一体化させた。次に、市販の軟質塩化ビニルコンパウンド100重量部に対して15重量部の微紛状ビニルアルコール−アクリル酸共重合体ゲルを混合してなる膨張高分子層を1mmの厚さで押し出す際に、塩化ビニル用接着剤が塗布された幅15mmの複合フィルム(ポリエステルフィルム25μm、ニッケルメッキ銅箔20μm)からなる内部導体をニッケルメッキ銅箔層を内側にして縦添えし、内部導体と膨張高分子層を同時に形成した。最後に、0.2mmφのSUS304素線を4本引き揃えたものを20打ちのブレーダーを用いて編組し、外径保持手段を形成した。
【0017】
このようにして製造された漏液検知電線の片方の末端を処理して中心導体と内部導体を引き出し、以下の条件下で両者間の抵抗値を測定して特性の評価を行った。まず、一時的な濡れに対する試験として、検知電線を10分間水槽に浸した後、引き上げ8時間抵抗値の経過を観察した。8時間経過後も抵抗値は無限大を示したままであり、何ら検知を行わなかった。次に、連続的な濡れに対する試験として、検知電線を水槽に継続的に浸しながら抵抗値の経過を観察した。4時間経過した時点で抵抗値は21Ωを示し、水の存在を検知した。
【0018】
実施例2
実施例1において、膨張高分子層を形成した後、連続してポリアミド6を0.15mmの厚さで押し出して高分子組成物層を形成した。次に、実施例1と同様に外径保持手段を形成し漏液検知電線とした。このようにして得られた漏液検知電線についても実施例1と同様の方法で評価を行った。その結果、一時的な濡れに対する試験では、抵抗値は無限大を示したままであったが、連続的な濡れに対する試験では、実施例1の検知電線よりも6時間遅い10時間後に抵抗値が21Ωを示し、水の存在を検知した。
【0019】
本実施例では更に、実施例1の検知電線と実施例2の検知電線に対して更なる評価を行った。両者を湿潤した土中に埋設して、片方の試験では次第に土が乾燥してくるように水分の供給を行わず、もう片方の試験では湿潤状態が継続するように適宜に水分を供給して合計3日間状況を観察した。その結果、前者の試験では、実施例1の検知電線が6時間後に動作したが、実施例2の検知電線は期間中全く動作しなかった。後者の試験では、実施例1の検知電線が6時間後、実施例2の検知電線が14時間後にそれぞれ動作した。
【0020】
これらの試験結果により、実施例2のような高分子組成物層を更に設けることにより、結露、降雨等による一時的な濡れに対する検知電線の誤動作を防ぐように感度を容易に調整できることが判る。
【0021】
尚、本発明は上記実施例に限定されるものではない。上記実施例では、漏洩検知対象液体を水としたため、膨張高分子層の構成材料として、塩化ビニルとハイドロゲルとの組成物を使用したが、漏洩検知対象液体を炭化水素などの燃料物質や各種の薬品類とする場合には、これらと接触して膨張する材料を適宜に選択して使用すれば上記実施例と全く同様の作用効果が得られるものである。
【0022】
【発明の効果】
以上詳述したように本発明によれば、局部的な漏液を確実に検知することができるとともに、従来の検知電線(例えば、2本の導体間に液体が存在することを電気的に検知する構成のもの)では不可能であった緩慢な検知をも可能な漏液検知電線を得ることができた。このような特徴的な顕著な効果を備えた検知電線であれば、一時的な漏液と連続的な漏液とを確実に区別することができるため、誤動作が発生せず極めて信頼性の高いものとなる。従って、例えば、土中に埋設された上下水道管や建物にビルトインされた上下水道管に並行して設置することにより、一時的な、降雨であるとか、結露による水分の付着には反応せず、配管の故障による漏液の場合のような局部的で、かつ連続した漏液のみ選択的に検知することが可能である。
【0022】
上下水道管のみをとってみても、毎年漏液による上水道のロスは膨大な量に及ぶが、漏液位置の検知は音による作業員の判定に頼らなくてはならない現状で、膨大な長さの配管の漏液をくまなく検知し、修理することは不可能であった。下水についても、漏液による建物の劣化促進などの問題があり、管理に大変なコストを掛けていた。
【0023】
しかしながら、本発明の検知電線を使用すれば、配管の全長の管理が極めて容易になることから、絶大な経済効果が得られると思われる。また、一時的な漏液と連続的な漏液の両方を検知できる従来の検知電線と本発明の漏液検知電線を並行して敷設すれば、漏液がいずれの位置で発生したとしても、確実に検知することができるため更に有用なものとなる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid leakage detection electric wire that electrically detects liquid leakage from a pipe or the like with a single detection line, and in particular, can reliably detect leakage at any position, The present invention relates to a liquid leakage detection wire capable of selectively detecting only leakage due to a failure in a piping system without being affected by temporary wetting.
[0002]
[Prior art]
Many attempts have been made to detect leaks from pipes and the like using electric wire-shaped sensors. As a typical example, two conductors are arranged in parallel at regular intervals, and the detection target is detected in the meantime. When the liquid infiltrates, the conductors conduct to each other to detect liquid leakage. For example, a liquid-permeable conductor and a liquid-permeable insulator as disclosed in Japanese Patent Publication No. 3-500822 are used. A method of detecting a liquid leak by measuring a change in electrical characteristics when a liquid to be detected enters these conductors and insulators by a TDR method (time domain reflection metrology) or the like. and so on.
[0003]
In addition, as another attempt, there has been known an apparatus using a swelling member that expands by absorbing a liquid to be detected. For example, Japanese Patent Application Laid-Open No. 6-249743 discloses an optical fiber comprising a stress applying member using a swelling member made of a polymer and an optical fiber.
[0004]
[Problems to be solved by the invention]
However, first, the method of detecting liquid leakage using a sensor having a configuration in which two conductors are arranged in parallel is liable to malfunction due to the effects of adhesion of dirt, dew condensation, etc. Irreversible changes such as dielectric breakdown may occur. To solve this problem, for example, Japanese Patent Application Laid-Open No. Hei 5-187555 discloses the use of a corrosion-resistant conductor, but has not reached any essential solution. Further, in the case of a method of detecting a liquid leak using the TDR method as disclosed in Japanese Patent Publication No. 3-500822, the use of an optical fiber is necessary, so that an electric circuit for processing the sensor output is expensive. There is a disadvantage that it becomes costly.
[0006]
[Means for Solving the Problems]
As a result of intensive studies based on such points, the present invention has succeeded in developing a detection wire that has less malfunction, has excellent durability, and has a simple and inexpensive electric circuit for processing the output. In addition, the response time of the sensing wire is longer than before, and by further providing a means to adjust it, it is not affected by temporary wetting due to condensation or rainfall, etc. It has also been found that it is possible to selectively detect only continuous wetting.
[0007]
[Means for Solving the Problems]
That is, the leak detecting wire according to the present invention is a leak detecting wire in which a spacer formed of an insulating material , an inner conductor, an expanding polymer layer expanded by a leak detection target liquid, and an outer diameter holding means are sequentially formed on a central conductor. In the detection wire, the inner conductor is in close contact with the expanded polymer layer, and in a state where the expanded polymer layer is not expanded, the inner conductor and the center conductor are kept in a spatially insulated state by the spacer attached on the center conductor. However, when the expanded polymer layer comes into contact with the leak detection target liquid and expands by a predetermined amount, the inner conductor and the center conductor are electrically contacted by the expansion pressure inward. is there. At this time, it is conceivable to further provide a polymer composition layer for controlling the invasion speed of the liquid to be leak-detected between the expanded polymer layer and the outer diameter holding means.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, as the center conductor, copper, copper alloy, nickel, iron, aluminum, stainless steel, nickel-chromium alloy, or a thin metal wire made of a material obtained by subjecting these metals to surface treatment such as tin, silver, and nickel Ordinary conductors such as single wires and stranded wires or resistance wires are used.
[0009]
The spacer is made of an insulating material. For example, an extruded string made of a conventionally known rubber material or resin material and having a predetermined cross-sectional shape, a conventionally known twisted fiber thread, or the like can be used. These are mounted on the center conductor by cascading, braiding or weaving, but it is necessary that the spacers do not completely cover the center conductor. Preferably, a design is made such that a portion of 50% or more and 95% or less of the conductor surface is exposed. If the exposed portion of the central conductor is less than 50%, even if the expanded polymer layer comes into contact with the leak detection target liquid and expands, it may not be possible to obtain a sufficient electrical contact state with the internal conductor. On the other hand, if the exposed portion of the center conductor exceeds 95%, the ability of the spacer to maintain the spatial insulation is reduced.
[0010]
The inner conductor is made of a metal material such as a metal film and a metal linear body. When using a metal film, it is preferable to adhere to the expanded polymer layer through a polymer adhesive layer, and when using a metal linear body, with or without an adhesive layer on the expanded polymer layer. Embedding is preferred. It is preferable that the internal conductor has a sufficiently low resistance as compared with the expanded polymer layer swollen by absorbing the liquid to be leak-detected, in order to detect the leak position. Therefore, as the metal material, a material made of copper, tin-plated copper, nickel-plated copper, silver-plated copper, and a copper alloy containing a small amount of the second component is preferably used.
[0011]
The expandable polymer layer that expands upon contact with the leak detection target liquid may have a property that the polymer itself expands, or may be a mixture of particles that expand in the polymer. Various types of such polymer materials have been known in the art, and they may be used. For example, when the liquid to be leak-detected is water, the polymer itself has a property of expanding, for example, a crosslinked polyvinyl alcohol-based material, and in particular, a commercially available product that can be extruded. Examples of the material containing expanding particles include various rubbers and plastics containing dry particles of acrylic acid-based hydrogel. If the leak detection target liquid is other fuel substances (for example, hydrocarbons) or chemicals, cross-linked polymers soluble in each substance are used alone or as a mixture, or are processed into powder. After that, it is used in a form mixed with any polymer.
[0012]
The thickness and type of the expandable polymer layer and the degree of saturation expansion of the leak detection target liquid are arbitrarily set in consideration of the structure, sensitivity, quick recovery and the like of the leak detection wire obtained by the present invention. For example, when the space insulation distance between the center conductor and the inner conductor is large and a quick detection is required, it is preferable to set the expanded polymer layer to be thick and the saturation expansion to be large. In the opposite case, it is preferable to set the expanded polymer layer to be thin and the degree of saturation expansion to be small.
[0013]
An outer diameter holding means is provided on the expanded polymer layer in a state of being close to the expanded polymer layer. The outer diameter holding means is for expanding the expanding polymer layer, which normally expands outward, toward the inside, and protecting the expanding polymer layer from external damage or the like. The constituent material is not particularly limited as long as it has a property of transmitting the liquid to be detected. For example, a braid made of a high-strength wire such as a metal, or a horizontal braid of a high tensile strength band made of a metal or the like may be used.
[0014]
In the present invention, in order to easily adjust the sensitivity, a polymer composition layer for controlling the intrusion speed of the leakage detection target liquid may be further provided between the expanded polymer layer and the outer diameter holding means. . The constituent material is appropriately selected from conventionally known polymer materials having a small expansion but having a property of easily transmitting the liquid to be detected. For example, when the leak detection target liquid is water, preferably, an aliphatic polyamide resin such as polyamide 6, polyamide 66, or the like is selected, and is continuously formed on the expanded polymer layer. When the leak detection target liquid is a petroleum-based liquid, preferably, a polyolefin-based resin such as polyethylene or polypropylene is selected, and is continuously formed on the expanded polymer layer.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0016]
Example 1
First, an extruded string made of a polyester elastomer having a semicircular cross section with a diameter of 1 mm as a spacer is exposed on the periphery of a center conductor made of a nickel-plated soft copper wire having a cross-sectional area of 0.5 mm 2 so that the surface of the center conductor is exposed by about 75%. , And heat-treated at the same time to give a spiral habit to the extruded string, thereby integrating the two. Next, when extruding a 1 mm thick expanded polymer layer formed by mixing 15 parts by weight of finely divided vinyl alcohol-acrylic acid copolymer gel with 100 parts by weight of a commercially available soft vinyl chloride compound, An internal conductor made of a 15 mm wide composite film (polyester film 25 μm, nickel-plated copper foil 20 μm) coated with an adhesive for vinyl chloride is vertically attached with the nickel-plated copper foil layer inside, and the internal conductor and the expanded polymer layer Was formed at the same time. Finally, four SUS304 strands having a diameter of 0.2 mm were aligned and braided using a 20-stroke braider to form an outer diameter holding means.
[0017]
One end of the liquid leakage detection wire thus manufactured was treated to draw out the center conductor and the inner conductor, and the resistance was measured between the two under the following conditions to evaluate the characteristics. First, as a test for temporary wetting, the detection wire was immersed in a water tank for 10 minutes, then pulled up, and the progress of the resistance value for 8 hours was observed. After 8 hours, the resistance value remained infinite, and no detection was performed. Next, as a test for continuous wetting, the progress of the resistance value was observed while continuously immersing the detection wire in the water tank. When 4 hours had passed, the resistance value was 21Ω, and the presence of water was detected.
[0018]
Example 2
In Example 1, after forming the expanded polymer layer, polyamide 6 was continuously extruded to a thickness of 0.15 mm to form a polymer composition layer. Next, an outer diameter holding means was formed in the same manner as in Example 1 to obtain a liquid leakage detection wire. The leak detection wire thus obtained was evaluated in the same manner as in Example 1. As a result, in the test for temporary wetting, the resistance value remained infinite, but in the test for continuous wetting, the resistance value was 21Ω after 10 hours, 6 hours later than the detection wire of Example 1. And the presence of water was detected.
[0019]
In this embodiment, further evaluation was performed on the detection wire of the first embodiment and the detection wire of the second embodiment. Both are buried in moist soil, and in one test, water is not supplied so that the soil gradually dries, and in the other test, water is appropriately supplied so that the moist condition is maintained. The situation was observed for a total of three days. As a result, in the former test, the detection wire of Example 1 operated after 6 hours, but the detection wire of Example 2 did not operate at all during the period. In the latter test, the detection wire of Example 1 operated after 6 hours, and the detection wire of Example 2 operated after 14 hours.
[0020]
From these test results, it is understood that the sensitivity can be easily adjusted by further providing the polymer composition layer as in Example 2 so as to prevent malfunction of the detection wire due to temporary wetting due to condensation, rainfall, and the like.
[0021]
The present invention is not limited to the above embodiment. In the above embodiment, since the liquid to be leak-detected was water, a composition of vinyl chloride and hydrogel was used as a constituent material of the expanded polymer layer. When the above-mentioned chemicals are used, the same effects as in the above embodiment can be obtained by appropriately selecting and using a material which expands upon contact with them.
[0022]
【The invention's effect】
As described above in detail, according to the present invention, a local leak can be reliably detected, and a conventional detection wire (for example, electrically detecting the presence of a liquid between two conductors) can be used. In this case, a leak detection wire capable of performing slow detection, which was not possible with the configuration described above, was obtained. With a sensing wire having such a characteristic remarkable effect, temporary leakage and continuous leakage can be reliably distinguished, so that malfunction does not occur and extremely high reliability is obtained. It will be. Therefore, for example, by installing in parallel with water and sewer pipes buried in the soil and water and sewer pipes built in the building, it does not react to temporary rainfall or moisture adhesion due to condensation In addition, it is possible to selectively detect only a local and continuous leak as in the case of a leak due to a pipe failure.
[0022]
Even if we take only water and sewage pipes, the loss of water supply due to leakage every year is enormous. It was impossible to detect and repair all leaks in the piping. Sewage also has problems such as accelerated deterioration of buildings due to liquid leakage, which has led to significant costs for management.
[0023]
However, the use of the detection wire of the present invention makes it extremely easy to control the entire length of the pipe, and thus it is considered that a great economic effect can be obtained. Also, if the conventional detection wire and the leak detection wire of the present invention capable of detecting both temporary leak and continuous leak are laid in parallel, even if the leak occurs at any position, This is more useful because it can be reliably detected.

Claims (2)

中心導体上に、絶縁材料から成形されたスペーサ、内部導体、漏洩検知対象液体により膨張する膨張高分子層、外径保持手段が順次形成されてなる漏洩検知電線において、内部導体が膨張高分子層に密着しており、膨張高分子層が膨張していない状態では内部導体と中心導体は該中心導体上に取り付けられたスペーサによって空間絶縁状態を保持されているが、膨張高分子層が漏洩検知対象液体と接触して所定量膨張した際にはその内側への膨張圧力により内部導体と中心導体とが電気的に接触することを特徴とする漏液検知電線。In a leak detection wire in which a spacer molded from an insulating material , an inner conductor, an inflatable polymer layer expanded by a leak detection target liquid, and an outer diameter holding means are sequentially formed on a center conductor, the inner conductor is an inflatable polymer layer. When the expanded polymer layer is not expanded, the inner conductor and the center conductor are kept in a spatially insulated state by the spacer attached on the center conductor, but the expanded polymer layer detects leakage. A leak detection wire wherein the inner conductor and the center conductor are electrically contacted by an inward expansion pressure when in contact with the target liquid and expanded by a predetermined amount. 膨張高分子層と外径保持手段との間に、漏洩検知対象液体の侵入速度を制御する高分子組成物層を更に設けたことを特徴とする請求項1記載の漏液検知電線。2. The leak detecting wire according to claim 1, further comprising a polymer composition layer for controlling the intrusion speed of the leak detection target liquid between the expanding polymer layer and the outer diameter holding means.
JP34930595A 1995-12-19 1995-12-19 Leak detection wire Expired - Fee Related JP3560404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34930595A JP3560404B2 (en) 1995-12-19 1995-12-19 Leak detection wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34930595A JP3560404B2 (en) 1995-12-19 1995-12-19 Leak detection wire

Publications (2)

Publication Number Publication Date
JPH09170961A JPH09170961A (en) 1997-06-30
JP3560404B2 true JP3560404B2 (en) 2004-09-02

Family

ID=18402877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34930595A Expired - Fee Related JP3560404B2 (en) 1995-12-19 1995-12-19 Leak detection wire

Country Status (1)

Country Link
JP (1) JP3560404B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201518386D0 (en) 2015-10-16 2015-12-02 Pioneer Lining Technology Ltd Monitoring of lined pipeline

Also Published As

Publication number Publication date
JPH09170961A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
US6777947B2 (en) Sensor cable
JP3387922B2 (en) Corrosion resistant cable
JPS63255652A (en) Detector
US4926165A (en) Devices for detecting and obtaining information about an event
JP3007106B2 (en) Sensor assembly
WO1986007483A1 (en) Hydrocarbon sensor
US5191292A (en) Method of making a sensor cable
GB2188939A (en) Polymer-based filler compounds for electrical cables with stranded conductors
AU2008312342B2 (en) Sensing cable
JP3560404B2 (en) Leak detection wire
US11193848B2 (en) Sensor cable for conductive and non-conductive liquids
CN100495458C (en) Irrecoverable type cable type line type fixed temperature fire detector
RU2725686C2 (en) Electrical cable for detecting presence of liquids
CZ29269U1 (en) Electrical cable for detection presence of liquids
JPH0534266A (en) Method for diagnosing deterioration of electric wire/ cable
CN201007837Y (en) Recovered cable type line-type constant temperature, difference constant temperature fire detector
JPH0611470A (en) Low molecular weight organic liquid sensor and sensing device incorporating it
NO20151324A1 (en) System and method for detecting moisture
JP2000348565A (en) Cord-like pressure-sensitive switch
JP2000311547A (en) Cord-shaped pressure sensitive switch
JPH06231629A (en) Manufacture of flooding detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees