JP3559860B2 - Power supply for disaster prevention control panel - Google Patents

Power supply for disaster prevention control panel Download PDF

Info

Publication number
JP3559860B2
JP3559860B2 JP08555899A JP8555899A JP3559860B2 JP 3559860 B2 JP3559860 B2 JP 3559860B2 JP 08555899 A JP08555899 A JP 08555899A JP 8555899 A JP8555899 A JP 8555899A JP 3559860 B2 JP3559860 B2 JP 3559860B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
circuit
circuits
voltage detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08555899A
Other languages
Japanese (ja)
Other versions
JP2000276241A (en
Inventor
晃久 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP08555899A priority Critical patent/JP3559860B2/en
Publication of JP2000276241A publication Critical patent/JP2000276241A/en
Application granted granted Critical
Publication of JP3559860B2 publication Critical patent/JP3559860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Alarm Systems (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Control Of Voltage And Current In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、停電時にバッテリからの電源供給に切り替えて火災等の異常を監視する防災監視制御盤の電源装置に関する。
【0002】
【従来の技術】
従来、この種の防災監視制御盤にあっては、電源供給系統を複数系統に分け、各系統毎にスイッチングレギュレータ等を使用した電源供給回路を設けて電源を供給している。
【0003】
図4は従来の電源装置の一例であり、内部と外部の2系統に分けて負荷に対し電源供給を行う場合であり、各系統に電源供給回路(パワーサプライ:PS)100a,100bが設けられ、商用交流電源102の交流入力を、例えば24ボルトといった直流電圧に変換して各系統に供給している。
【0004】
また停電時のバックアップのためバッテリ103が設けられ、停電検出でバッテリ103に切り替えて電源供給ができるようにしている。このためリレーNV1,NV2の切替リレー接点nv1,nv2のa側をバッテリ103に接続し、b側を電源供給回路100a,100bの出力に接続している。
【0005】
バッテリ103は、商用電源102の交流電圧をトランス108で降圧し、充電回路109の整流出力で、常時充電されている。
【0006】
リレーNV1,NV2は、電圧検出回路104a,104bと電圧検出スイッチ回路105a,105bにより制御される。商用交流電源101に停電が起きると電源供給回路100a,100bからの電源電圧が低下し、電圧検出回路104a,104bは所定の設定電圧を下回った時に、これを検出して電圧検出スイッチ回路105a,105bをオフし、リレーNV1,NV2を復旧する。このため切替リレー接点nv1,nv2が図示のa側に切り替わり、バッテリ103から電源を供給するようになる。
【0007】
またCPUからの指示でバッテリ試験を行うため、各系統毎にバッテリ試験切替回路106a,106bと試験スイッチ回路107a,107bが設けられる。CPUからバッテリ試験回路106a,106bに試験指示が行われると、各々試験スイッチ回路107a,107bをオフし、リレーNV1,NV2を復旧し、切替リレー接点nv1,nv2をa側に切り替え、バッテリ103から電源を負荷に対して供給し、バッテリによる電源供給が規定時間の間、正常にできるか否かのバッテリ試験を行う。
【0008】
【発明が解決しようとする課題】
しかしながら、このような従来の電源装置にあっては、複数の電源供給回路から各系統に分けて電源を供給するため、リレーNV1,NV2を各々の系統ごとに設け、他の系統に干渉されず単独でリレーNV1,NV2によるバッテリへの切替えを行っており、電源供給回路100a,100b毎にバッテリ試験切替回路106a,106bや、電圧検出回路104a,104bからCPUに電源切替状態を出力するための信号回路等を設けなくてはならない。
【0009】
そのため、防災監視制御盤で系統を容易に増やすことができず、電源装置で決められた系統数しか制御及び監視ができないという問題があった。
【0010】
本発明は、このような従来の問題点に鑑みてなされたもので、電源供給系統を比較的容易に増やすことのできる防災監視制御盤の電源装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
この目的を達成するため本発明は次のように構成する。本発明は、停電時にバッテリからの電源供給に切り替える防災監視制御盤の電源装置であって、複数の電源供給系統毎に設けられる電源供給回路と、複数の電源供給回路の出力側に設けられ、各電源供給回路による電源供給とバッテリによる電源供給を切り替える複数の電源切替リレーと、複数の電源供給回路毎に設けられ、電源電圧が所定の設定電圧に対し高い場合と低い場合に応じた電圧検出信号を出力する複数の電圧検出回路と、複数の電圧検出回路による検出信号の全てが所定の設定電圧に対し高い場合に複数の電源切替リレーを一括して作動することにより各電源供給回路からの電源供給に切り替え、検出信号のいずれかが所定の設定電圧に対し低い場合に複数の電源切替リレーを一括して復旧することによりバッテリからの電源供給に切り替える切替制御回路とを設けたことを特徴とする。
【0012】
ここで切替制御回路は、複数の電圧検出回路による電源電圧が所定の設定電圧に対し高い場合の電圧検出信号でオンし、低い場合の電圧検出信号でオフする複数の電圧検出スイッチ回路を直列接続した直列スイッチ回路と、複数の電源切替リレーを並列接続したリレー駆動回路と、リレー駆動回路に並列接続され電源切替状態を示す電源状態信号をCPUに送出するフォトカプラの発光素子と、CPUからのバッテリ試験指示でオン,オフする試験スイッチ回路とを備え、直列スイッチ回路、リレー駆動回路及び試験スイッチ回路を直列接続し、複数のスイッチ回路の少なくともいずれか1つのオフで、複数の電源切替リレーを一括して復旧することを特徴とする。
【0013】
また複数の電圧検出回路はコンパレータを備え、コンパレータは、電源電圧が第1閾値電圧を越えた時にスイッチオン用の電圧検出信号を出力し、その後、電源電圧が第1閾値電圧より低い第2閾値電圧を下回った時にスイッチオフ用の電圧検出信号を出力するヒステリシス検出特性を持つ。
【0014】
更に、複数の電圧検出回路の検出信号に現われる電源電圧の瞬断等による変動を抑圧して切替制御回路の誤動作を防止する積分回路を設ける。
【0015】
このような本発明の電源装置によれば、複数の電源系統に対しCPUに電源切替状態を示す状態信号を送る回路、CPUからの指示でバッテリ試験等のために電源切替リレーを切り替えるバッテリ試験切替回路が単一の回路で共通化され、電源系統を増やす場合には、電源供給回路、電圧検出回路、電圧検出スイッチ回路、電源切替リレーの増設で済み、電源系統が増えても回路を大幅に変更することなく、容易に対応できる。
【0016】
【発明の実施の形態】
図1は、本発明による防災監視制御盤の電源装置の1実施形態の回路ブロック図である。
【0017】
この実施形態にあっては、防災監視制御盤における電源系統として内部、外部1、外部2の3系統を設けている。3つの電源系統に対応して、商用交流電源2を入力接続した3つの電源供給装置1a,1b,1cが設けられる。電源供給装置1a〜1cは、商用交流電源2からの交流電源電圧を入力し、所定の直流電源電圧に変換して出力する例えばスイッチングレギュレータ等を使用している。
【0018】
ここで電源供給装置PS1は防災監視制御盤の内部電源を供給しており、例えばDC24Vを供給する。また電源供給装置PS2は外部1として火報用に種別が設定された制御回線に接続された地区音響装置に対する電源を供給しており、この場合の外部1、即ち火報用としての供給電源電圧は例えばDC26.4Vとなる。
【0019】
更に電源供給装置PS3は外部2として、防排煙用に種別が設定された制御回線の防排煙機器に対する電源供給を行っており、例えばDC26.4Vを供給している。
【0020】
これら3つの電源系統に対しては、商用交流電源2の停電時に電源供給をバックアップするため、バッテリ3が設けられる。バッテリ3に対しては商用交流電源2からの交流電源電圧をトランス8で所定の電圧に下げ、充電回路9で整流することで、常時バッテリ3を充電している。
【0021】
商用交流電源2の停電時に電源供給回路1a,1b,1cの電源供給からバッテリ3の電源供給に切り替えるため、各電源系統ごとに電源切替リレーNV1,NV2,NV3を設けている。これら電源切替リレーNV1,NV2,NV3は切替リレー接点nv1,nv2,nv3を備え、そのa側をバッテリ3に接続し、b側を電源供給回路1a〜1cからの出力に接続し、切替接点側を内部、外部1,外部2側の負荷側に接続している。
【0022】
電源切替リレーNV1,NV2,NV3は並列接続されており、商用交流電源2が正常に得られている場合は電源切替リレーNV1〜NV3は作動状態にあり、その切替リレー接点nv1〜nv3をb側に切り替え、電源供給回路1a〜1cからの直流電源を内部、外部1、外部2の各系統に供給している。
【0023】
商用交流電源2が停電となった場合には、電源切替リレーNV1〜NV3は復旧し、そのリレー接点nv1〜nv3をa側に切り替え、バッテリ3からの電源供給を行う。
【0024】
このようなNV1〜NV3による電源切替えのための切替制御回路として、電源供給回路1a,1b,1cの出力電圧を検出する電圧検出回路4a,4b,4cと、その電圧検出信号によりオン,オフ制御される電圧検出スイッチ回路5a,5b,5cを設けている。
【0025】
電圧検出回路4a〜4cは、電源供給回路1a〜1cからの出力電圧を入力して、内蔵したコンパレータで比較しており、電源電圧が所定の設定電圧より高い場合はそれぞれの電圧検出スイッチ回路5a〜5cをオンしているが、電源電圧が設定電圧より低くなると対応する電圧検出スイッチ回路5a〜5cをオフとする。
【0026】
ここで、電圧検出回路4a〜4cに使用されているコンパレータはヒステリシス特性を持っている。図2は電圧検出回路4a〜4cに設けられるコンパレータのヒステリシス特性である。
【0027】
図2において、横軸の電源電圧となる入力に対し、コンパレータはLレベル出力またはHレベル出力を生ずる。コンパレータはヒステリシス特性をもつ。即ち、コンパレータは入力の電源電圧に対し2つの閾値電圧Vth1,Vth2を持つ。
電源電圧が0Vから上昇する場合、高い方の閾値電圧Vth2に達すると、コンパレータの出力はそれまでのLレベル出力からHレベル出力に立ち上がる。
【0028】
コンパレータの出力がHレベルの状態で電源電圧が低下した場合、高い方の閾値電圧Vth2より低くなってもコンパレータの出力はLレベルとならず、低い方の閾値電圧Vth1に下がるとHレベルからLレベルに立ち下がる。
【0029】
ここで図1の電圧検出回路4aのコンパレータにあっては、内部に対する電源供給回路1aからの出力電圧はDC24Vであり、このためコンパレータにヒステリシス特性を持たせるための閾値電圧Vth1,Vth2は、例えばVth1=16V、Vth2=23Vとなっている。
【0030】
また外部1の火報用、外部2の防排煙用の電源供給を行う電源供給回路1b,1cの出力電圧はDC26.4Vであることから、その電圧検出回路4b,4cに設けたコンパレータのヒステリシス特性を得るための閾値電圧Vth1,Vth2は、例えばVth1=19V、Vth2=25Vとしている。
【0031】
電圧検出回路4a〜4cの電圧検出信号は電圧検出スイッチ回路5a,5b,5cのそれぞれに入力されており、図2に示したコンパレータのHレベル出力で切替スイッチ回路5a〜5cをオンし、Lレベル出力で電圧検出スイッチ回路5a〜5cをオフする。
【0032】
このうち、外部1、外部2の電源電圧を検出している電圧検出回路4b,4cからの電圧検出信号は、後の説明で明らかにする積分回路11を通って電圧検出スイッチ回路5b,5cに与えられている。
【0033】
電圧検出回路4a〜4cの電圧検出信号に基づいてオン,オフされる電圧検出スイッチ回路5a,5c,5cは直列接続され、これに電源切替リレーNV1,NV2,NV3の並列回路を直列接続している。
【0034】
直列接続した電圧検出スイッチ回路5a〜5cは、電圧検出回路4a〜4cで正常な電源電圧を検出した際のスイッチオンについてはアンド回路を構成する。即ち、全ての系統の電源電圧が正常であることが検出されたときに電圧検出スイッチ回路5a〜5cがオンし、これによって並列接続している電源切替リレーNV1〜NV3を一括して作動し、各切替リレー接点nv1〜nv3をb側に切り替えて電源供給回路1a〜1cからの電源供給とする。
【0035】
一方、電圧検出スイッチ回路5a〜5cを直列接続した回路は、停電等で電圧検出回路4a〜4cが電源電圧の低下または遮断を検出した際のスイッチオフについては、いずれか1つのスイッチがオフすると並列接続された電源切替リレーNV1〜NV3が復旧することから、オア回路を構成する。
【0036】
更に電源切替リレーNV1〜NV3の並列回路に続いては、試験スイッチ回路7が直列接続され、試験スイッチ回路7はバッテリ切替試験回路6によりオン,オフされる。バッテリ切替試験回路6は、盤内部に設けているCPUからのバッテリ試験指示を受けて、通常時オン状態にある試験スイッチ回路7をオフし、バッテリ試験のためにバッテリ3からの電源供給に切り替えるようにしている。
【0037】
ここで電圧検出スイッチ回路5a〜5c及び試験スイッチ回路7は、リレー,トランジスタ,サイリスタ等の適宜のスイッチ回路を使用することができる。
【0038】
更に電源切替リレーNV1〜NV3の並列回路に対しては、フォトカプラの発光素子10が並列接続されている。このフォトカプラの発光素子10は、各系統に対する電源供給が電源供給回路1a〜1cから行われているか、バッテリ3から行われているかの電源供給状態の状態信号をCPU側に送るために設けられている。
【0039】
即ち、電源供給回路1a〜1cの全てから規定の電源電圧を供給している場合には、電圧検出スイッチ回路5a〜5cは全てオンし、また通常時にあっては試験スイッチ回路7もオンであることから、電源切替リレーNV1〜NV3は一括して作動し、その切替リレー接点nv1〜nv3をb側に閉じ、電源供給回路1a〜1cからの電源供給となっている。
【0040】
この時、フォトカプラの発光素子10にも駆動電流が流れて発光し、図示しないCPU側に接続しているフォトカプラのフォトトランジスタに対する光の入射でフォトトランジスタをオンし、CPUに対し電源供給回路1a〜1cからの電源供給状態にあることを知らせる。
【0041】
これに対し商用交流電源2の停電等で電圧検出スイッチ回路5a〜5cがオフすると、電源切替リレーNV1〜NV3が一括して復旧し、その切替リレー接点nv1〜nv3を図示のようにa側に閉じ、バッテリ3からの電源供給に切り替わる。このときフォトカプラの発光素子10を流れる駆動電流も遮断されて発光を停止するため、CPUはフォトカプラのフォトトランジスタの出力がオフとなることでバッテリ3からの電源供給状態に切り替ったことを知ることができる。
【0042】
ここで電圧検出回路4b,4cの検出信号を入力している積分回路11を説明する。火報用の電源供給を行う外部1の電源系統及び防排煙用の電源供給を行う外部2の電源系統にあっては、防災監視制御盤から外部に引き出された多数の制御回線に地区音響装置や防排煙機器を接続しており、各種の原因によって電源供給ラインの電圧に瞬断を起こす可能性が高い。
【0043】
このような電源電圧の瞬断が起きると、電圧検出回路4b,4cが誤動作し、電圧検出スイッチ回路5b,5cを瞬間的にオフすることで電源切替リレーNV1〜NV3が一括して復旧し、バッテリ3の電源供給に切り替わった後にまた通常の電源供給に戻る誤動作を起こす。
【0044】
このような電源電圧の瞬断等の原因による電源切替えの誤動作を防止するため、電圧検出回路4b,4cからの電圧検出信号を積分回路11に入力し、瞬断による電源電圧の変動を抑え、電源切替えが誤作動しないようにしている。
【0045】
図3は電源電圧が瞬断した場合の電圧検出回路と積分回路11の動作波形である。図3(A)のように電源電圧が瞬断して復旧した場合、図3(B)のように電源電圧が低い方の閾値電圧Vth1より下がることで電圧検出回路1bからの電圧検出信号は瞬間的にLレベルとなり、再びHレベルに立ち上がる。
【0046】
この電圧検出信号は積分回路11に入力され、積分動作により瞬間的な変動が抑圧されて僅かな変動となり、電圧検出スイッチ回路5bがオフとなることを防ぐ。
【0047】
尚、内部に電源を供給する電源供給回路1aの電圧検出回路4aについては積分回路11を通していないが、もし変動する可能性が高い場合には同様に積分回路11を通して電圧検出スイッチ回路5aに入力してもよい。
【0048】
次に図1の実施形態の動作をその作用と共に説明する。防災監視制御盤の電源スイッチを投入すると、商用交流電源2から交流電源電圧が入力し、電源供給回路1a〜1cが動作し、所定の電源電圧を出力する。
【0049】
この電源電圧は電圧検出回路4a〜4cで検出され、電源電圧がコンパレータの高い方の閾値電圧Vth2を超えると各電圧検出信号がHレベルとなり、電圧検出スイッチ回路5a〜5cが全てオンするが、このとき試験スイッチ回路7はオン状態にあり、並列接続された電源切替リレーNV1〜NV3が一括して作動し、その切替リレー接点nv1〜vn3をb側に閉じ、内部、外部1、外部2の各系統に所定の直流電源電圧を供給する。
【0050】
またバッテリ3は商用交流電源2からの電源電圧をトランス8で降圧した後に充電回路9で整流した整流出力を受けて常時充電される。
【0051】
次に電源供給回路1a〜1cによる通常の電源供給状態で、例えば商用交流電源2に停電が起きたとすると、停電によって電源供給回路1a〜1cの出力電圧が低下すると電圧検出回路4a〜4cからの電圧検出信号がLレベルとなり、電圧検出スイッチ回路5a〜5cがオフする。
【0052】
このため、並列接続している電源切替リレーNV1〜NV3が一括して復旧し、切替リレー接点nv1〜nv3をa側に切り替えることで、バッテリ3からの電源供給に切り替わる。
【0053】
このようなバッテリ3への電源供給の切替えは、商用交流電源2の停電時のみならず、例えば電源供給回路1a〜1cのいずれかに故障が起き、電源電圧が遮断しコンパレータの低い方の閾値電圧Vth1以下に下がった場合、電源電圧に異常が起きた電圧検出回路4a〜4cの電圧検出信号がLレベルとなり、電圧検出スイッチ回路5a〜5cのいずれかのオフにより、並列接続している電源切替リレーNV1〜NV3を一括して復旧し、切替リレー接点nv1〜nv3をa側にしてバッテリ3からの電源供給に切り替える。
【0054】
一方、電圧検出スイッチ回路5a〜5cが全てオンして並列接続した電源切替リレーNV1〜NV3が作動した電源供給回路1a〜1cからの通常の電源供給状態にあっては、フォトカプラの発光素子10が発光駆動されており、フォトカプラのフォトトランジスタのオンによりCPUは正常な電源供給状態にあることを認識している。
【0055】
一方、停電時等において電源切替リレーNV1〜NV3が復旧してバッテリ3からの電源供給に切り替わると、フォトカプラの発光素子10の発光が停止し、CPU側のフォトトランジスタがオフすることでCPUはバッテリ3からの電源供給に切り替わったことを認識し、電源切替状態の表示や電源異常の警報出力等を行うことができる。
【0056】
また防災監視制御盤のバッテリ3の試験を行いたい場合には、バッテリ試験スイッチ等の操作を行うと、CPUからバッテリ切替試験回路6に試験指示が行われ試験スイッチ回路7をオフし、並列接続している電源切替リレーNV1〜NV3を一括してオフし、これによって各電源系統をバッテリ3からの電源供給に切り替え、例えばバッテリ3からの電源供給が規定時間、正常にできるか否かの試験を行う。
【0057】
ここで電源系統の数と各回路部の関係を見ると、内部、外部1、外部2の3つの電源系統に対応して電源供給回路1a〜1c、電圧検出回路4a〜4c、電圧検出スイッチ回路5a〜5c、電源切替リレーNV1〜NV3は、各系統ごとに設けられているが、バッテリ切替試験回路6、試験スイッチ回路7及び電源切替状態をCPUに通知するためのフォトカプラの発光素子10は共通回路として設けられている。
【0058】
このため、電源系統を更に増やす場合には、バッテリ切替試験回路6、試験スイッチ回路7及び電源切替状態をCPUに通知するためのフォトカプラの発光素子10はそのままで、電源供給回路、電圧検出回路、電圧検出スイッチ回路及び電源切替リレーを増設するだけでよく、電源系統の増設が図4の従来装置に比べ簡単且つ容易にできる。
【0059】
尚、上記の実施形態は、内部、外部1、外部2の3系統の電源系統を例にとるものであったが、電源系統の数は必要に応じて適宜に定めることができる。またCPUに電源切替状態を通知するためのフォトカプラの発光素子10を電源切替リレーNV1〜NV3と並列に接続しているが、電圧検出スイッチ回路5a〜5cと直列に接続してもよい。
【0060】
また電源側とCPU側のアイソレートが必要ない場合には、電圧検出回路4a〜4cの電圧検出信号のダイオードオアをとり、このオア出力をCPUに供給してもよい。更に本発明は上記の実施例に限定されず、その目的と利点を損なわない適宜の変形を含み、更に実施形態に示した数値による限定は受けない。
【0061】
【発明の効果】
以上説明してきたように本発明によれば、防災監視制御盤の複数の電源系統に対し制御用のCPUに電源切替状態を示す状態信号を送る回路、CPUからの指示でバッテリ試験のために電源切替リレーを切り替えるバッテリ切替試験回路が単一の回路で共通化でき、電源系統を増やしても電源供給回路、電圧検出回路、電圧検出スイッチ回路,電源切替リレーの増設で済み、大幅な回路変更を必要とすることなく容易に電源系統の増加に対し対応することができる。
【図面の簡単な説明】
【図1】本発明による防災監視制御盤の電源装置の実施形態を示した回路ブロック図
【図2】図1の電圧検出回路のヒステリシス特性の説明図
【図3】図1の積分回路による瞬断時の電圧変動特性の説明図
【図4】従来装置の回路ブロック図
【符号の説明】
1a〜1c:電源供給回路(PS1〜PS3)
2:商用交流電源
3:バッテリ
4a〜4c:電圧検出回路
5a〜5c:電圧検出スイッチ回路
6:バッテリ切替試験回路
7:試験スイッチ回路
8:トランス
9:充電回路
10:発光素子(CPU送出用)
11:積分回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power supply device of a disaster prevention monitoring control panel that switches to power supply from a battery at the time of a power failure and monitors an abnormality such as a fire.
[0002]
[Prior art]
Conventionally, in this kind of disaster prevention monitoring control panel, a power supply system is divided into a plurality of systems, and a power supply circuit using a switching regulator or the like is provided for each system to supply power.
[0003]
FIG. 4 shows an example of a conventional power supply device, in which power is supplied to a load in two separate systems, an internal system and an external system. Power supply circuits (power supplies: PS) 100a and 100b are provided in each system. The AC input of the commercial AC power supply 102 is converted to a DC voltage of, for example, 24 volts and supplied to each system.
[0004]
A battery 103 is provided for backup at the time of a power failure, and the power is supplied by switching to the battery 103 upon detection of the power failure. Therefore, the switching relay contacts nv1 and nv2 of the relays NV1 and NV2 have the a side connected to the battery 103 and the b side connected to the outputs of the power supply circuits 100a and 100b.
[0005]
The battery 103 is stepped down from the AC voltage of the commercial power supply 102 by the transformer 108 and is constantly charged with the rectified output of the charging circuit 109.
[0006]
The relays NV1 and NV2 are controlled by voltage detection circuits 104a and 104b and voltage detection switch circuits 105a and 105b. When a power failure occurs in the commercial AC power supply 101, the power supply voltages from the power supply circuits 100a and 100b decrease. When the voltage detection circuits 104a and 104b fall below a predetermined set voltage, the voltage detection circuits 104a and 104b detect this and detect the voltage. 105b is turned off, and the relays NV1 and NV2 are restored. For this reason, the switching relay contacts nv1 and nv2 are switched to the “a” side in the drawing, and the power is supplied from the battery 103.
[0007]
Further, in order to perform a battery test according to an instruction from the CPU, battery test switching circuits 106a and 106b and test switch circuits 107a and 107b are provided for each system. When the CPU issues a test instruction to the battery test circuits 106a and 106b, the test switch circuits 107a and 107b are turned off, the relays NV1 and NV2 are restored, and the switching relay contacts nv1 and nv2 are switched to the a side. Power is supplied to the load, and a battery test is performed to determine whether the power supply from the battery can be performed normally for a specified time.
[0008]
[Problems to be solved by the invention]
However, in such a conventional power supply device, since the power is separately supplied to each system from a plurality of power supply circuits, the relays NV1 and NV2 are provided for each system so as not to interfere with other systems. The switching to the battery is performed independently by the relays NV1 and NV2. The battery test switching circuits 106a and 106b and the voltage detection circuits 104a and 104b output the power switching state to the CPU for each of the power supply circuits 100a and 100b. A signal circuit must be provided.
[0009]
Therefore, there is a problem that the number of systems cannot be easily increased by the disaster prevention monitoring control panel, and only the number of systems determined by the power supply device can be controlled and monitored.
[0010]
The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a power supply device for a disaster prevention monitoring control panel that can relatively easily increase the number of power supply systems.
[0011]
[Means for Solving the Problems]
To achieve this object, the present invention is configured as follows. The present invention is a power supply device for a disaster prevention monitoring control panel that switches to power supply from a battery at the time of a power failure, and a power supply circuit provided for each of a plurality of power supply systems and provided on an output side of the plurality of power supply circuits, A plurality of power supply switching relays for switching between power supply from each power supply circuit and a power supply from a battery, and voltage detection provided for each of the plurality of power supply circuits, depending on whether the power supply voltage is higher or lower than a predetermined set voltage. A plurality of voltage detection circuits that output signals, and a plurality of power supply switching relays that are collectively operated when all of the detection signals from the plurality of voltage detection circuits are higher than a predetermined set voltage, thereby enabling a signal from each power supply circuit to be output. Switch to power supply, and if any of the detection signals is lower than the predetermined set voltage, the power from the battery Characterized in that a switching control circuit for switching the sheet.
[0012]
Here, the switching control circuit is connected in series with a plurality of voltage detection switch circuits that are turned on by a voltage detection signal when the power supply voltage of the plurality of voltage detection circuits is higher than a predetermined set voltage and turned off by a voltage detection signal when the power supply voltage is lower than a predetermined set voltage. A series drive circuit, a relay drive circuit in which a plurality of power supply switching relays are connected in parallel, a light emitting element of a photocoupler connected in parallel to the relay drive circuit and transmitting a power supply state signal indicating a power supply switching state to the CPU, A test switch circuit that is turned on and off in response to a battery test instruction; a series switch circuit, a relay drive circuit, and a test switch circuit are connected in series, and a plurality of power supply switching relays are turned on when at least one of the plurality of switch circuits is off. It is characterized in that it recovers all at once.
[0013]
Further, the plurality of voltage detection circuits include a comparator, and the comparator outputs a switch-on voltage detection signal when the power supply voltage exceeds a first threshold voltage, and thereafter, outputs a second threshold voltage lower than the first threshold voltage when the power supply voltage is lower than the first threshold voltage. It has a hysteresis detection characteristic that outputs a switch-off voltage detection signal when the voltage falls below the voltage.
[0014]
Further, there is provided an integrating circuit for suppressing a change due to an instantaneous interruption of a power supply voltage appearing in detection signals of the plurality of voltage detection circuits and preventing a malfunction of the switching control circuit.
[0015]
According to such a power supply device of the present invention, a circuit for transmitting a state signal indicating a power supply switching state to a plurality of power supply systems to a CPU, a battery test switching for switching a power supply switching relay for a battery test or the like according to an instruction from the CPU. When the circuit is shared by a single circuit and the number of power supply systems is increased, the power supply circuit, voltage detection circuit, voltage detection switch circuit, and power supply switching relay need only be added. It can be easily handled without any changes.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a circuit block diagram of a power supply device for a disaster prevention monitoring control panel according to an embodiment of the present invention.
[0017]
In this embodiment, three systems, an internal system, an external system 1 and an external system 2, are provided as power supply systems in the disaster prevention monitoring control panel. Three power supply devices 1a, 1b, 1c to which the commercial AC power supply 2 is connected are provided corresponding to the three power supply systems. The power supply devices 1a to 1c use, for example, a switching regulator or the like which receives an AC power supply voltage from the commercial AC power supply 2, converts the AC power supply voltage into a predetermined DC power supply voltage, and outputs the converted DC power supply voltage.
[0018]
Here, the power supply device PS1 supplies the internal power of the disaster prevention monitoring control panel, and supplies, for example, DC 24V. Also, the power supply device PS2 supplies power to the local sound device connected to the control line whose type is set for fire alarm as the external device 1, and in this case, the external device 1, that is, the supply power supply voltage for the fire alarm Is, for example, 26.4 V DC.
[0019]
Further, the power supply device PS3, as the external device 2, supplies power to the smoke elimination device of the control line whose type is set for smoke elimination, and supplies DC 26.4 V, for example.
[0020]
A battery 3 is provided for these three power supply systems in order to back up the power supply when the commercial AC power supply 2 fails. For the battery 3, the AC power supply voltage from the commercial AC power supply 2 is reduced to a predetermined voltage by the transformer 8 and rectified by the charging circuit 9, so that the battery 3 is constantly charged.
[0021]
In order to switch from the power supply of the power supply circuits 1a, 1b, 1c to the power supply of the battery 3 at the time of a power failure of the commercial AC power supply 2, power supply switching relays NV1, NV2, NV3 are provided for each power supply system. These power switching relays NV1, NV2 and NV3 are provided with switching relay contacts nv1, nv2 and nv3, the a side of which is connected to the battery 3 and the b side is connected to the output from the power supply circuits 1a to 1c. Are connected to the internal, external 1 and external 2 load sides.
[0022]
The power supply switching relays NV1, NV2, and NV3 are connected in parallel. When the commercial AC power supply 2 is normally obtained, the power supply switching relays NV1 to NV3 are in the operating state, and the switching relay contacts nv1 to nv3 are connected to the b side. And the DC power from the power supply circuits 1a to 1c is supplied to the internal, external 1 and external 2 systems.
[0023]
When the commercial AC power supply 2 is out of power, the power supply switching relays NV1 to NV3 are restored, the relay contacts nv1 to nv3 are switched to the a side, and power is supplied from the battery 3.
[0024]
As a switching control circuit for switching power supply by such NV1 to NV3, voltage detection circuits 4a, 4b, 4c for detecting output voltages of power supply circuits 1a, 1b, 1c, and ON / OFF control by the voltage detection signals. Provided voltage detection switch circuits 5a, 5b, 5c.
[0025]
The voltage detection circuits 4a to 4c receive the output voltages from the power supply circuits 1a to 1c and compare them by a built-in comparator. When the power supply voltage is higher than a predetermined set voltage, each of the voltage detection switch circuits 5a to 4c 5c are turned on, but when the power supply voltage becomes lower than the set voltage, the corresponding voltage detection switch circuits 5a to 5c are turned off.
[0026]
Here, the comparators used in the voltage detection circuits 4a to 4c have hysteresis characteristics. FIG. 2 shows the hysteresis characteristics of the comparators provided in the voltage detection circuits 4a to 4c.
[0027]
In FIG. 2, the comparator generates an L-level output or an H-level output with respect to an input which is a power supply voltage on the horizontal axis. The comparator has a hysteresis characteristic. That is, the comparator has two threshold voltages Vth1 and Vth2 with respect to the input power supply voltage.
When the power supply voltage rises from 0 V and reaches the higher threshold voltage Vth2, the output of the comparator rises from the previous L level output to the H level output.
[0028]
When the power supply voltage drops while the output of the comparator is at the H level, the output of the comparator does not go to the L level even if the output becomes lower than the higher threshold voltage Vth2, and goes from the H level to the L level when the output drops to the lower threshold voltage Vth1. Fall to the level.
[0029]
Here, in the comparator of the voltage detection circuit 4a in FIG. 1, the output voltage from the power supply circuit 1a to the inside is DC 24V, and therefore the threshold voltages Vth1 and Vth2 for giving the comparator a hysteresis characteristic are, for example, Vth1 = 16V and Vth2 = 23V.
[0030]
Further, since the output voltages of the power supply circuits 1b and 1c for supplying power for the fire alarm of the outside 1 and the smoke emission prevention of the outside 2 are 26.4 V DC, the comparators provided in the voltage detection circuits 4b and 4c are used. The threshold voltages Vth1 and Vth2 for obtaining the hysteresis characteristics are, for example, Vth1 = 19V and Vth2 = 25V.
[0031]
The voltage detection signals of the voltage detection circuits 4a to 4c are input to the voltage detection switch circuits 5a, 5b, and 5c, respectively, and the changeover switch circuits 5a to 5c are turned on by the H level output of the comparator shown in FIG. The voltage detection switch circuits 5a to 5c are turned off by the level output.
[0032]
Among these, the voltage detection signals from the voltage detection circuits 4b and 4c detecting the power supply voltages of the external 1 and the external 2 pass through the integration circuit 11 which will be described later, and are sent to the voltage detection switch circuits 5b and 5c. Has been given.
[0033]
Voltage detection switch circuits 5a, 5c, and 5c that are turned on and off based on voltage detection signals of voltage detection circuits 4a to 4c are connected in series, and a parallel circuit of power supply switching relays NV1, NV2, and NV3 is connected in series. I have.
[0034]
The voltage detection switch circuits 5a to 5c connected in series constitute an AND circuit for switching on when a normal power supply voltage is detected by the voltage detection circuits 4a to 4c. That is, when it is detected that the power supply voltages of all the systems are normal, the voltage detection switch circuits 5a to 5c are turned on, whereby the power supply switching relays NV1 to NV3 connected in parallel operate collectively. Each of the switching relay contacts nv1 to nv3 is switched to the b side to supply power from the power supply circuits 1a to 1c.
[0035]
On the other hand, a circuit in which the voltage detection switch circuits 5a to 5c are connected in series is switched off when any one of the switches is turned off when the voltage detection circuits 4a to 4c detect a drop or interruption of the power supply voltage due to a power failure or the like. Since the power supply switching relays NV1 to NV3 connected in parallel are restored, an OR circuit is configured.
[0036]
Further, following the parallel circuit of the power supply switching relays NV1 to NV3, a test switch circuit 7 is connected in series, and the test switch circuit 7 is turned on and off by the battery switch test circuit 6. The battery switching test circuit 6 receives a battery test instruction from the CPU provided inside the panel, turns off the test switch circuit 7 which is normally on, and switches to the power supply from the battery 3 for the battery test. Like that.
[0037]
Here, as the voltage detection switch circuits 5a to 5c and the test switch circuit 7, an appropriate switch circuit such as a relay, a transistor, or a thyristor can be used.
[0038]
Further, a light emitting element 10 of a photocoupler is connected in parallel to a parallel circuit of the power supply switching relays NV1 to NV3. The light-emitting element 10 of the photocoupler is provided to send a power supply state signal indicating whether power is supplied to each system from the power supply circuits 1a to 1c or from the battery 3 to the CPU. ing.
[0039]
That is, when a specified power supply voltage is supplied from all of the power supply circuits 1a to 1c, all of the voltage detection switch circuits 5a to 5c are turned on, and in normal times, the test switch circuit 7 is also turned on. Therefore, the power supply switching relays NV1 to NV3 are operated collectively, the switching relay contacts nv1 to nv3 are closed to the side b, and power is supplied from the power supply circuits 1a to 1c.
[0040]
At this time, a drive current also flows through the light emitting element 10 of the photocoupler to emit light, and when light enters the phototransistor of the photocoupler connected to the CPU (not shown), the phototransistor is turned on. Informs that power is being supplied from 1a to 1c.
[0041]
On the other hand, when the voltage detection switch circuits 5a to 5c are turned off due to a power failure of the commercial AC power supply 2 or the like, the power supply switching relays NV1 to NV3 are collectively restored, and the switching relay contacts nv1 to nv3 are moved to the a side as shown in the figure. Close and switch to power supply from battery 3. At this time, since the driving current flowing through the light emitting element 10 of the photocoupler is also cut off and the light emission is stopped, the CPU determines that the output of the phototransistor of the photocoupler is turned off and the power supply from the battery 3 is switched. You can know.
[0042]
Here, the integration circuit 11 to which the detection signals of the voltage detection circuits 4b and 4c are input will be described. In the external power supply system 1 that supplies power for fire alarm and the external power supply system 2 that supplies power for smoke prevention, a large number of control lines drawn out from the disaster prevention monitoring and control panel provide It is connected to equipment and smoke prevention equipment, and there is a high possibility that the voltage of the power supply line will be momentarily interrupted due to various causes.
[0043]
If such an instantaneous interruption of the power supply voltage occurs, the voltage detection circuits 4b and 4c malfunction and the voltage detection switch circuits 5b and 5c are momentarily turned off, so that the power supply switching relays NV1 to NV3 are collectively restored. After switching to the power supply of the battery 3, an erroneous operation of returning to the normal power supply occurs.
[0044]
In order to prevent erroneous operation of power supply switching due to such an instantaneous interruption of the power supply voltage, voltage detection signals from the voltage detection circuits 4b and 4c are input to the integration circuit 11 to suppress fluctuations in the power supply voltage due to the instantaneous interruption. The power supply switching does not malfunction.
[0045]
FIG. 3 shows operation waveforms of the voltage detection circuit and the integration circuit 11 when the power supply voltage is momentarily interrupted. When the power supply voltage is momentarily interrupted and restored as shown in FIG. 3A, the power supply voltage falls below the lower threshold voltage Vth1 as shown in FIG. 3B, so that the voltage detection signal from the voltage detection circuit 1b becomes It instantaneously goes to the L level and rises again to the H level.
[0046]
This voltage detection signal is input to the integration circuit 11, where the instantaneous fluctuation is suppressed by the integration operation and becomes a slight fluctuation, thereby preventing the voltage detection switch circuit 5b from being turned off.
[0047]
Note that the voltage detection circuit 4a of the power supply circuit 1a for supplying power to the inside does not pass through the integration circuit 11, but if there is a high possibility of fluctuation, the voltage is similarly input to the voltage detection switch circuit 5a through the integration circuit 11. You may.
[0048]
Next, the operation of the embodiment of FIG. 1 will be described together with its operation. When the power switch of the disaster prevention monitoring control panel is turned on, an AC power supply voltage is input from the commercial AC power supply 2, and the power supply circuits 1a to 1c operate to output a predetermined power supply voltage.
[0049]
This power supply voltage is detected by the voltage detection circuits 4a to 4c. When the power supply voltage exceeds the higher threshold voltage Vth2 of the comparator, each voltage detection signal becomes H level, and all the voltage detection switch circuits 5a to 5c are turned on. At this time, the test switch circuit 7 is in the ON state, the power supply switching relays NV1 to NV3 connected in parallel operate collectively, and the switching relay contacts nv1 to vn3 are closed to the b side, and the internal, external 1 and external 2 A predetermined DC power supply voltage is supplied to each system.
[0050]
The battery 3 is constantly charged by receiving a rectified output rectified by the charging circuit 9 after stepping down the power supply voltage from the commercial AC power supply 2 by the transformer 8.
[0051]
Next, in a normal power supply state by the power supply circuits 1a to 1c, for example, when a power failure occurs in the commercial AC power supply 2, when the output voltage of the power supply circuits 1a to 1c decreases due to the power failure, the voltage from the voltage detection circuits 4a to 4c. The voltage detection signal becomes L level, and the voltage detection switch circuits 5a to 5c are turned off.
[0052]
For this reason, the power supply switching relays NV1 to NV3 connected in parallel are collectively restored, and switching to the power supply from the battery 3 is performed by switching the switching relay contacts nv1 to nv3 to the a side.
[0053]
Such switching of the power supply to the battery 3 is performed not only when the commercial AC power supply 2 fails, but also when, for example, a failure occurs in any of the power supply circuits 1a to 1c, the power supply voltage is cut off, and the lower threshold of the comparator is used. When the voltage drops below the voltage Vth1, the voltage detection signals of the voltage detection circuits 4a to 4c in which an abnormality has occurred in the power supply voltage go to L level, and any of the voltage detection switch circuits 5a to 5c is turned off, so that the power supply connected in parallel is turned off. The switching relays NV1 to NV3 are restored collectively, and the switching relay contacts nv1 to nv3 are set to the a side to switch to the power supply from the battery 3.
[0054]
On the other hand, in a normal power supply state from the power supply circuits 1a to 1c in which all the voltage detection switch circuits 5a to 5c are turned on and the power supply switching relays NV1 to NV3 connected in parallel operate, the light emitting element 10 of the photocoupler is used. Are driven to emit light, and the CPU recognizes that the power supply state is normal when the phototransistor of the photocoupler is turned on.
[0055]
On the other hand, when the power supply switching relays NV1 to NV3 recover and switch to the power supply from the battery 3 at the time of a power failure or the like, the light emission of the light emitting element 10 of the photocoupler stops, and the phototransistor on the CPU side is turned off. By recognizing that the power supply has been switched to the power supply from the battery 3, it is possible to display a power supply switching state, output a warning of a power supply abnormality, and the like.
[0056]
When the user wants to test the battery 3 of the disaster prevention monitoring control panel, the user operates a battery test switch or the like, a test instruction is issued from the CPU to the battery switching test circuit 6, the test switch circuit 7 is turned off, and the parallel connection is performed. The power supply switching relays NV1 to NV3 are turned off collectively, thereby switching each power supply system to the power supply from the battery 3, for example, testing whether the power supply from the battery 3 can be normally performed for a specified time. I do.
[0057]
Here, when looking at the relationship between the number of power supply systems and each circuit section, power supply circuits 1a to 1c, voltage detection circuits 4a to 4c, and voltage detection switch circuits correspond to three power supply systems of internal, external 1, and external 2. 5a to 5c and power supply switching relays NV1 to NV3 are provided for each system, but the light emitting element 10 of the photocoupler for notifying the CPU of the battery switching test circuit 6, the test switch circuit 7, and the power supply switching state includes: It is provided as a common circuit.
[0058]
For this reason, when the power supply system is further increased, the power supply circuit, the voltage detection circuit, and the battery switching test circuit 6, the test switch circuit 7, and the light emitting element 10 of the photocoupler for notifying the CPU of the power switching state are kept as they are. It is only necessary to add a voltage detection switch circuit and a power supply switching relay, and the addition of a power supply system can be made simpler and easier than the conventional device shown in FIG.
[0059]
In the above-described embodiment, three power supply systems, ie, the internal power supply system, the external power supply system 1 and the external power supply system 2 are taken as an example. However, the number of power supply power supply systems can be determined as needed. Although the light emitting element 10 of the photocoupler for notifying the CPU of the power switching state is connected in parallel with the power switching relays NV1 to NV3, it may be connected in series with the voltage detection switch circuits 5a to 5c.
[0060]
When isolation between the power supply side and the CPU side is not necessary, a diode OR of the voltage detection signals of the voltage detection circuits 4a to 4c may be taken, and this OR output may be supplied to the CPU. Furthermore, the present invention is not limited to the above-described embodiments, includes appropriate modifications that do not impair the objects and advantages thereof, and is not limited by the numerical values shown in the embodiments.
[0061]
【The invention's effect】
As described above, according to the present invention, a circuit for sending a state signal indicating a power switching state to a control CPU to a plurality of power systems of a disaster prevention monitoring control panel, and a power supply for a battery test in accordance with an instruction from the CPU. The battery switching test circuit that switches the switching relay can be shared by a single circuit. Even if the power supply system is increased, the power supply circuit, voltage detection circuit, voltage detection switch circuit, and power supply switching relay need only be added, making significant circuit changes. It is possible to easily cope with an increase in the number of power supply systems without need.
[Brief description of the drawings]
FIG. 1 is a circuit block diagram showing an embodiment of a power supply device of a disaster prevention monitoring control panel according to the present invention. FIG. 2 is an explanatory diagram of a hysteresis characteristic of a voltage detection circuit of FIG. 1. FIG. FIG. 4 is an explanatory diagram of voltage fluctuation characteristics at the time of disconnection. FIG. 4 is a circuit block diagram of a conventional device.
1a to 1c: power supply circuit (PS1 to PS3)
2: Commercial AC power supply 3: Batteries 4a to 4c: Voltage detection circuits 5a to 5c: Voltage detection switch circuit 6: Battery switching test circuit 7: Test switch circuit 8: Transformer 9: Charging circuit 10: Light emitting element (for CPU transmission)
11: integration circuit

Claims (3)

停電時にバッテリからの電源供給に切り替える防災監視制御盤の電源装置に於いて、
複数の電源供給系統毎に設けられた電源供給回路と、
前記複数の電源供給回路の出力側に設けられ、各電源供給回路による電源供給と前記バッテリによる電源供給を切り替える複数の電源切替リレーと、
前記複数の電源供給回路毎に設けられ、電源電圧が所定の設定電圧に対し高い場合と低い場合に応じた電圧検出信号を出力する複数の電圧検出回路と、
前記複数の電圧検出回路による検出信号の全てが所定の設定電圧に対し高い場合に前記複数の電源切替リレーを一括して作動することにより前記各電源供給回路からの電源供給に切り替え、前記検出信号のいずれかが所定の設定電圧に対し低い場合に前記複数の電源切替リレーを一括して復旧することにより前記バッテリからの電源供給に切り替える切替制御回路と、
を備え、前記切替制御回路は、
前記複数の電圧検出回路による電源電圧が所定の設定電圧に対し高い場合の電圧検出信号でオンし、低い場合の電圧検出信号でオフする複数の電圧検出スイッチ回路を直列接続した直列スイッチ回路と、
前記複数の電源切替リレーを並列接続したリレー駆動回路と、
前記リレー駆動回路に並列接続され電源切替状態を示す電源状態信号をCPUに送出するフォトカプラの発光素子と、
前記CPUからのバッテリ試験指示でオン,オフする試験スイッチ回路と、
を備え、前記直列スイッチ回路、リレー駆動回路及び試験スイッチ回路を直列接続し、複数のスイッチ回路の少なくともいずれか1つのオフで前記複数の電源切替リレーを一括して復旧することを特徴とする防災監視制御盤の電源回路。
In the power supply unit of the disaster prevention monitoring control panel that switches to the power supply from the battery at the time of power failure,
A power supply circuit provided for each of a plurality of power supply systems,
A plurality of power supply switching relays provided on the output side of the plurality of power supply circuits and switching between power supply by each power supply circuit and power supply by the battery,
A plurality of voltage detection circuits that are provided for each of the plurality of power supply circuits and output a voltage detection signal according to a case where the power supply voltage is higher or lower than a predetermined set voltage,
When all of the detection signals from the plurality of voltage detection circuits are higher than a predetermined set voltage, the plurality of power supply switching relays are collectively operated to switch to power supply from each of the power supply circuits, and the detection signal A switching control circuit that switches to the power supply from the battery by collectively restoring the plurality of power switching relays when any of them is lower than a predetermined set voltage,
Wherein the switching control circuit comprises:
A series switch circuit in which a plurality of voltage detection switch circuits connected in series are turned on by a voltage detection signal when the power supply voltage by the plurality of voltage detection circuits is higher than a predetermined set voltage and turned off by a voltage detection signal when the power supply voltage is lower than a predetermined setting voltage.
A relay drive circuit in which the plurality of power supply switching relays are connected in parallel;
A light emitting element of a photocoupler that is connected in parallel to the relay drive circuit and sends a power state signal indicating a power switching state to the CPU;
A test switch circuit that is turned on and off by a battery test instruction from the CPU;
Wherein the series switch circuit, the relay drive circuit, and the test switch circuit are connected in series, and the plurality of power supply switching relays are collectively restored by turning off at least one of the plurality of switch circuits. Power supply circuit for monitoring and control panel.
請求項1記載の防災監視制御盤の電源装置に於いて、前記複数の電圧検出回路はコンパレータを備え、該コンパレータは、電源電圧が第1閾値電圧を越えた時にスイッチオン用の前記電圧検出信号を出力し、その後、電源電圧が前記第1閾値電圧より低い第2閾値電圧を下回った時にスイッチオフ用の電圧検出信号を出力するヒステリシス検出特性を備えたことを特徴とする防災監視制御盤の電源装置。2. The power supply device for a disaster prevention monitoring and control panel according to claim 1, wherein the plurality of voltage detection circuits include a comparator, and the comparator detects the voltage detection signal for switching on when the power supply voltage exceeds a first threshold voltage. And a hysteresis detection characteristic for outputting a switch-off voltage detection signal when the power supply voltage falls below a second threshold voltage lower than the first threshold voltage. Power supply. 請求項1記載の防災監視制御盤の電源装置に於いて、複数の電圧検出回路の検出信号に現われる電源電圧の瞬断等による変動を抑圧して前記切替制御回路の誤動作を防止する積分回路を設けたことを特徴とする防災監視制御盤の電源装置。2. The power supply device for a disaster prevention monitoring control panel according to claim 1, further comprising an integrating circuit for suppressing a change due to an instantaneous interruption of a power supply voltage appearing in detection signals of the plurality of voltage detection circuits and preventing a malfunction of the switching control circuit. A power supply unit for a disaster prevention monitoring and control panel, which is provided.
JP08555899A 1999-03-29 1999-03-29 Power supply for disaster prevention control panel Expired - Lifetime JP3559860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08555899A JP3559860B2 (en) 1999-03-29 1999-03-29 Power supply for disaster prevention control panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08555899A JP3559860B2 (en) 1999-03-29 1999-03-29 Power supply for disaster prevention control panel

Publications (2)

Publication Number Publication Date
JP2000276241A JP2000276241A (en) 2000-10-06
JP3559860B2 true JP3559860B2 (en) 2004-09-02

Family

ID=13862158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08555899A Expired - Lifetime JP3559860B2 (en) 1999-03-29 1999-03-29 Power supply for disaster prevention control panel

Country Status (1)

Country Link
JP (1) JP3559860B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997700B2 (en) * 2011-09-29 2016-09-28 レノボ・エンタープライズ・ソリューションズ(シンガポール)プライベート・リミテッド Power supply device and control method thereof

Also Published As

Publication number Publication date
JP2000276241A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
US6625996B2 (en) Communication control system for air conditioner
JPH11265733A (en) Condition-monitoring device for battery group
CN110687475A (en) Remote fault diagnosis circuit, detection method and multi-split air conditioning unit
JP4034999B2 (en) Fire receiver expansion unit
JP3559860B2 (en) Power supply for disaster prevention control panel
JP4335870B2 (en) Power management device and power supply system
KR102456951B1 (en) Apparatis for managing display device of numeric walking remnant time
JP3571571B2 (en) Power supply for disaster prevention control panel
JPH05290285A (en) Fire alarm equipment
CN211086560U (en) Remote fault diagnosis circuit and multi-split air conditioning unit
WO2017126047A1 (en) Power conditioner
JP3259611B2 (en) DC power supply system
JP2002062903A (en) Control device
KR101821091B1 (en) Automatic load transfer switch system and automatic load transfer switching method using the same
KR100323495B1 (en) Alarm signal transmitting circuits in local area power distributor
JPH0944775A (en) Monitor and control board for prevention of disaster
JP2000244373A (en) Repeater and network using it
JP2854495B2 (en) Overvoltage protection device for disaster prevention monitoring device
JP6773373B2 (en) Interface circuit
JP2003281648A (en) Monitoring control device
CN212258532U (en) Dual-power uninterrupted power supply circuit and air conditioner
KR20020052496A (en) Power supply auto switching apparatus and method
CN109088543B (en) Unit with power supply circuit and load protection circuit
JPH0632786Y2 (en) Parallel circuit of stabilized DC power supply
JPH06282786A (en) Disaster prevention monitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 10

EXPY Cancellation because of completion of term