JP3559488B2 - Hierarchical encoding method and decoding method for audio signal - Google Patents

Hierarchical encoding method and decoding method for audio signal Download PDF

Info

Publication number
JP3559488B2
JP3559488B2 JP2000037418A JP2000037418A JP3559488B2 JP 3559488 B2 JP3559488 B2 JP 3559488B2 JP 2000037418 A JP2000037418 A JP 2000037418A JP 2000037418 A JP2000037418 A JP 2000037418A JP 3559488 B2 JP3559488 B2 JP 3559488B2
Authority
JP
Japan
Prior art keywords
signal
quantization
error
layer
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000037418A
Other languages
Japanese (ja)
Other versions
JP2001230675A (en
Inventor
健弘 守谷
直樹 岩上
岳至 森
明夫 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000037418A priority Critical patent/JP3559488B2/en
Publication of JP2001230675A publication Critical patent/JP2001230675A/en
Application granted granted Critical
Publication of JP3559488B2 publication Critical patent/JP3559488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は音声や楽音信号などの音響信号をできるだけ少ない情報量でディジタル符号化する高能率信号符号化方法及び符号化方法に関するものであり、特にビット列に誤りやフレーム損失があった場合に音声や楽音を再構成できる階層符号化方法及び符号化方法に関する。
【0002】
【従来の技術】
従来の信号の階層的スケーラブル符号化、復号化法は図1に示されるような構成となっている。
符号器では入力信号ベクトルを量子化するために複数の階層の量子化器と各階層間に誤差信号算出器を備え、最下位の階層の量子化器は入力信号x(f)を入力とし、量子化符号(圧縮ビット列)と逆量子化により再構成した信号x^(f)を出力し、
第1段の誤差信号算出器は入力信号x(f)とx^(f)の誤差d(f)(=x(f)−x^(f))を出力し、
次の階層の量子化器はd(f)を入力として、その階層の量子化符号と、逆量子化により再構成した信号d^(f)を出力し、
第2段の誤差信号算出器は入力信号x(f)とd^(f)を加えた信号の誤差d(d=x(f)−(d^(f)+x^(f)))を出力し、
同様に上位の階層変形した誤差を逐次多段階に量子化を行う。
【0003】
復号器では各階層の量子化符号を逆量子化して信号を再構成し、加え合わせて最終的な信号を再生する。第1段の出力y(f)、第2段の出力y(f)と、各階層の量子化誤差をq(f)、q(f)とすると、

Figure 0003559488
となる。この場合、下位の階層の誤差はすべて上位にフィードバックされ、上層ほど品質の高い信号が再現できる。また上位の階層の信号はなくても、ビットレートに見合った信号が再生でき、これが、スケーラブル符号化の特徴である。しかし、下位の階層のビット列に誤りやフレーム損失があった場合には、出力y‐(f)はd^(f)だけとなり
Figure 0003559488
x(f)とは大きな誤差が生じ、上位の階層で救済することは不可能であった。
【0004】
【発明が解決しようとする課題】
従来の技術で述べた階層的スケーラブル符号化、復号化方法においてはビット列に誤りやフレーム損失があった場合、音声や楽音を再構成することは困難であった。
本発明はネットワークやデコーダの環境にあわせてできるだけ高品質で楽音や音声を伝送することができ、特に伝送ビットに誤りが生じる可能性がある無線伝送に適用して好適な音響信号の階層符号化方法及び符号化方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明は、上記課題を解決するために階層的な量子化によるビットレートスケーラブル符号化で、階層にまたがる誤差に振幅の制御などの変形を行うことで伝送誤りやパケット消失の影響を軽減するものである。
【0006】
【発明の実施の形態】
図2は、本発明の実施例の符号器及び復号器における処理を説明するブロック図である。
符号器では入力信号ベクトルを量子化するために最下位の階層の量子化器Q
は入力信号x(f)をα倍した信号を入力とし、量子化符号(圧縮ビット列)と逆量子化Q −1により再構成した信号〔α x(f)〕^を出力する。ここでα は1以下の定数とする。すなわち、第1段の逆量子化では入力信号をそのまま入力として使わずに、変形した信号を使う。ここでは定数倍の例であるが、周波数に依存した係数やフィルタの処理でもよい。
【0007】
次に第1段の誤差信号算出器は〔α1 x(f)〕^と入力信号x(f)との誤差d1(f)
d1(f)=x(f)−〔α1 x(f)〕^ (4)
を出力する。
次の階層の量子化器はd1(f)をα2倍した信号を入力として、その階層の量子化符号と、逆量子化により再構成した信号〔α2d1(f)〕^を出力する。
第2段の誤差信号算出器は〔α 1 x(f) 〕^〔α 2 d 1 (f) 〕^とを加算器により加算した和信号(〔α 1 x(f) 〕^+〔α 2 d 1 (f) 〕^)と入力信号x(f)との誤差d 2 (f) x(f) −(〔α 1 x(f) 〕^+〔α 2 d 1 (f) 〕^)を出力し、同様に上位の階層に変形した信号を入力して逐次多段階に量子化を行う。
なお最終階層ではこの変形は必要ない。
【0008】
復号器では符号誤りやフレーム消失がない場合には各階層の量子化符号を逆量子化して信号を再構成する。
Figure 0003559488
第1段の出力y1(f)に含まれる入力信号の成分はα1 となり、また第2段までの出力はy2(f)に含まれる入力信号の成分は(α1+α2−α1α2 )倍となる。この結果、q1(f)やq2(f)の量子化誤差が相対的に大きくなり、αを含まない通常の場合よりもSNRは低くなる。
【0009】
ある階層の量子化符号の誤りや消失があった場合にはその階層の信号を0として信号を再構成する。誤り検出符号が伝送路の情報として入手できる場合はそれを利用すればよく、ない場合はフレーム毎、各階層毎に誤り検出符号をつければよい。たとえば第1階層の情報がないとき、第2階層だけの出力信号y2 -(f)は〔α 2 d1(f)〕^となる。
Figure 0003559488
これから分かるように、第1階層からの出力がまったくなくてもα2(1−α1)倍された入力信号の成分が第2層の出力に含まれるので、第1階層がない条件で比較すると従来法よりもSNRが高くなる。同様に上位の階層にも入力信号の成分が分散され、加え合わせることで第1階層の欠落をある程度補うことができる。
【0010】
ここまでの実施例では量子化の入力の変形は定数倍としたが、周波数に依存した処理に拡張することが可能である。
図3は本発明の第2実施例を示している。
図2と類似しているが、信号の変形(ここでは定数倍)を逆量子化による出力信号のあとに行う。第1実施例と同様の効果があるが、複号器側の再生信号が少し異なる。
【0011】
Figure 0003559488
第2階層の出力は
Figure 0003559488
となる。
【0012】
第1階層の情報がないとき、第2階層だけの出力信号y (f)はd^(f)となる。
Figure 0003559488
効果や拡張は第1の実施例と同様であり、二つの実施例を組み合わせることも可能である。この実施例では式(9)のx(f)の係数が(2−α)であるので、通常の第2層の音量が本来より大きくなる。また、式(10)のように第1層の出力が使えないときは係数が(1−α)なので音量が低下する。通常の復号器の場合には、どの階層の情報を使うかはあらかじめわかるので、出力に補正定数をかけて音量がもとのx(f)となるように修正すればよい。ただし、復号器が国際標準などで固定されてチップ化されているような場合にはこの補正ができないので音量の違いを許容するか、別に音量を修正する必要がある。
【0013】
【発明の効果】
本発明のスケーラブル符号化ではシステム全体として冗長になるため、同じビット数で比較すると、誤りのない場合の量子化歪みは従来法より大きくなるが、入力信号の成分が各階層に分散され、どこかの階層の情報が消失してもその被害が軽減される。
【図面の簡単な説明】
【図1】従来の階層符号化器及び復号化器の基本構成を示す図。
【図2】本発明の第1実施例における階層符号化器及び復号化器の構成を示す図。
【図3】本発明の第2実施例における階層符号化器及び復号化器の構成を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-efficiency signal encoding method and an encoding method for digitally encoding an audio signal such as a voice or a musical tone signal with a minimum amount of information. The present invention relates to a hierarchical encoding method and an encoding method capable of reconstructing a musical tone.
[0002]
[Prior art]
A conventional hierarchical scalable encoding and decoding method of a signal has a configuration as shown in FIG.
The encoder includes a plurality of layers of quantizers for quantizing the input signal vector and an error signal calculator between each layer. The lowest layer quantizer receives the input signal x (f) as an input, A signal x ^ (f) reconstructed by a quantization code (compressed bit string) and inverse quantization is output,
The first-stage error signal calculator outputs an error d 1 (f) (= x (f) −x ^ (f)) between the input signal x (f) and x ^ (f),
The quantizer of the next layer receives d 1 (f) as an input, and outputs a quantization code of the layer and a signal d 1 ^ (f) reconstructed by inverse quantization.
The second-stage error signal calculator calculates an error d 2 (d 2 = x (f) − (d 1 ^ (f) + x ^ (f) of a signal obtained by adding the input signal x (f) and d 2 ^ (f). )))
Similarly, the upper hierarchically transformed error is sequentially quantized in multiple stages.
[0003]
The decoder inversely quantizes the quantization code of each layer to reconstruct a signal, and adds the signals to reproduce a final signal. Assuming that the output y 1 (f) of the first stage, the output y 2 (f) of the second stage, and the quantization error of each layer are q 1 (f) and q 2 (f),
Figure 0003559488
It becomes. In this case, errors in lower layers are all fed back to higher layers, and higher layers can reproduce higher quality signals. Further, even if there is no signal of an upper layer, a signal corresponding to the bit rate can be reproduced, which is a feature of the scalable coding. However, if there is an error or a frame loss in the bit sequence of the lower layer, the output y 2- (f) is only d 1 ^ (f).
Figure 0003559488
A large error occurs with respect to x (f), and it is impossible to rescue at a higher hierarchical level.
[0004]
[Problems to be solved by the invention]
In the hierarchical scalable encoding and decoding methods described in the related art, it is difficult to reconstruct speech or musical sound when a bit string has an error or a frame loss.
INDUSTRIAL APPLICABILITY The present invention can transmit musical sounds and voices with as high quality as possible in accordance with the environment of a network or a decoder, and is particularly suitable for hierarchical transmission of audio signals suitable for wireless transmission in which transmission bits may have errors. It is intended to provide a method and an encoding method.
[0005]
[Means for Solving the Problems]
The present invention solves the above-mentioned problem by bit rate scalable coding by hierarchical quantization, which reduces the influence of transmission errors and packet loss by performing a modification such as amplitude control on errors across layers. It is.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 2 is a block diagram illustrating processing in the encoder and the decoder according to the embodiment of the present invention.
In the encoder, in order to quantize the input signal vector, the quantizer Q 1 of the lowest hierarchy is used.
As an input was 1 times alpha input signal x (f) signal, and outputs the ^ quantization code reconstructed signal by (compressed bit string) and inverse quantization Q 1 -1 [alpha 1 x (f)]. Here, α 1 is a constant of 1 or less. That is, in the first stage of inverse quantization, a modified signal is used instead of using an input signal as it is as an input. Here, an example of a multiple of a constant is used, but processing of a coefficient or filter depending on frequency may be used.
[0007]
Next, the first-stage error signal calculator calculates an error d 1 (f) between [α 1 x (f)] ^ and the input signal x (f).
d 1 (f) = x (f) − [α 1 x (f)] ^ (4)
Is output.
Quantizer following hierarchy as input signal obtained by doubling alpha to d 1 (f), the quantization code of the hierarchy, a signal reconstructed by the inverse quantization [α 2 d 1 (f)] ^ Output.
The second-stage error signal calculator calculates the sum signal obtained by adding 1 x (f) ] ^ and 2 d 1 (f) ] ^ with an adder ([α 1 x (f) ] よ り + [ α 2 d 1 (f) ] ^) and the error d 2 (f) = x (f) − ([α 1 x (f) ] ^ + [α 2 d 1 (f) ]) , And similarly, a signal transformed to a higher layer is input, and quantization is sequentially performed in multiple stages.
This modification is not necessary in the last layer.
[0008]
If there is no code error or frame erasure, the decoder dequantizes the quantization code of each layer and reconstructs a signal.
Figure 0003559488
The component of the input signal included in the output y 1 (f) of the first stage is α 1 times, and the component of the input signal included in the output y 2 (f) is (α 1 + α 2 −) α 1 α 2 ) times. As a result, the quantization errors of q 1 (f) and q 2 (f) become relatively large, and the SNR becomes lower than in a normal case not including α.
[0009]
If there is an error or loss of the quantization code of a certain layer, the signal of that layer is set to 0 and the signal is reconstructed. If the error detection code can be obtained as information on the transmission path, it may be used. If not, the error detection code may be attached to each frame or each layer. In the absence example information of the first layer, the output signal y 2 only the second layer - (f) is the ^ [alpha 2 d 1 (f)].
Figure 0003559488
As can be seen, even if there is no output from the first layer, the component of the input signal multiplied by α 2 (1−α 1 ) is included in the output of the second layer. Then, the SNR becomes higher than in the conventional method. Similarly, the components of the input signal are also distributed to the higher layers, and by adding the components, the lack of the first layer can be compensated to some extent.
[0010]
In the embodiments described above, the modification of the quantization input is made a constant multiple, but it can be extended to a process depending on the frequency.
FIG. 3 shows a second embodiment of the present invention.
Similar to FIG. 2, but the signal transformation (in this case, a constant multiple) is performed after the output signal by inverse quantization. The effect is the same as that of the first embodiment, but the reproduced signal on the decoder side is slightly different.
[0011]
Figure 0003559488
The output of the second layer is
Figure 0003559488
It becomes.
[0012]
When there is no information in the first layer, the output signal y 2 only the second layer - (f) becomes d 1 ^ (f).
Figure 0003559488
The effect and extension are the same as those of the first embodiment, and the two embodiments can be combined. In this embodiment, since the coefficient of x (f) in equation (9) is (2-α 1 ), the normal volume of the second layer is higher than it should be. Further, when the output of the first layer cannot be used as in the equation (10), the volume decreases because the coefficient is (1−α 1 ). In the case of a normal decoder, since it is known in advance which layer of information is to be used, the output may be corrected by multiplying the output by a correction constant so that the volume becomes the original x (f). However, in the case where the decoder is fixed and chipped according to international standards or the like, this correction cannot be performed, so that it is necessary to allow a difference in volume or to separately correct the volume.
[0013]
【The invention's effect】
In the scalable coding of the present invention, since the entire system becomes redundant, when compared with the same number of bits, the quantization distortion in the case where there is no error is larger than that of the conventional method, but the components of the input signal are dispersed in each layer. Even if the information of the hierarchy is lost, the damage is reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a basic configuration of a conventional hierarchical encoder and decoder.
FIG. 2 is a diagram showing a configuration of a hierarchical encoder and a decoder in the first embodiment of the present invention.
FIG. 3 is a diagram showing a configuration of a hierarchical encoder and a decoder according to a second embodiment of the present invention.

Claims (4)

音響信号をフレーム単位で符号化する符号化方法であって、
複数の階層の量子化過程と各階層間に誤差信号算出過程を備え、
第1の階層の量子化過程は、まず、入力信号x(f)にあらかじめ設定した1以下の定数α1を乗算することにより変形した信号α1x(f)を生成し、次に、前記変形した信号α1x(f)を量子化して第1の量子化符号を出力し、さらに、前記第1の量子化符号を逆量子化して再構成した信号〔α1x(f)〕^を出力し、
第1段の誤差信号算出過程は入力信号x(f)と前記第1の階層の量子化過程で再構成した信号〔α1x(f)〕^との誤差信号d1(f)(=x(f)−〔α1x(f)〕^
)を出力し、
第2の階層の量子化過程は、まず、前記第1段の誤差信号算出過程で算出した誤差信号d1(f)にあらかじめ設定した1以下の定数α2を乗算することにより変形した信号α21(f)を生成し、次に、前記変形した信号α21(f)を量子化して第2の量子化符号を出力し、さらに、前記第2の量子化符号を逆量子化して再構成した信号〔α21(f)〕^を出力し、
第2段の誤差信号算出過程は、第1の階層の量子化過程で再構成した信号〔α1x(f)〕^と第2の階層の量子化過程で再構成した信号〔α21(f)〕^との和信号(〔α1x(f)〕^+〔α21(f)〕^)と入力信号x(f)との誤差信号d2(f)(=x(f)−(〔α1x(f)〕^+〔α21(f)〕^)を出力し、
同様に上位の各階層の量子化過程にその前段の誤差信号算出過程より出力された誤差信号を入力して逐次多段階に量子化を行い、
前記各階層の量子化過程の量子化符号を出力することを特徴とする音響信号の階層符号化方法。
An encoding method for encoding an audio signal on a frame basis,
Includes a degree error signal calculation over between a plurality of hierarchies of quantization process and each layer,
Quantization excessive extent of the first hierarchy, first generates a modified signal alpha 1 x (f) is multiplied by the constant alpha 1 of 1 or less which is preset to the input signal x (f), then, The transformed signal α 1 x (f) is quantized to output a first quantized code, and further, the first quantized code is inversely quantized and reconstructed signal [α 1 x (f)] Output ^
Error signal d 1 and the error signal calculation over enough for the first-stage signal reconstituted with quantization process of the input signal x (f) and said first hierarchical [alpha 1 x (f)] ^ (f) ( = X (f)-[α 1 x (f)] ^
),
Quantization excessive degree in the second layer, first, a signal deformed by multiplying the error signal d 1 1 following constants alpha 2 set in advance in (f) calculated by the error signal calculation process of the first stage α 2 d 1 (f) is generated, and then the transformed signal α 2 d 1 (f) is quantized to output a second quantized code. Further, the second quantized code is inverted. Output the quantized and reconstructed signal [α 2 d 1 (f)] ^,
The second stage error signal calculation over enough for the signal [alpha 2 reconstituted with the first reconstructed signal quantization process hierarchy [alpha 1 x (f)] ^ and quantization process in the second layer d 1 (f)]} and an error signal d 2 (f) ([α 1 x (f)]} + [α 2 d 1 (f)]}) and the input signal x (f). = X (f)-([α 1 x (f)] ^ + [α 2 d 1 (f)] ^), and
Similarly, the error signal output from the error signal calculation process at the preceding stage is input to the quantization process of each upper layer, and quantization is sequentially performed in multiple stages,
A hierarchical encoding method of an acoustic signal, comprising outputting a quantization code of a quantization process of each layer.
音響信号をフレーム単位で符号化する符号化方法であって、
複数の階層の量子化過程と各階層間に誤差信号算出過程を備え、
第1の階層の量子化過程は入力信号x(f)を入力とし、第1の量子化符号と、逆量子化により再構成した信号x^(f) を出力し、
第1段の誤差信号算出過程はx^(f)にあらかじめ設定した1以下の定数α1を乗算することにより変形した信号α1x^(f)を算出し、入力信号x(f)と前記乗算した信号x^(f)の誤差信号d1(f)(=x(f)−α1x^(f))を出力し、
第2の階層の量子化過程は前記第1段の誤差信号算出過程で算出した誤差信号d1
f)を入力として、第2の量子化符号と、逆量子化により再構成した信号d1^(f)を出力し、
第2段の誤差信号算出過程は、まず、d1^(f)にあらかじめ設定した1以下の定数α2を乗算することにより変形した信号α21^(f)を算出し、次に、第1段の誤差信号算出過程で乗算した信号α1x^(f)と前記第2段の誤差信号算出過程で乗算した信号α21^(f)との和信号(α1x^(f)+α21^(f))と入力信号x(f)との誤差信号d2(f)(=x(f)−(α1x^(f)+α21^(f)))を出力し、
同様に上位の各階層の量子化過程にその前段の誤差信号算出過程より出力された誤差信号を入力して逐次多段階に量子化を行い、
前記各階層の量子化過程の量子化符号を出力することを特徴とする音響信号の階層符号化方法。
An encoding method for encoding an audio signal on a frame basis,
Includes a degree error signal calculation over between a plurality of hierarchies of quantization process and each layer,
Quantization excessive extent of the first hierarchy receives the input signal x (f), and outputs a first quantization code, signal was reconstructed by the inverse quantization x ^ a (f),
The error signal calculation over enough for the first stage to calculate the deformed signal α 1 x ^ (f) by multiplying x ^ 1 following constants alpha 1 set in advance (f), the input signal x (f) And an error signal d 1 (f) (= x (f) −α 1 x ^ (f)) of the multiplied signal x ^ (f) is output,
Error signal d 1 quantization excessive degree in the second layer is calculated by the error signal calculation process of the first stage (
f), and outputs a second quantized code and a signal d 1 ^ (f) reconstructed by inverse quantization,
The error signal calculation over enough for the second stage, first, calculates a deformed signals α 2 d 1 ^ (f) by multiplying d 1 ^ (f) 1 following constants alpha 2 set in advance to, the following And the sum signal (α 1 ) of the signal α 1 x ^ (f) multiplied in the error signal calculation process of the first stage and the signal α 2 d 1 ^ (f) multiplied in the error signal calculation process of the second stage An error signal d 2 (f) (= x (f) − (α 1 x ^ (f) + α 2 d 1 }) between x ^ (f) + α 2 d 1 (f)) and the input signal x (f). (F))) and output
Similarly, the error signal output from the error signal calculation process at the preceding stage is input to the quantization process of each upper layer, and quantization is sequentially performed in multiple stages,
A hierarchical encoding method of an acoustic signal, comprising outputting a quantization code of a quantization process of each layer.
音響信号をフレーム単位で復号化する方法であって、
請求項1または2に記載の音響信号の階層符号化方法で生成された各階層の量子化符号と量子化符号に対する誤り検出符号を入力し、
各階層の量子化符号を逆量子化して逆量子化信号を出力する逆量子化過程と、
誤り検出符号に基づき各階層の量子化符号の誤りの有無を検出し、誤りが検出されない量子化符号に対する逆量子化信号を加算して音響信号を再構成する過程を備えたことを特徴とする音響信号の階層復号化方法。
A method for decoding an audio signal on a frame basis,
An input of a quantization code of each layer and an error detection code corresponding to the quantization code generated by the layer coding method of the audio signal according to claim 1 or 2,
A dequantization process of dequantizing the quantization code of each layer and outputting a dequantized signal;
Detecting a presence or absence of an error in the quantization code of each layer based on the error detection code, adding a dequantized signal to the quantization code in which no error is detected, and reconstructing an acoustic signal. Hierarchical decoding method for audio signals.
請求項3に記載の音響信号の階層復号化方法において、
上記音響信号を再構成する過程より出力された音響信号に補正定数をかけて音量を修正する過程を備えたことを特徴とする音響信号の階層復号化方法。
The hierarchical decoding method of an acoustic signal according to claim 3,
A hierarchical decoding method of an audio signal, comprising a step of applying a correction constant to an audio signal output from the step of reconstructing the audio signal to correct the volume.
JP2000037418A 2000-02-16 2000-02-16 Hierarchical encoding method and decoding method for audio signal Expired - Fee Related JP3559488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000037418A JP3559488B2 (en) 2000-02-16 2000-02-16 Hierarchical encoding method and decoding method for audio signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000037418A JP3559488B2 (en) 2000-02-16 2000-02-16 Hierarchical encoding method and decoding method for audio signal

Publications (2)

Publication Number Publication Date
JP2001230675A JP2001230675A (en) 2001-08-24
JP3559488B2 true JP3559488B2 (en) 2004-09-02

Family

ID=18561311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000037418A Expired - Fee Related JP3559488B2 (en) 2000-02-16 2000-02-16 Hierarchical encoding method and decoding method for audio signal

Country Status (1)

Country Link
JP (1) JP3559488B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489599B1 (en) 2002-04-26 2016-05-11 Panasonic Intellectual Property Corporation of America Coding device and decoding device
JP3881943B2 (en) 2002-09-06 2007-02-14 松下電器産業株式会社 Acoustic encoding apparatus and acoustic encoding method
JP4733939B2 (en) * 2004-01-08 2011-07-27 パナソニック株式会社 Signal decoding apparatus and signal decoding method
EP1990800B1 (en) 2006-03-17 2016-11-16 Panasonic Intellectual Property Management Co., Ltd. Scalable encoding device and scalable encoding method
WO2009004227A1 (en) * 2007-06-15 2009-01-08 France Telecom Coding of digital audio signals

Also Published As

Publication number Publication date
JP2001230675A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
US20190122680A1 (en) Adaptive transition frequency between noise fill and bandwidth extension
US6263312B1 (en) Audio compression and decompression employing subband decomposition of residual signal and distortion reduction
US7957963B2 (en) Voice transcoder
US7953595B2 (en) Dual-transform coding of audio signals
EP1914725B1 (en) Fast lattice vector quantization
JP4101957B2 (en) Joint quantization of speech parameters
US7986797B2 (en) Signal processing system, signal processing apparatus and method, recording medium, and program
US20080297380A1 (en) Signal decoding apparatus and signal decoding method
JPH03144700A (en) Intelligence coding of audible signal and sequence demodulation of coded signal
JP2004310088A (en) Half-rate vocoder
US6593872B2 (en) Signal processing apparatus and method, signal coding apparatus and method, and signal decoding apparatus and method
JP4063508B2 (en) Bit rate conversion device and bit rate conversion method
KR20020002241A (en) Digital audio system
JP2007504503A (en) Low bit rate audio encoding
US7072830B2 (en) Audio coder
US7444289B2 (en) Audio decoding method and apparatus for reconstructing high frequency components with less computation
JP3559488B2 (en) Hierarchical encoding method and decoding method for audio signal
JP4796583B2 (en) Method for reducing quantization noise
KR100238324B1 (en) Audio signal error concealment method and circuit therefor
JP3496618B2 (en) Apparatus and method for speech encoding / decoding including speechless encoding operating at multiple rates
US20130197919A1 (en) "method and device for determining a number of bits for encoding an audio signal"
JPH0774649A (en) Quantizing device based on variable digital coding rate
JP2004023191A (en) Signal encoding method and signal decoding method, signal encoder and signal decoder, and signal encoding program and signal decoding program
JP2001148632A (en) Encoding device, encoding method and recording medium
JP3692959B2 (en) Digital watermark information embedding device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees