JP3559890B2 - How to select fuel injectors - Google Patents

How to select fuel injectors Download PDF

Info

Publication number
JP3559890B2
JP3559890B2 JP15103198A JP15103198A JP3559890B2 JP 3559890 B2 JP3559890 B2 JP 3559890B2 JP 15103198 A JP15103198 A JP 15103198A JP 15103198 A JP15103198 A JP 15103198A JP 3559890 B2 JP3559890 B2 JP 3559890B2
Authority
JP
Japan
Prior art keywords
pulse width
flow rate
injection flow
value
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15103198A
Other languages
Japanese (ja)
Other versions
JPH11343948A (en
Inventor
重人 細井
岩根 井之口
政成 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15103198A priority Critical patent/JP3559890B2/en
Publication of JPH11343948A publication Critical patent/JPH11343948A/en
Application granted granted Critical
Publication of JP3559890B2 publication Critical patent/JP3559890B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直噴火花点火式内燃機関用の燃料噴射弁の選別方法に関する。
【0002】
【従来の技術】
近年、直噴火花点火式内燃機関が注目されており、このものでは、機関運転条件に応じて、燃焼方式を切換制御、すなわち、吸気行程にて燃料を噴射することにより、燃焼室内に均質な可燃混合気を形成して行う均質燃焼と、圧縮行程にて燃料を噴射することにより、燃焼室内の特定範囲(点火栓回り)に可燃混合気を偏在化させて行う成層燃焼とに切換制御するのが一般的である。
【0003】
かかる直噴火花点火式内燃機関では、圧縮行程で噴射を可能とするため、また燃焼安定性の観点から微粒化レベルを向上するため、高燃圧で噴射するシステムになっている。
そのため、低負荷時は非常に短いパルス幅で噴射する必要があり、更に成層燃焼による希薄燃焼を行うため、低パルス幅領域での精度の高い安定した噴射が求められる。
【0004】
しかし、現在の燃料噴射弁では低パルス幅領域での噴射流量特性の直線性の確保に限界があり、希薄燃焼を制限する要因となっている。
そこで、燃料噴射弁の直線性が保たれなくなる非直線性領域において、燃料噴射弁が再現よく噴射できる特性を用いて理想直線の噴射流量となるように、パルス幅補正を行う補正制御(直線性補正)を採用している(実開昭59−49739号参照)。
【0005】
【発明が解決しようとする課題】
しかし、直線性補正のみでは、理想直線に近づけるのみであり、低パルス幅領域での流量バラツキは依然として存在し、大である。
流量バラツキの対処法としては、学習制御、すなわち、空燃比フィードバック制御中の空燃比フィードバック補正値に基づく学習により、学習補正値を設定して、これによる補正を行うのが、有効である。但し、低パルス幅領域は成層燃焼領域であり、希薄燃焼を行うため、空燃比フィードバック制御が困難であるので、直接には学習できない。このため、高パルス幅側の均質燃焼領域での学習補正値に基づいて推定学習することにより、対応している。
【0006】
しかし、低パルス幅程、流量バラツキが大きくなる傾向であるため、学習が進行する高パルス幅側の均質燃焼領域における学習補正値を、低パルス幅側の成層燃焼領域に反映させても、却って、制御性が悪化することがあった。
例えば、高パルス幅側の均質燃焼領域で噴射流量が目標値より大きいものの、低パルス幅側の成層燃焼領域で噴射流量が目標値より小さい場合、均質燃焼領域での学習により、燃料噴射量を減量補正するように、学習補正値が設定されたときに、その学習補正値を用いて、成層燃焼領域にて補正を行うと、成層燃焼領域で噴射流量が目標値より小さいにもかかわらず、更に減量補正することで、噴射流量が目標値より更に小さくなってしまう。
【0007】
本発明は、このような実情に鑑み、均質燃焼領域での学習結果を成層燃焼領域での制御に正しく反映できるようにするための、直噴火花点火式内燃機関用の燃料噴射弁の選別方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
このため、本発明に係る燃料噴射弁の選別方法は、空燃比フィードバック制御を行う高負荷側の均質燃焼領域での第1の所定パルス幅にて、燃料噴射弁の噴射流量を測定すると共に、空燃比フィードバック制御を行わない低負荷側の成層燃焼領域での第2の所定パルス幅にて、燃料噴射弁の噴射流量を測定する。そして、第1の所定パルス幅での噴射流量と第2の所定パルス幅での噴射流量とについて、(1)第1の所定パルス幅での噴射流量が上限値付近(中央値より大きい所定値〜上限値の範囲)で、第2の所定パルス幅での噴射流量が上限値付近(中央値より大きい所定値〜上限値の範囲)、(2)第1の所定パルス幅での噴射流量が中央値付近(中央値の前後の所定範囲)で、第2の所定パルス幅での噴射流量が中央値付近(中央値の前後の所定範囲)、(3)第1の所定パルス幅での噴射流量が下限値付近(下限値〜中央値より小さい所定値の範囲)で、第2の所定パルス幅での噴射流量が下限値付近(下限値〜中央値より小さい所定値の範囲)、のいずれかに該当する燃料噴射弁を選別して、直噴火花点火式内燃機関に搭載することを特徴とする(請求項1)。
【0009】
ここで、前記第1及び第2の所定パルス幅は、燃料噴射弁の基本的なパルス幅−噴射流量特性に基づいて、均質燃焼領域及び成層燃焼領域での予め定めた各要求噴射流量を得るために必要なパルス幅として設定する(請求項2)。
【0010】
【発明の効果】
請求項1に係る発明によれば、均質燃焼領域での噴射流量と、成層燃焼領域での噴射量特性とが同じ傾向のものを選別して、機関に搭載するため、均質燃焼領域での学習結果を成層燃焼領域に正しく反映することができる。
請求項2に係る発明によれば、直線性補正後のパルス幅で測定するため、非直線性の影響を受けることなく、選別することができる。
【0011】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
本発明に係る燃料噴射弁の選別方法は、図1にフローチャートとして示しているが、その説明に先立って、直噴火花点火式内燃機関における燃料噴射弁の燃料噴射パルス幅の演算方法、直線性補正等について説明する。
【0012】
均質燃焼時は、目標空燃比をストイキに設定して、目標空燃比相当の均質燃焼用基本燃料噴射パルス幅を算出し、空燃比フィードバック制御により空燃比フィードバック補正値(補正係数)を設定し、また、学習制御により、空燃比フィードバック補正値に基づいて学習補正値(補正係数)を設定して、これらの乗算により、燃料噴射パルス幅TIを演算する。
【0013】
成層燃焼時は、目標空燃比をリーンに設定して、目標空燃比相当の成層燃焼用基本燃料噴射パルス幅を算出し、これに、均質燃焼時の学習補正値に基づいて推定学習した学習補正値(補正係数)を乗算して、燃料噴射パルス幅TIを演算する。
このようにして演算された燃料噴射パルス幅TIに対しては、次のように直線性補正を行う。
【0014】
図2は燃料噴射弁の基本的なパルス幅−噴射流量特性であり、低パルス幅領域では、直線性が失われることを示している。
従って、上記のように演算されたパルス幅TIでの理想直線上の要求噴射流量がQFである場合、そのパルス幅TIのままでは、実際の噴射流量はQIとなり、要求噴射流量QFに対し不足する。要求噴射流量QFを得るためには、パルス幅をTFにする必要がある。
【0015】
従って、演算されたパルス幅TIに対し、理想直線上の要求噴射流量を得るためのパルス幅TFを実験等により定めて、テーブル(TI→TF変換テーブル)として記憶しておき、このテーブルを参照して、演算されたパルス幅TIを、要求噴射流量を得るためのパルス幅TFに変換して、出力することで、直線性を補正する。
【0016】
尚、実際には、変換したパルス幅TFに、開弁動作のための無効噴射パルス幅TSを付加して、最終的なパルス幅を設定する。
また、この最終的なパルス幅で燃料噴射弁を駆動する際は、図3に示すように、燃料噴射弁の開弁動作のために、高電流(ピーク電流6〜10A)を与え、この後に、開弁状態の保持のために、小電流(ホールド電流2〜4A)に切換える制御を行う。このような制御により開弁特性が安定することで、前記の直線性補正が達成できるのである。
【0017】
図4はパルス幅−噴射流量特性のバラツキを示したもので、(A)は直線性補正前、(B)は直線性補正後のものである。
直線性補正前(A)は、低パルス幅領域で、バラツキが大きいのみならず、理想直線に対するズレも大きいが、直線性補正後(B)は、理想直線に対するズレは小さくなるが、バラツキが依然として大きいことを示している。
【0018】
よって、均質燃焼領域での学習結果に基づき、推定学習を行って、成層燃焼領域にて学習補正する必要があり、均質燃焼領域での学習結果を成層燃焼領域に正しく反映できるように、内燃機関へ搭載に先立って、燃料噴射弁を選別する必要がある。
この選別のため、図4(B)に示されるように、空燃比フィードバック制御を行う高負荷側の均質燃焼領域に、第1の所定パルス幅、すなわち均質燃焼パルス幅管理点を設定する(例えば、約0.8ms)。また、空燃比フィードバック制御を行わない低負荷側の成層燃焼領域に、第2の所定パルス幅、すなわち成層燃焼パルス幅管理点を設定する(例えば、約0.6ms)。
【0019】
図5はパルス幅に対する直線性補正後の噴射流量誤差(%)のバラツキの範囲を示したものである。
ここで、図中NGとして示される特性の燃料噴射弁の場合、すなわち高パルス幅側の均質燃焼領域で噴射流量が目標値より小さいものの、低パルス幅側の成層燃焼領域で噴射流量が目標値より大きい場合、均質燃焼領域での学習により、燃料噴射量を増量補正するように、学習補正値が設定され、その学習補正値を用いて、成層燃焼領域にて補正を行うと、成層燃焼領域で噴射流量が目標値より大きいにもかかわらず、更に増量補正することで、噴射流量が目標値より更に大きくなってしまうので、このような特性の燃料噴射弁は排除する必要がある。
【0020】
これに対し、図中OKとして示される特性の燃料噴射弁の場合、すなわち高パルス幅側の均質燃焼領域で噴射流量が目標値より小さく、かつ低パルス幅側の成層燃焼領域でも噴射流量が目標値より小さい場合、均質燃焼領域での学習により、燃料噴射量を増量補正するように、学習補正値が設定され、その学習補正値を用いて、成層燃焼領域にて補正を行うと、成層燃焼領域で増量補正されるので、噴射流量を目標値に近づけることができ、このような特性の燃料噴射弁は採用できる。
【0021】
従って、次の(1)〜(3)のいずれかに該当する燃料噴射弁を選別して、機関に搭載すればよい。
(1)均質燃焼パルス幅管理点での噴射流量が上限値付近で、成層燃焼パルス幅管理点での噴射流量が上限値付近のもの
(2)均質燃焼パルス幅管理点での噴射流量が中央値付近で、成層燃焼パルス幅管理点での噴射流量が中央値付近のもの
(3)均質燃焼パルス幅管理点での噴射流量が下限値付近で、成層燃焼パルス幅管理点での噴射流量が下限値付近のもの。
【0022】
より具体的には、図6にOKとして示すハッチング領域に入る、次の(1)〜(3)のいずれかに該当する燃料噴射弁を選別して、機関に搭載すればよい。
(1)均質燃焼パルス幅管理点での噴射流量誤差が+0.5%〜+4.5%の範囲で、かつ、成層燃焼パルス幅管理点での噴射流量誤差が+4%〜+12%の範囲のもの
(2)均質燃焼パルス幅管理点での噴射流量誤差が−2%〜+2%の範囲で、かつ、成層燃焼パルス幅管理点での噴射流量誤差が−4%〜+4%の範囲のもの
(3)均質燃焼パルス幅管理点での噴射流量誤差が−4.5%〜−0.5%の範囲で、成層燃焼パルス幅管理点での噴射流量誤差が−12%〜−4%の範囲のもの。
【0023】
最後に、本発明に係る燃料噴射弁の選別方法を、図1のフローチャートにより説明する。
ステップ1(図にはS1と記す。以下同様)では、均質燃焼パルス幅管理点にて、直線性補正後の噴射流量を測定し、噴射流量誤差を求める。
ステップ2では、成層燃焼パルス幅管理点にて、直線性補正後の噴射流量を測定し、噴射流量誤差を求める。
【0024】
ステップ3では、均質燃焼パルス幅管理点での噴射流量(均質流量)は、上限値付近か否か、具体的には、噴射流量誤差が+0.5%〜+4.5%の範囲か否かを判定する。
YESの場合は、ステップ4へ進み、成層燃焼パルス幅管理点での噴射流量(成層流量)は、上限値付近か否か、具体的には、噴射流量誤差が+4%〜+12%の範囲か否かを判定する。この結果、YESの場合は、ステップ5で「OK」とする。
【0025】
ステップ6では、均質燃焼パルス幅管理点での噴射流量(均質流量)は、中央値付近か否か、具体的には、噴射流量誤差が−2%〜+2%の範囲か否かを判定する。
YESの場合は、ステップ7へ進み、成層燃焼パルス幅管理点での噴射流量(成層流量)は、中央値付近か否か、具体的には、噴射流量誤差が−4%〜+4%の範囲か否かを判定する。この結果、YESの場合は、ステップ8で「OK」とする。
【0026】
ステップ9では、均質燃焼パルス幅管理点での噴射流量(均質流量)は、下限値付近か否か、具体的には、噴射流量誤差が−4.5%〜−0.5%の範囲か否かを判定する。
YESの場合は、ステップ10へ進み、成層燃焼パルス幅管理点での噴射流量(成層流量)は、下限値付近か否か、具体的には、噴射流量誤差が−12%〜−4%の範囲か否かを判定する。この結果、YESの場合は、ステップ11で「OK」とする。
【0027】
いずれの範囲にも入らない場合は、ステップ12で「NG」とする。
この結果に基づき、「OK」の場合は、機関に搭載可能とし、「NG」の場合は廃棄する。
【図面の簡単な説明】
【図1】本発明に係る燃料噴射弁の選別方法を示すフローチャート
【図2】直線性補正の説明図
【図3】燃料噴射弁駆動電流の説明図
【図4】直線性補正前後のパルス幅−噴射流量特性のバラツキを示す図
【図5】直線性補正後の噴射流量誤差のバラツキを示す図
【図6】OKの範囲を示す図
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for selecting a fuel injection valve for a direct injection spark ignition type internal combustion engine.
[0002]
[Prior art]
In recent years, a direct injection spark ignition type internal combustion engine has attracted attention. In this engine, switching control of a combustion method is performed according to engine operating conditions, that is, by injecting fuel in an intake stroke, homogeneous combustion in a combustion chamber is performed. Switching control between homogeneous combustion performed by forming a combustible air-fuel mixture and stratified combustion performed by injecting fuel in a compression stroke to make the combustible air-fuel mixture unevenly distributed in a specific range (around a spark plug) in a combustion chamber. It is common.
[0003]
In such a direct-injection spark ignition type internal combustion engine, injection is performed at a high fuel pressure in order to enable injection during the compression stroke and to improve the atomization level from the viewpoint of combustion stability.
Therefore, when the load is low, it is necessary to perform injection with a very short pulse width. Further, since lean combustion is performed by stratified combustion, highly accurate and stable injection in a low pulse width region is required.
[0004]
However, in the current fuel injection valve, there is a limit in securing the linearity of the injection flow rate characteristic in a low pulse width region, which is a factor limiting lean combustion.
Therefore, in the non-linear region where the linearity of the fuel injection valve is not maintained, the pulse width correction is performed so as to obtain the ideal linear injection flow rate by using the characteristic that the fuel injection valve can perform the injection with good reproducibility. Amendment) (see Japanese Utility Model Laid-Open No. 59-49739).
[0005]
[Problems to be solved by the invention]
However, the linearity correction alone only approximates the ideal straight line, and the flow rate variation in the low pulse width region still exists and is large.
As a method of coping with the flow rate variation, it is effective to set a learning correction value by learning control, that is, learning based on an air-fuel ratio feedback correction value during air-fuel ratio feedback control, and to perform correction based on the learning correction value. However, since the low pulse width region is a stratified combustion region and performs lean combustion, it is difficult to perform air-fuel ratio feedback control, and therefore cannot directly learn. For this reason, it corresponds by performing estimation learning based on the learning correction value in the homogeneous combustion region on the high pulse width side.
[0006]
However, since the flow rate variation tends to increase as the pulse width decreases, even if the learning correction value in the homogeneous combustion region on the high pulse width side where learning progresses is reflected in the stratified combustion region on the low pulse width, on the contrary, In some cases, controllability deteriorated.
For example, when the injection flow rate is larger than the target value in the homogeneous combustion region on the high pulse width side, but the injection flow rate is smaller than the target value in the stratified combustion region on the low pulse width side, the fuel injection amount is determined by learning in the homogeneous combustion region. When the learning correction value is set so as to perform the decrease correction, when the correction is performed in the stratified combustion region using the learning correction value, even though the injection flow rate is smaller than the target value in the stratified combustion region, By performing the further decrease correction, the injection flow rate becomes smaller than the target value.
[0007]
In view of such circumstances, the present invention provides a method for selecting a fuel injection valve for a direct injection spark ignition type internal combustion engine so that a learning result in a homogeneous combustion region can be correctly reflected in control in a stratified combustion region. The purpose is to provide.
[0008]
[Means for Solving the Problems]
Therefore, the method for selecting a fuel injection valve according to the present invention measures the injection flow rate of the fuel injection valve at a first predetermined pulse width in the homogeneous combustion region on the high load side that performs the air-fuel ratio feedback control, The injection flow rate of the fuel injection valve is measured at the second predetermined pulse width in the stratified combustion region on the low load side where the air-fuel ratio feedback control is not performed. Then, regarding the injection flow rate at the first predetermined pulse width and the injection flow rate at the second predetermined pulse width, (1) the injection flow rate at the first predetermined pulse width is close to the upper limit value (the predetermined value larger than the median value). -The upper limit value) , the injection flow rate at the second predetermined pulse width is close to the upper limit value ( the range from the predetermined value larger than the median value to the upper limit value) , and (2) the injection flow rate at the first predetermined pulse width is In the vicinity of the median (the predetermined range before and after the median) , the injection flow rate at the second predetermined pulse width is near the median (the predetermined range before and after the median) , and (3) the injection at the first predetermined pulse width. The flow rate is near the lower limit value (a range of a predetermined value smaller than the lower limit value to the median value) , and the injection flow rate at the second predetermined pulse width is near the lower limit value (a range of the predetermined value smaller than the lower limit value to the median value) . The fuel injection valve that corresponds to the target is selected and mounted on a direct-injection spark ignition internal combustion engine. To (claim 1).
[0009]
Here, the first and second predetermined pulse widths obtain predetermined required injection flow rates in the homogeneous combustion region and the stratified combustion region based on the basic pulse width-injection flow characteristic of the fuel injection valve. Is set as a pulse width necessary for the operation (claim 2).
[0010]
【The invention's effect】
According to the first aspect of the present invention, the engine having the same tendency as the injection flow rate in the homogeneous combustion region and the injection amount characteristic in the stratified combustion region is selected and mounted on the engine. The result can be correctly reflected in the stratified combustion region.
According to the second aspect of the present invention, since the measurement is performed using the pulse width after the linearity correction, it is possible to perform the selection without being affected by the non-linearity.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
The method of selecting a fuel injection valve according to the present invention is shown as a flowchart in FIG. 1. Prior to the description, a method of calculating a fuel injection pulse width of a fuel injection valve in a direct injection spark ignition type internal combustion engine, and a linearity The correction and the like will be described.
[0012]
During homogeneous combustion, the target air-fuel ratio is set to stoichiometric, a basic fuel injection pulse width for homogeneous combustion corresponding to the target air-fuel ratio is calculated, and an air-fuel ratio feedback correction value (correction coefficient) is set by air-fuel ratio feedback control. Further, a learning correction value (correction coefficient) is set based on the air-fuel ratio feedback correction value by learning control, and the fuel injection pulse width TI is calculated by multiplying the learning correction value (correction coefficient).
[0013]
At the time of stratified combustion, the target air-fuel ratio is set to lean, the basic fuel injection pulse width for stratified combustion corresponding to the target air-fuel ratio is calculated, and the learning correction estimated and learned based on the learning correction value at the time of homogeneous combustion is calculated. The fuel injection pulse width TI is calculated by multiplying the value (correction coefficient).
The linearity correction is performed on the fuel injection pulse width TI calculated as described above as follows.
[0014]
FIG. 2 shows a basic pulse width-injection flow rate characteristic of the fuel injection valve, and shows that linearity is lost in a low pulse width region.
Therefore, if the required injection flow rate on the ideal straight line with the pulse width TI calculated as described above is QF, the actual injection flow rate will be QI if the pulse width TI remains unchanged, and the required injection flow rate QF will be insufficient. I do. In order to obtain the required injection flow rate QF, the pulse width needs to be TF.
[0015]
Therefore, for the calculated pulse width TI, the pulse width TF for obtaining the required injection flow rate on the ideal straight line is determined by experiments or the like, and stored as a table (TI → TF conversion table), and this table is referred to. Then, the calculated pulse width TI is converted into a pulse width TF for obtaining the required injection flow rate, and output, thereby correcting the linearity.
[0016]
In practice, the final pulse width is set by adding an invalid injection pulse width TS for the valve opening operation to the converted pulse width TF.
When driving the fuel injector with this final pulse width, as shown in FIG. 3, a high current (peak current of 6 to 10 A) is applied to open the fuel injector, and thereafter, In order to keep the valve open, control is performed to switch to a small current (hold current of 2 to 4 A). With such control, the linearity correction can be achieved by stabilizing the valve opening characteristics.
[0017]
FIGS. 4A and 4B show variations in the pulse width-injection flow rate characteristics, wherein FIG. 4A shows the results before the linearity correction and FIG. 4B shows the results after the linearity correction.
Before the linearity correction (A), in the low pulse width region, not only the variation is large but also the deviation from the ideal straight line is large. After the linearity correction (B), the deviation from the ideal straight line is small, but the deviation is small. Shows that it is still large.
[0018]
Therefore, it is necessary to perform estimation learning based on the learning result in the homogeneous combustion region and perform learning correction in the stratified combustion region, and to make the learning result in the homogeneous combustion region correctly reflected in the stratified combustion region. It is necessary to select the fuel injection valve before mounting the fuel injection valve.
For this selection, as shown in FIG. 4B, a first predetermined pulse width, that is, a homogeneous combustion pulse width control point is set in a homogeneous combustion region on the high load side where the air-fuel ratio feedback control is performed (for example, , About 0.8 ms). Further, a second predetermined pulse width, that is, a stratified combustion pulse width control point is set in the stratified combustion region on the low load side where the air-fuel ratio feedback control is not performed (for example, about 0.6 ms).
[0019]
FIG. 5 shows the range of variation of the injection flow rate error (%) after linearity correction with respect to the pulse width.
Here, in the case of the fuel injection valve having the characteristic shown as NG in the figure, that is, although the injection flow rate is smaller than the target value in the homogeneous combustion region on the high pulse width side, the injection flow rate is smaller than the target value in the stratified combustion region on the low pulse width side. If it is larger, a learning correction value is set so as to increase the fuel injection amount by learning in the homogeneous combustion region, and if the correction is performed in the stratified combustion region using the learned correction value, the stratified combustion region In spite of the fact that the injection flow rate is larger than the target value, the fuel injection valve having such a characteristic needs to be eliminated because the injection flow rate becomes further larger than the target value by further increasing the correction.
[0020]
On the other hand, in the case of the fuel injection valve having the characteristic shown as OK in the drawing, that is, the injection flow rate is smaller than the target value in the homogeneous combustion region on the high pulse width side, and the injection flow rate is also lower in the stratified combustion region on the low pulse width side. If the value is smaller than the value, a learning correction value is set so as to increase the fuel injection amount by learning in the homogeneous combustion region, and when the correction is performed in the stratified combustion region using the learning correction value, the stratified combustion Since the increase correction is performed in the region, the injection flow rate can be made closer to the target value, and a fuel injection valve having such characteristics can be employed.
[0021]
Therefore, the fuel injection valve corresponding to any of the following (1) to (3) may be selected and mounted on the engine.
(1) The injection flow rate at the homogeneous combustion pulse width control point is near the upper limit, and the injection flow rate at the stratified combustion pulse width control point is near the upper limit value. (2) The injection flow rate at the homogeneous combustion pulse width control point is at the center. In the vicinity of the value, the injection flow rate at the stratified combustion pulse width control point is near the median value. (3) The injection flow rate at the homogeneous combustion pulse width control point is near the lower limit, and the injection flow rate at the stratified combustion pulse width control point is Those near the lower limit.
[0022]
More specifically, the fuel injection valve corresponding to any of the following (1) to (3), which enters the hatched area shown as OK in FIG. 6, may be selected and mounted on the engine.
(1) The injection flow rate error at the homogeneous combustion pulse width control point is in the range of + 0.5% to + 4.5%, and the injection flow rate error at the stratified combustion pulse width control point is in the range of + 4% to + 12%. (2) Injection flow rate error at the homogeneous combustion pulse width control point is in the range of -2% to + 2%, and injection flow error at the stratified combustion pulse width control point is in the range of -4% to + 4%. (3) The injection flow rate error at the homogeneous combustion pulse width control point is in the range of -4.5% to -0.5%, and the injection flow rate error at the stratified combustion pulse width control point is in the range of -12% to -4%. Range of things.
[0023]
Lastly, a method for selecting a fuel injection valve according to the present invention will be described with reference to the flowchart of FIG.
In step 1 (referred to as S1 in the figure, the same applies hereinafter), the injection flow rate after the linearity correction is measured at the homogeneous combustion pulse width control point, and the injection flow rate error is determined.
In step 2, the injection flow rate after linearity correction is measured at the stratified combustion pulse width control point, and an injection flow rate error is determined.
[0024]
In step 3, the injection flow rate (homogeneous flow rate) at the homogeneous combustion pulse width control point is near the upper limit value, specifically, whether the injection flow rate error is in the range of + 0.5% to + 4.5%. Is determined.
In the case of YES, the process proceeds to step 4 to determine whether the injection flow rate (stratified flow rate) at the stratified combustion pulse width control point is near the upper limit value, specifically, whether the injection flow rate error is in the range of + 4% to + 12%. Determine whether or not. As a result, in the case of YES, "OK" is determined in step 5.
[0025]
In step 6, it is determined whether the injection flow rate (homogeneous flow rate) at the homogeneous combustion pulse width control point is near the median value, specifically, whether the injection flow rate error is in the range of −2% to + 2%. .
In the case of YES, the process proceeds to step 7, where the injection flow rate (stratification flow rate) at the stratified combustion pulse width control point is near the median value, specifically, the injection flow rate error is in the range of -4% to + 4%. It is determined whether or not. As a result, in the case of YES, "OK" is set in step 8.
[0026]
In step 9, whether the injection flow rate (homogeneous flow rate) at the homogeneous combustion pulse width control point is near the lower limit value, specifically, whether the injection flow rate error is in the range of -4.5% to -0.5% It is determined whether or not.
In the case of YES, the process proceeds to step 10 and determines whether or not the injection flow rate (stratified flow rate) at the stratified combustion pulse width control point is near the lower limit value, specifically, when the injection flow rate error is -12% to -4%. It is determined whether it is within the range. As a result, in the case of YES, "OK" is determined in step 11.
[0027]
If the value does not fall in any of the ranges, "NG" is set in step 12.
Based on this result, if "OK", it can be mounted on the engine, and if "NG", it is discarded.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method of selecting a fuel injection valve according to the present invention. FIG. 2 is an explanatory diagram of linearity correction. FIG. 3 is an explanatory diagram of fuel injector drive current. FIG. 4 is a pulse width before and after linearity correction. FIG. 5 is a diagram showing a variation in injection flow rate characteristic. FIG. 5 is a diagram showing a variation in injection flow rate error after linearity correction. FIG. 6 is a diagram showing a range of OK.

Claims (2)

空燃比フィードバック制御を行う高負荷側の均質燃焼領域での第1の所定パルス幅にて、燃料噴射弁の噴射流量を測定し、
空燃比フィードバック制御を行わない低負荷側の成層燃焼領域での第2の所定パルス幅にて、燃料噴射弁の噴射流量を測定し、
第1の所定パルス幅での噴射流量と第2の所定パルス幅での噴射流量とについて、
(1)第1の所定パルス幅での噴射流量が中央値より大きい所定値〜上限値の範囲で、第2の所定パルス幅での噴射流量が中央値より大きい所定値〜上限値の範囲
(2)第1の所定パルス幅での噴射流量が中央値の前後の所定範囲で、第2の所定パルス幅での噴射流量が中央値の前後の所定範囲
(3)第1の所定パルス幅での噴射流量が下限値〜中央値より小さい所定値の範囲で、第2の所定パルス幅での噴射流量が下限値〜中央値より小さい所定値の範囲
のいずれかに該当する燃料噴射弁を選別して、直噴火花点火式内燃機関に搭載することを特徴とする燃料噴射弁の選別方法。
Measuring the injection flow rate of the fuel injection valve at a first predetermined pulse width in the homogeneous combustion region on the high load side that performs the air-fuel ratio feedback control;
With the second predetermined pulse width in the stratified combustion region on the low load side where the air-fuel ratio feedback control is not performed, the injection flow rate of the fuel injection valve is measured,
Regarding the injection flow rate at the first predetermined pulse width and the injection flow rate at the second predetermined pulse width,
(1) a range of a predetermined value to an upper limit in which the injection flow rate at the first predetermined pulse width is larger than the central value to a predetermined value to an upper limit value ;
(2) a predetermined range in which the injection flow rate at the first predetermined pulse width is around a median value, and an injection flow rate at a second predetermined pulse width is around a median value ;
(3) a range in which the injection flow rate at the first predetermined pulse width is smaller than the lower limit value to the median value , and a range of the injection flow rate at the second predetermined pulse width is smaller than the lower limit value to the median value ;
A fuel injection valve corresponding to any of the above, and mounting the fuel injection valve on a direct injection spark ignition type internal combustion engine.
前記第1及び第2の所定パルス幅は、燃料噴射弁の基本的なパルス幅−噴射流量特性に基づいて、均質燃焼領域及び成層燃焼領域での予め定めた各要求噴射流量を得るために必要なパルス幅として設定することを特徴とする請求項1記載の燃料噴射弁の選別方法。The first and second predetermined pulse widths are necessary to obtain predetermined required injection flow rates in the homogeneous combustion region and the stratified combustion region based on the basic pulse width-injection flow characteristics of the fuel injector. 2. The method for selecting a fuel injection valve according to claim 1, wherein the pulse width is set as an appropriate pulse width.
JP15103198A 1998-06-01 1998-06-01 How to select fuel injectors Expired - Lifetime JP3559890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15103198A JP3559890B2 (en) 1998-06-01 1998-06-01 How to select fuel injectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15103198A JP3559890B2 (en) 1998-06-01 1998-06-01 How to select fuel injectors

Publications (2)

Publication Number Publication Date
JPH11343948A JPH11343948A (en) 1999-12-14
JP3559890B2 true JP3559890B2 (en) 2004-09-02

Family

ID=15509798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15103198A Expired - Lifetime JP3559890B2 (en) 1998-06-01 1998-06-01 How to select fuel injectors

Country Status (1)

Country Link
JP (1) JP3559890B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033466A1 (en) 2013-09-09 2015-03-12 日産自動車株式会社 Fuel injection control device for engine and fuel injection control method for engine

Also Published As

Publication number Publication date
JPH11343948A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
JP3680491B2 (en) Control device for internal combustion engine
KR100298135B1 (en) Ignition and combustion control in internal combustion engine
US6997172B2 (en) Fuel properties estimation for internal combustion engine
US8862367B2 (en) Control system of internal combustion engine
US20050155578A1 (en) Fuel injection control device for internal combustion engine
JP3541661B2 (en) Engine torque control device
JPH0634491A (en) Lean limit detecting method utilizing ion current
KR100309859B1 (en) Engine with torque control
KR100306723B1 (en) Combustion changeover control for engine
JP2008309036A (en) Fuel estimation device
JPH04214947A (en) Torque fluctuation control device for internal combustion engine
US6267095B1 (en) Internal combustion engine control apparatus and control method
JP3559890B2 (en) How to select fuel injectors
US4739740A (en) Internal combustion engine air-fuel ratio feedback control method functioning to compensate for aging change in output characteristic of exhaust gas concentration sensor
US20010025620A1 (en) Fuel injection control system for internal combustion engine
JP2001227399A (en) Control device for internal combustion engine
US5881697A (en) Method for adjusting a supplemental quantity of fuel in the warm-up phase of an internal combustion engine
JP2006017003A (en) Control device for hydrogen-added internal combustion engine
US20110277451A1 (en) Control unit for multi-cylindered internal combustion engine
JP2005307756A (en) Fuel injection controller for internal combustion engine
JP3395583B2 (en) Fuel control system for in-cylinder injection spark ignition internal combustion engine
JP2005048609A (en) Control device for internal combustion engine
JPH11201010A (en) Ignition timing control device for internal combustion engine
JPH07139391A (en) Electronic control system for adjusting quantity of fuel of internal combustion engine
KR100279981B1 (en) Fuel quantity compensation method with frequency control

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 10

EXPY Cancellation because of completion of term