JP3559425B2 - Driving direction estimation device - Google Patents

Driving direction estimation device Download PDF

Info

Publication number
JP3559425B2
JP3559425B2 JP13362697A JP13362697A JP3559425B2 JP 3559425 B2 JP3559425 B2 JP 3559425B2 JP 13362697 A JP13362697 A JP 13362697A JP 13362697 A JP13362697 A JP 13362697A JP 3559425 B2 JP3559425 B2 JP 3559425B2
Authority
JP
Japan
Prior art keywords
vehicle
driving
time
driving direction
road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13362697A
Other languages
Japanese (ja)
Other versions
JPH10324175A (en
Inventor
喜三郎 早川
浩之 吉田
正敬 大澤
満寿治 大嶋
良雄 伊藤
泰也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP13362697A priority Critical patent/JP3559425B2/en
Publication of JPH10324175A publication Critical patent/JPH10324175A/en
Application granted granted Critical
Publication of JP3559425B2 publication Critical patent/JP3559425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、車両の走行状態に基づき、運転の指向を推定する運転指向推定装置に関する。
【0002】
【従来の技術】
従来より、ドライバの要求する各種動作に対するレスポンスなどの動作状態についての要求(運転指向)を推定する手法が各種提案されている。運転指向を推定し、車両の種々の制御装置の制御手法を適用すれば、ドライバの意図に合致する制御が行え、ドライバの要求に沿った走行を行うことができる。
【0003】
特開平7−105474号公報では、平均車速、走行時間比率及び平均横加速度により道路交通状況(市街地度、渋滞路度及び山間路度)を推定する。そして、得られた道路交通状況の推定値と、車速、アクセル開度、前後加速度及び横加速度の平均値及び分散値とに基づいて、ドライバの運転指向を推定している。
【0004】
【発明が解決しようとする課題】
しかし、この特開平7−105474号公報に記載の方法では、ドライバの運転指向の推定に平均値、分散値といった統計値を利用している。このため、ドライバの操作に表れる運転指向の変化に追従して、応答よく推定することは難しい。そこで、状況によって、ドライバの運転指向を誤推定してしまう場合もある。
【0005】
本発明は、上記課題に鑑みなされたものであり、ドライバの運転指向についての推定応答性を向上した運転指向推定装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係る運転指向推定装置は、特定運転操作毎に得られる、車両発進時の出力操作量、出力操作量の最大変化率、車両制動操作時の最大減速度、車両の惰行走行時間、車速一定走行時間、という車両状態量の中の少なくとも一項目と、車両が走行する道路についての情報である道路環境と、に基づいて運転指向を推定する運転指向推定装置であって、特定転操作毎に得られる、車両発進時の出力操作量、出力操作量の最大変化率、車両制動操作時の最大減速度、車両の惰性走行時間、車速一定走行時間、という車両状態量の中の少なくとも一項目と、所定時間毎に得られる、出力操作量、車速、エンジン回転数、前後加速度の絶対値、前後加速度の正負別の大きさ、のそれぞれの最大値という車両状態量の中の少なくとも一項目と、車両が走行する道路についての情報である道路環境と、に基づいて、前記特定運転操作毎に、運転指向を推定することを特徴とする。
【0007】
このように、本発明では、所定の車両操作及び所定時間毎のタイミングで、車両状態量を取り込み、これと道路環境から運転指向を推定する。従って、運転指向の推定を運転指向の変化に追従して遅れることなく推定することができる。従って、推定結果を利用して、道路環境も考慮して車両の動作を運転者の要求する運転指向にあったものにできる。
【0008】
例えば、ドライバがスポーツ指向であることが推定されれば、A/Tのシフトアップのタイミングをエンジンの高回転数側に移動して、加減速性能を高めることができる。
【0009】
運転操作の度に取り入れる車両状態量としては、車両発進時の出力操作量(スロットル開度)、出力操作量の最大変化率、車両制動操作時の最大減速度、車両の惰行走行時間、車速一定走行時間の中の少なくとも1つを採用することが好適である。例えば、スロットル開度の変化率が一定以上であったときやブレーキによる最大減速度が所定以上のときに再計算をすることで、ドライバの運転状態の変化をタイムリーに取り入れて、運転指向をアップデートすることができる。
【0010】
また、所定時間毎の状態量として所定時間のスロットル開度の最大値、車速の最大値、ヨーレートの最大値、勾配の最大値、エンジン回転数の最大値、前後加速度の最大値の中の1つ以上が利用される。このような車両の動作状態を考慮することによって、ドライバの運転指向を確実に推定することができる。運転操作に基づいて推定を行う場合には、その直前に取り込まれた所定時間毎の状態量を利用するとよい。
【0011】
さらに、運転指向の推定には、道路環境を考慮する。すなわち、市街地路度、郊外路度、山間路度、高速路度等を考慮することで、より適切な運転指向の推定が行える。
【0012】
このような道路環境は、運転操作毎に入力される車両の状態量から推定することが好適である。また、運転操作毎の状態量として、車両発進時の出力操作量(スロットル開度)、出力操作量の最大変化率、車両制動操作時の最大減速度、車両の惰行走行時間、車速一定走行時間の中の1つ以上を考慮して求めることが好適である。また、道路環境は、所定時間毎に入力される出力操作量の平均値または分散値、車速の平均値または分散値、ヨーレートの平均値または分散値、勾配の平均値または分散値、エンジン回転数の平均値または分散値、加速度の平均値または分散値の中の1つ以上を考慮して求めることが好適である。さらに、上述のような運転操作毎の状態量と所定時間毎の状態量の両方から道路環境を推定することがより好ましい。
【0013】
なお、道路環境の推定、運転指向の推定は、ニューラルネットワークを利用した推定手法が好適である。
【0014】
このようにして、所定時間毎に取り入れる車両状態についての情報の他に、運転操作毎に情報を取り入れ、道路環境を推定し、さらに推定された道路環境と、所定時間毎に取り入れる情報と、運転操作毎に取り入れる情報とに基づいて、運転指向を推定することで、運転状態の変化に対し遅れることなく適切に運転指向を推定することができる。
【0015】
そして、このようにして推定された運転指向に基づき、A/T(自動変速機)のシフトアップのタイミングなどを制御する。例えば、スポーツ指向推定(スポーツ指向の指標が高い)時にはシフト線(シフトアップのタイミング)を高車速側に移動する。これにより加減速性能が高められドライバビリティを向上させることができる。逆に、燃費指向推定時にはシフト線を最適燃費シフト線に近づけることにより燃費を向上させることができる。また、スポーツ指向の指標が高い場合には、エンジンの出力を高くし、操舵系の反応を敏感にし、サスペンションを堅くする等の制御を行う。
【0016】
このように、本発明によれば、運転操作毎に再計算を行う。従って、運転操作の変化に追従し、応答遅れを生じることなく運転指向の推定が行える。そして、この再計算を行う運転操作としては、例えば車両発進時の出力操作量(スロットル開度)、出力操作量の最大変化率、車両制動操作時の最大減速度、車両の惰行走行時間、または車速一定走行時間が所定値以上となったときが採用される。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。
【0018】
図1は、本実施形態に係る運転指向推定装置の全体構成を示すブロック図である。車両センサ信号入力部10は、車両の操作状態や、機器動作状態など各種車両状態を検出する車両センサからの検出信号を入力する。すなわち、出力操作量(スロットル開度)、ブレーキ踏み込み量、操舵量などについての操作量、及び車速、ヨーレート、勾配、エンジン回転数、前後加速度(正負別でも絶対値でもよい)、横加速度などの車両動作状態を検出するセンサからの信号が入力される。
【0019】
車両センサ信号入力部10から出力される各種センサによる検出信号は、入力算出部20に供給される。この入力算出部20は、運転操作毎の入力部22、所定時間毎の入力部24を有している。運転操作毎の入力部22は、車両センサ信号入力部10から供給される各種の信号から、運転操作毎の状態量として、車両発進時の出力操作量(スロットル開度)、出力操作量の最大変化率、車両制動操作時の最大減速度、車両の惰行走行時間、車速一定走行時間を運転操作毎に計算し出力する。また、所定時間毎の入力部24は、所定時間毎の状態量として、出力操作量の平均値または分散値、車速の平均値または分散値、ヨーレートの平均値または分散値、勾配の平均値または分散値、エンジン回転数の平均値または分散値、加速度の平均値または分散値を計算し出力する。なお、運転操作毎の入力部22及び所定時間毎の入力部24は、少なくとも1つ以上の状態量を算出出力する。
【0020】
入力算出部20は、道路環境推定部30に上述した運転操作毎の状態量と、所定時間毎の状態量の両方を供給する。道路環境推定部30は、供給される1つ以上の運転操作毎の状態量と、1つ以上の所定時間毎の状態量の両方から道路環境を推定する。
【0021】
本実施形態においては、この道路環境推定部30は、図2に示すようにニューラルネットワークで構成されている。すなわち、上述のような入力算出部20からの状態量に基づいて、市街地路(渋滞路)度、郊外路度、山間路度、高速路度などを0〜1の度合いを示す値として出力する。このニューラルネットワークは、実際に種々の道路の走行によって得られたデータに基づいた学習によって構築される。なお、この道路環境推定部30は、必ずしもニューラルネットワークで構築する必要はなく、ファジィ推論など他の手法を利用してもよい。
【0022】
入力算出部20からの運転操作毎の状態量と、所定時間毎の状態量の内の特定のものは、運転指向推定部40に供給される。また、道路環境推定部30で得られた道路環境についての推定結果も運転指向推定部40に供給される。
【0023】
運転指向推定部40は、図3に示すようにニューラルネットワークから構成されている。この運転指向推定部40には、入力算出部20から運転操作毎の情報として、車両発進時の出力操作量、出力操作量の最大変化率、車両制動操作時の最大減速度、車両の惰行走行時間、車速一定走行時間の中の1つ以上の情報が供給され、所定時間毎の情報として所定時間のスロットル開度の最大値、車速の最大値、ヨーレートの最大値、勾配の最大値、エンジン回転数の最大値、前後加速度の最大値の中の1つ以上が入力される。さらに、この運転指向推定部40には、道路環境推定部30において得られた市街地路度、郊外路度、山間路度、高速路度等の道路環境の推定値が入力され、これらの入力に基づいて、運転指向の指標を出力する。例えば、運転指向推定部40は、運転指向の指標として、車両の出力や応答における燃費指向からスポーツ指向を0〜1の連続値で出力する。なお、この運転指向推定部40も学習によってニューラルネットワークを構築する。また、必ずしもニューラルネットワークで構成する必要はなく、他の推定手法を用いてもよい。
【0024】
また、運転指向推定部40は、運転操作毎の入力及び所定時間毎の入力が抽出される度に運転指向の推定を行う。なお、運転操作毎の入力抽出時には直前の所定時間毎の入力も同時に入力する。
【0025】
そして、この運転指向推定部40において得られた運転指向の指標は、車両制御部50に供給される。この車両制御部50は、オートマチックトランスミッションにおける変速段の変更を制御するA/Tシフトパターン制御部52、エンジンの動作を制御するE/G制御部54、ステアリングなど操舵系の動作を制御する操舵系制御部56、サスペンションの堅さなど懸架系を制御する懸架系制御部58等を有しており、車両の動作を制御する。特に、車両制御部50は、運転指向推定部40から供給される運転指向の指標に応じて、これら車両の動作を制御する。
【0026】
例えば、車両制御部50は、上記運転指向推定部40で推定した運転指向の指標に基づき、A/Tのシフトパターン制御を行う。すなわち、スポーツ指向推定(スポーツ指向の指標が高い)時にはシフト線(シフトアップのタイミング)を高車速側に移動する。これにより加減速性能が高められドライバビリティを向上させることができる。逆に、燃費指向推定時にはシフト線を最適燃費シフト線に近づけることにより燃費を向上させることができる。また、スポーツ指向の指標が高い場合には、エンジンの出力を高くし、操舵系の反応を敏感にし、サスペンションを堅くする等の制御を行う。
【0027】
このような制御によって、ドライバの要求にあった車両動作を得ることができる。特に、本実施形態では、運転操作毎に運転指向の推定を行うため、走行中に随時運転指向の指標が更新され、そのときの状況に合わせて車両の動作を変更できる。従って、常にドライバの要求に合致した動作制御を行うことができる。
【0028】
上記構成の運転指向推定装置により、運転指向を推定した場合に、作用効果について説明する。
【0029】
図4は、郊外路を意図的に運転指向を変化させて走行したデータである。この走行データより、図5に示す装置で運転指向を推定した結果を図6に示す。なお、図5の装置では、所定時間毎の状態量と、道路環境の推定値をニューラルネットワークに入力し運転指向の指標を得ている。
【0030】
図6は、運転指向の指標に対するニューラルネットワークの出力値で、所定値例えば0.4以下で燃費指向と判定し、所定値例えば0.6以上でスポーツ指向と判定する。図4の走行データでドライバは燃費指向からスポーツ指向へ意識的に運転指向を変化させているが、特に時間3秒付近や25秒付近において、図6の結果では、2〜3秒おくれて推定値が上昇しスポーツ指向と判定している。
【0031】
一方、図7は、同じ走行データに対する図3の装置で行った結果である。図7で、○が運転操作毎の入力による推定結果、*が所定時間毎の入力による推定結果を示している。このように、図7の結果では運転指向変化に対して出力操作量(出力開度変化率)の最大変化率の運転操作毎の入力に基づいた推定により、運転指向の指標について応答性よく推定できていることが分かる。
【0032】
「変形例1」
上記実施形態では、道路環境推定部30には、所定時間毎の状態量と、運転操作毎の状態量の両方を入力し、これに基づいて道路環境を推定した。しかし、道路環境は比較的長時間でしか変化しないと考えられる。そこで、道路環境の推定に対し、十分な推定精度を要求しない場合には、図8に示すように、道路環境推定部30には、所定時間毎の状態量のみを入力し、道路環境を推定してもよい。これによって、道路環境推定部30の構成を簡易なものにできる。
【0033】
「変形例2」
また、上記実施形態では、道路環境推定部30における推定結果を運転指向推定部40に供給する構成であったが、道路環境の推定に有効な入力を直接運転指向の推定に用いる構成としてもよい。すなわち、図9に示すように、入力算出部20において得られる運転操作毎の状態量と、所定時間毎の状態量の全てを運転指向推定部40に入力する。ここで、所定時間毎の状態量は、運転指向の推定に有効なものと、道路環境推定に有効なものの両方を含むものである。
【0034】
すなわち、運転指向推定部40には、運転操作毎の状態量として、車両発進時の出力操作量(アクセル操作量)、出力操作量の最大変化率、車両制動操作時の最大減速度、車両の惰行走行時間、車速一定走行時間が入力され、所定時間毎の状態量であって道路環境推定に有効なものとして、スロットル開度の最大値、車速の最大値、ヨーレートの最大値、勾配の最大値、エンジン回転数の最大値、前後加速度の最大値が入力され、所定時間毎の状態量であり、道路環境推定に有効なものとして、出力操作量の平均値または分散値、車速の平均値または分散値、ヨーレートの平均値または分散値、勾配の平均値または分散値、エンジン回転数の平均値または分散値、加速度の平均値または分散値が入力される。そして、これらの入力に基づき、運転指向の指標を出力する。このような構成によって、上述の実施形態と同様の運転指向の推定が行える。
【0035】
このように、本実施形態によれば、運転操作毎に再計算を行う。従って、運転状況の変化に追従し、応答遅れを生じることなく運転指向を推定することができる。そして、この再計算を行う運転操作としては、例えば車両発進時の出力操作量(スロットル開度)、出力操作量の最大変化率、車両制動操作時の最大減速度、車両の惰行走行時間、または車速一定走行時間が所定値以上となったときが採用される。
【0036】
【発明の効果】
以上説明したように、本発明によれば、所定の車両操作が行われたタイミングで、車両状態量を取り込み、これと運転環境を考慮して運転指向を推定する。従って、運転指向の推定を運転指向の変化に追従して遅れることなく推定することができる。また、道路環境を考慮しているため、精度の高い推定が行える。そして、推定結果を利用して、車両の動作を運転者の要求する運転指向にあったものにできる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る運転指向推定装置の構成を示すブロック図である。
【図2】道路環境推定部の構成を示す図である。
【図3】運転指向推定部の構成を示す図である。
【図4】運転状況の一例についての状態検出結果を示す図である。
【図5】比較例の運転指向推定部の構成を示す図である。
【図6】比較例における運転指向の指標の推定結果を示す図である。
【図7】実施形態における運転指向の指標の推定結果を示す図である。
【図8】道路環境推定部の他の構成を示す図である。
【図9】運転指向推定装置の他の構成を示す図である。
【図10】運転指向推定部の他の構成を示す図である。
【符号の説明】
10 車両センサ信号入力部、20 入力算出部、30 道路環境推定部、40 運転指向推定部、50 車両制御部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a driving direction estimating device that estimates driving direction based on a running state of a vehicle.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, various methods have been proposed for estimating a request (driving orientation) regarding an operation state such as a response to various operations requested by a driver. By estimating the driving direction and applying the control method of various control devices of the vehicle, it is possible to perform control that matches the driver's intention and to drive according to the driver's request.
[0003]
In Japanese Unexamined Patent Publication No. Hei 7-105474, road traffic conditions (city level, congested road level, and mountain road level) are estimated from an average vehicle speed, a running time ratio, and an average lateral acceleration. Then, the driving direction of the driver is estimated based on the obtained estimated value of the road traffic condition and the average value and the variance of the vehicle speed, the accelerator opening, the longitudinal acceleration, and the lateral acceleration.
[0004]
[Problems to be solved by the invention]
However, in the method described in Japanese Patent Application Laid-Open No. 7-105474, statistical values such as an average value and a variance value are used for estimating the driving orientation of the driver. For this reason, it is difficult to follow the change in the driving orientation that appears in the operation of the driver and to make a good response estimation. Therefore, the driving orientation of the driver may be erroneously estimated depending on the situation.
[0005]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a driving direction estimating device that improves the estimated responsiveness of a driver's driving direction.
[0006]
[Means for Solving the Problems]
The driving orientation estimating device according to the present invention provides an output operation amount at the time of starting the vehicle, a maximum change rate of the output operation amount, a maximum deceleration at the time of the vehicle braking operation, a coasting traveling time of the vehicle, and a vehicle speed obtained for each specific driving operation. certain running time, at least one item in a vehicle state quantity that provides a driving manner estimation device for estimating a driving orientation based and road environment which is information about the road on which the vehicle is traveling, to specific oPERATION operation At least one of the following vehicle state quantities: output operation amount at vehicle start, maximum rate of change of output operation amount, maximum deceleration at vehicle braking operation, coasting time of vehicle, and constant vehicle speed obtained at each vehicle start. At least one item of the vehicle state quantity, which is the maximum value of each of the items and the output operation amount, vehicle speed, engine speed, absolute value of longitudinal acceleration, and magnitude of positive / negative longitudinal acceleration, obtained for each predetermined time And the car There the road environment which is information about the road traveling, based on, for each of the specific driving operation, and estimates the driver's intention.
[0007]
As described above, according to the present invention, the vehicle state quantity is fetched at a predetermined vehicle operation and at a predetermined time interval, and the driving orientation is estimated from this and the road environment. Therefore, the driving orientation can be estimated without delay by following the driving orientation change. Therefore, using the estimation result, the operation of the vehicle can be adapted to the driving orientation required by the driver in consideration of the road environment.
[0008]
For example, if it is estimated that the driver is sport-oriented, the timing of the A / T shift up can be shifted to the high engine speed side to improve the acceleration / deceleration performance.
[0009]
The vehicle state variables to be incorporated in each driving operation include the output operation amount (throttle opening) at the time of starting the vehicle, the maximum rate of change of the output operation amount, the maximum deceleration at the time of the vehicle braking operation, the coasting time of the vehicle, and the constant vehicle speed. It is preferable to employ at least one of the running times. For example, when the rate of change of the throttle opening is equal to or more than a certain value or when the maximum deceleration by the brake is equal to or more than a predetermined value, recalculation is performed so that changes in the driving state of the driver can be incorporated in a timely manner and the driving orientation can be improved. Can be updated.
[0010]
In addition, as the state quantity for each predetermined time, one of the maximum value of the throttle opening degree, the maximum value of the vehicle speed, the maximum value of the yaw rate, the maximum value of the gradient, the maximum value of the engine speed, and the maximum value of the longitudinal acceleration during the predetermined time period is obtained. More than one is used. By considering such an operation state of the vehicle, it is possible to reliably estimate the driving orientation of the driver. When the estimation is performed based on the driving operation, it is preferable to use the state quantity taken at every predetermined time immediately before the estimation.
[0011]
Further, the road environment is taken into account in estimating the driving orientation. That is, it is possible to more appropriately estimate the driving orientation by considering the urban road level, the suburban road level, the mountain road level, the high-speed road level, and the like.
[0012]
It is preferable that such a road environment is estimated from a state quantity of the vehicle input for each driving operation. In addition, as the state quantity for each driving operation, the output operation amount (throttle opening) at the time of starting the vehicle, the maximum change rate of the output operation amount, the maximum deceleration at the time of the vehicle braking operation, the coasting traveling time of the vehicle, the vehicle speed constant traveling time It is preferable to determine in consideration of one or more of the following. The road environment includes an average value or a variance value of an output manipulated variable input every predetermined time, an average value or a variance value of a vehicle speed, an average value or a variance value of a yaw rate, an average value or a variance value of a gradient, an engine speed. It is preferable to consider one or more of the average value or the variance value of the acceleration and the average value or the variance value of the acceleration. Further, it is more preferable to estimate the road environment from both the state quantity for each driving operation and the state quantity for each predetermined time as described above.
[0013]
In addition, the estimation method using a neural network is suitable for the estimation of the road environment and the estimation of the driving orientation.
[0014]
In this way, in addition to the information on the vehicle state taken in at every predetermined time, information is taken in every driving operation, the road environment is estimated, and the estimated road environment, the information taken every predetermined time, and the driving By estimating the driving orientation based on the information taken in for each operation, it is possible to appropriately estimate the driving orientation without delay with respect to a change in the driving state.
[0015]
Then, based on the driving orientation estimated in this way, the timing of an upshift of an A / T (automatic transmission) and the like are controlled. For example, the shift line (shift up timing) is moved to the high vehicle speed side when the sport orientation is estimated (the sport orientation index is high). As a result, acceleration / deceleration performance is enhanced, and drivability can be improved. Conversely, when estimating the fuel efficiency orientation, the fuel efficiency can be improved by moving the shift line closer to the optimal fuel efficiency shift line. When the sports-oriented index is high, controls such as increasing the output of the engine, making the response of the steering system more sensitive, and making the suspension stiffer are performed.
[0016]
Thus, according to the present invention, recalculation is performed for each driving operation. Therefore, it is possible to follow the change in the driving operation and estimate the driving orientation without causing a response delay. The driving operation for performing the recalculation includes, for example, an output operation amount (throttle opening) at the time of vehicle start, a maximum change rate of the output operation amount, a maximum deceleration at the time of vehicle braking operation, a coasting travel time of the vehicle, or This is adopted when the constant vehicle speed travel time is equal to or greater than a predetermined value.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter, referred to as embodiments) will be described with reference to the drawings.
[0018]
FIG. 1 is a block diagram showing the overall configuration of the driving direction estimation device according to the present embodiment. The vehicle sensor signal input unit 10 inputs a detection signal from a vehicle sensor that detects various vehicle states such as a vehicle operation state and a device operation state. That is, output operation amount (throttle opening), brake depression amount, steering amount, and other operation amounts, and vehicle speed, yaw rate, gradient, engine speed, longitudinal acceleration (either positive or negative or absolute value), lateral acceleration, etc. A signal from a sensor that detects a vehicle operation state is input.
[0019]
The detection signals from the various sensors output from the vehicle sensor signal input unit 10 are supplied to the input calculation unit 20. The input calculation unit 20 includes an input unit 22 for each driving operation and an input unit 24 for each predetermined time. Based on various signals supplied from the vehicle sensor signal input unit 10, the input unit 22 for each driving operation provides a state amount for each driving operation as an output operation amount (throttle opening) at the time of vehicle start and a maximum output operation amount. The change rate, the maximum deceleration at the time of the vehicle braking operation, the coasting traveling time of the vehicle, and the constant vehicle speed traveling time are calculated and output for each driving operation. Also, the input unit 24 for each predetermined time, as the state quantity for each predetermined time, the average or variance of the output manipulated variable, the average or variance of the vehicle speed, the average or variance of the yaw rate, the average of the gradient or The variance, the average or variance of the engine speed, and the average or variance of the acceleration are calculated and output. The input unit 22 for each driving operation and the input unit 24 for each predetermined time calculate and output at least one or more state quantities.
[0020]
The input calculation unit 20 supplies the road environment estimation unit 30 with both the above-described state quantity for each driving operation and the state quantity for each predetermined time. The road environment estimating unit 30 estimates the road environment from both the supplied state quantities for one or more driving operations and one or more state quantities for each predetermined time.
[0021]
In the present embodiment, the road environment estimating unit 30 is configured by a neural network as shown in FIG. That is, based on the state quantity from the input calculation unit 20 as described above, the degree of an urban road (congested road), the degree of a suburban road, the degree of a mountainous road, the degree of a high-speed road, or the like is output as a value indicating a degree of 0 to 1. . This neural network is constructed by learning based on data obtained by actually driving on various roads. The road environment estimating unit 30 does not necessarily need to be constructed by a neural network, and may use another method such as fuzzy inference.
[0022]
The state quantity for each driving operation from the input calculation unit 20 and a specific state quantity for each predetermined time are supplied to the driving orientation estimation unit 40. In addition, the estimation result about the road environment obtained by the road environment estimation unit 30 is also supplied to the driving orientation estimation unit 40.
[0023]
The driving direction estimating unit 40 is configured by a neural network as shown in FIG. The driving direction estimating unit 40 includes, as information for each driving operation, the output operation amount at the time of starting the vehicle, the maximum change rate of the output operation amount, the maximum deceleration at the time of the vehicle braking operation, and the coasting of the vehicle. At least one of the time and the constant vehicle speed running time is supplied, and the maximum value of the throttle opening, the maximum value of the vehicle speed, the maximum value of the yaw rate, the maximum value of the gradient, the maximum value of the gradient, One or more of the maximum value of the rotation speed and the maximum value of the longitudinal acceleration are input. Further, to the driving direction estimating unit 40, estimated values of the road environment such as the urban road degree, the suburban road degree, the mountain road degree, and the high-speed road degree obtained by the road environment estimating unit 30 are input. Based on this, a driving-oriented index is output. For example, the driving direction estimating unit 40 outputs the sporting direction as a continuous value of 0 to 1 from the fuel consumption direction in the output and response of the vehicle as an index of the driving direction. The driving direction estimating unit 40 also constructs a neural network by learning. In addition, it is not always necessary to configure a neural network, and another estimation method may be used.
[0024]
The driving direction estimating unit 40 estimates the driving direction each time an input for each driving operation and an input for each predetermined time are extracted. In addition, at the time of input extraction for each driving operation, the input for the immediately preceding predetermined time is also input at the same time.
[0025]
The driving direction index obtained by the driving direction estimating unit 40 is supplied to the vehicle control unit 50. The vehicle control unit 50 includes an A / T shift pattern control unit 52 that controls a change of the gear position in the automatic transmission, an E / G control unit 54 that controls the operation of the engine, and a steering system that controls the operation of a steering system such as a steering. The control unit 56 includes a suspension system control unit 58 that controls the suspension system such as the hardness of the suspension, and controls the operation of the vehicle. In particular, the vehicle control unit 50 controls the operation of these vehicles according to the driving orientation index supplied from the driving orientation estimation unit 40.
[0026]
For example, the vehicle control unit 50 performs A / T shift pattern control based on the driving orientation index estimated by the driving orientation estimation unit 40. That is, when the sport orientation is estimated (the sport orientation index is high), the shift line (shift up timing) is moved to the high vehicle speed side. As a result, acceleration / deceleration performance is enhanced, and drivability can be improved. Conversely, when estimating the fuel efficiency orientation, the fuel efficiency can be improved by moving the shift line closer to the optimal fuel efficiency shift line. When the sports-oriented index is high, controls such as increasing the output of the engine, making the response of the steering system more sensitive, and making the suspension stiffer are performed.
[0027]
With such control, it is possible to obtain a vehicle operation that meets the driver's request. In particular, in the present embodiment, since the driving orientation is estimated for each driving operation, the driving orientation index is updated as needed during driving, and the operation of the vehicle can be changed according to the situation at that time. Therefore, it is possible to always perform operation control that meets the driver's requirements.
[0028]
The operation and effect when the driving orientation is estimated by the driving orientation estimation device having the above configuration will be described.
[0029]
FIG. 4 shows data obtained by intentionally changing the driving direction on a suburban road. FIG. 6 shows the result of estimating the driving direction from the traveling data by the device shown in FIG. In the apparatus shown in FIG. 5, the state quantity at every predetermined time and the estimated value of the road environment are input to the neural network to obtain a driving-oriented index.
[0030]
FIG. 6 shows the output value of the neural network with respect to the driving-oriented index. A predetermined value, for example, 0.4 or less is determined to be fuel-efficient, and a predetermined value, for example, 0.6 or more, is determined to be sport-oriented. Although the driver intentionally changes the driving orientation from the fuel consumption orientation to the sport orientation in the driving data of FIG. 4, especially in the vicinity of time 3 seconds or 25 seconds, the result of FIG. The value has increased and it is determined that the vehicle is oriented to sports.
[0031]
On the other hand, FIG. 7 shows the result of the same driving data performed by the apparatus shown in FIG. In FIG. 7, ○ indicates an estimation result based on an input for each driving operation, and * indicates an estimation result based on an input for each predetermined time. As described above, in the result of FIG. 7, the driving direction index is estimated with good responsiveness by estimating the maximum change rate of the output manipulated variable (output opening change rate) with respect to the driving direction change based on the input for each driving operation. You can see that it is done.
[0032]
"Modification 1"
In the above embodiment, both the state quantity for each predetermined time and the state quantity for each driving operation are input to the road environment estimation unit 30, and the road environment is estimated based on the input. However, the road environment is expected to change only for a relatively long time. Therefore, when sufficient estimation accuracy is not required for estimating the road environment, as shown in FIG. 8, the road environment estimating unit 30 inputs only the state quantities at predetermined time intervals to estimate the road environment. May be. Thereby, the configuration of the road environment estimating unit 30 can be simplified.
[0033]
"Modification 2"
Further, in the above-described embodiment, the configuration is such that the estimation result in the road environment estimation unit 30 is supplied to the driving direction estimation unit 40, but an input effective in estimating the road environment may be directly used in the estimation of driving direction. . That is, as shown in FIG. 9, all of the state quantity for each driving operation and the state quantity for each predetermined time obtained in the input calculation unit 20 are input to the driving direction estimation unit 40. Here, the state quantity for each predetermined time includes both a value effective for driving orientation estimation and a value effective for road environment estimation.
[0034]
That is, the driving direction estimating unit 40 includes, as state quantities for each driving operation, an output operation amount (accelerator operation amount) at the time of starting the vehicle, a maximum change rate of the output operation amount, a maximum deceleration at the time of the vehicle braking operation, a vehicle deceleration. The coasting travel time and the vehicle speed constant travel time are input, and the state quantity at each predetermined time, which is effective for estimating the road environment, is the maximum value of the throttle opening, the maximum value of the vehicle speed, the maximum value of the yaw rate, and the maximum value of the gradient. Value, the maximum value of the engine speed, and the maximum value of the longitudinal acceleration are input, and are the state quantities at predetermined time intervals, which are effective for road environment estimation. Alternatively, the variance, the average or variance of the yaw rate, the average or variance of the gradient, the average or variance of the engine speed, and the average or variance of the acceleration are input. Then, based on these inputs, a driving-oriented index is output. With such a configuration, it is possible to estimate the driving orientation similar to the above-described embodiment.
[0035]
Thus, according to the present embodiment, recalculation is performed for each driving operation. Therefore, it is possible to follow the change in the driving situation and estimate the driving orientation without causing a response delay. The driving operation for performing the recalculation includes, for example, an output operation amount (throttle opening) at the time of vehicle start, a maximum change rate of the output operation amount, a maximum deceleration at the time of vehicle braking operation, a coasting travel time of the vehicle, or This is adopted when the constant vehicle speed travel time is equal to or greater than a predetermined value.
[0036]
【The invention's effect】
As described above, according to the present invention, a vehicle state quantity is fetched at a timing at which a predetermined vehicle operation is performed, and the driving orientation is estimated in consideration of this and the driving environment. Therefore, the driving orientation can be estimated without delay by following the driving orientation change. Since the road environment is taken into account, highly accurate estimation can be performed. Then, using the estimation result, the operation of the vehicle can be adapted to the driving orientation required by the driver.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a driving orientation estimation apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a configuration of a road environment estimation unit.
FIG. 3 is a diagram illustrating a configuration of a driving orientation estimating unit.
FIG. 4 is a diagram illustrating a state detection result for an example of an operation state.
FIG. 5 is a diagram illustrating a configuration of a driving direction estimating unit of a comparative example.
FIG. 6 is a diagram illustrating a result of estimating a driving-oriented index in a comparative example.
FIG. 7 is a diagram showing an estimation result of a driving-oriented index in the embodiment.
FIG. 8 is a diagram illustrating another configuration of the road environment estimation unit.
FIG. 9 is a diagram showing another configuration of the driving orientation estimation device.
FIG. 10 is a diagram showing another configuration of the driving orientation estimating unit.
[Explanation of symbols]
10 vehicle sensor signal input section, 20 input calculation section, 30 road environment estimation section, 40 driving direction estimation section, 50 vehicle control section.

Claims (3)

特定運転操作毎に得られる、車両発進時の出力操作量、出力操作量の最大変化率、車両制動操作時の最大減速度、車両の惰行走行時間、車速一定走行時間、という車両状態量の中の少なくとも一項目と、
車両が走行する道路についての情報である道路環境と、
に基づいて運転指向を推定する運転指向推定装置であって、
特定転操作毎に得られる、車両発進時の出力操作量、出力操作量の最大変化率、車両制動操作時の最大減速度、車両の惰性走行時間、車速一定走行時間、という車両状態量の中の少なくとも一項目と、
所定時間毎に得られる、出力操作量、車速、エンジン回転数、前後加速度の絶対値、前後加速度の正負別の大きさ、のそれぞれの最大値という車両状態量の中の少なくとも一項目と、
車両が走行する道路についての情報である道路環境と、
に基づいて、
前記特定運転操作毎に、運転指向を推定する運転指向推定装置。
In the vehicle state quantities obtained for each specific driving operation, the output operation amount at the time of starting the vehicle, the maximum change rate of the output operation amount, the maximum deceleration at the time of the vehicle braking operation, the coasting traveling time of the vehicle, the vehicle speed constant traveling time At least one item of
The road environment, which is information about the road on which the vehicle travels,
A driving direction estimating device that estimates the driving direction based on
Obtained for each particular OPERATION Operation, the output operation amount when the vehicle start, the maximum rate of change of the output operation amount maximum deceleration during vehicle braking operations, the inertia running time of the vehicle, the vehicle speed constant running time of the vehicle state quantity that At least one of
At least one item in the vehicle state quantity, which is the maximum value of the output manipulated variable, the vehicle speed, the engine speed, the absolute value of the longitudinal acceleration, the magnitude of the positive and negative of the longitudinal acceleration, obtained at every predetermined time,
The road environment, which is information about the road on which the vehicle travels,
On the basis of the,
A driving direction estimating device that estimates a driving direction for each of the specific driving operations .
請求項1に記載の運転指向推定装置において、
前記道路環境を、前記運転操作毎に得られる車両状態量および前記所定時間毎に得られる車両状態に基づいて推定する運転指向推定装置。
The driving orientation estimating device according to claim 1,
A driving orientation estimating device for estimating the road environment based on a vehicle state quantity obtained for each driving operation and a vehicle state obtained for each predetermined time.
請求項1または請求項2に記載の運転指向推定装置において、
ニューラルネットワークを用いて運転指向を推定する運転指向推定装置。
The driving orientation estimating device according to claim 1 or 2,
A driving direction estimating device that estimates driving direction using a neural network.
JP13362697A 1997-05-23 1997-05-23 Driving direction estimation device Expired - Fee Related JP3559425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13362697A JP3559425B2 (en) 1997-05-23 1997-05-23 Driving direction estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13362697A JP3559425B2 (en) 1997-05-23 1997-05-23 Driving direction estimation device

Publications (2)

Publication Number Publication Date
JPH10324175A JPH10324175A (en) 1998-12-08
JP3559425B2 true JP3559425B2 (en) 2004-09-02

Family

ID=15109223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13362697A Expired - Fee Related JP3559425B2 (en) 1997-05-23 1997-05-23 Driving direction estimation device

Country Status (1)

Country Link
JP (1) JP3559425B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11447152B2 (en) * 2019-01-25 2022-09-20 Cavh Llc System and methods for partially instrumented connected automated vehicle highway systems
US11964674B2 (en) * 2022-08-02 2024-04-23 Cavh Llc Autonomous vehicle with partially instrumened roadside unit network

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164010A (en) 2003-12-05 2005-06-23 Toyota Motor Corp Deceleration control device of vehicle
JP3915774B2 (en) 2003-12-05 2007-05-16 トヨタ自動車株式会社 Vehicle deceleration control device
JP2005226670A (en) 2004-02-10 2005-08-25 Toyota Motor Corp Deceleration control device for vehicle
JP4639997B2 (en) 2005-02-18 2011-02-23 トヨタ自動車株式会社 Vehicle deceleration control device
JP4780313B2 (en) * 2006-03-31 2011-09-28 三菱自動車工業株式会社 Control device for continuously variable transmission
JP5671887B2 (en) * 2010-08-30 2015-02-18 トヨタ自動車株式会社 Vehicle control device
JP5497598B2 (en) * 2010-09-15 2014-05-21 トヨタ自動車株式会社 Vehicle control device
JP5720479B2 (en) * 2011-08-08 2015-05-20 トヨタ自動車株式会社 Control device for internal combustion engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255746A (en) * 1988-04-04 1989-10-12 Nissan Motor Co Ltd Travel controller for vehicle
JP2974440B2 (en) * 1991-03-22 1999-11-10 株式会社日立製作所 Automotive integrated control device
JPH04325324A (en) * 1991-04-26 1992-11-13 Omron Corp Travel mode estimating system
JP3150409B2 (en) * 1992-04-20 2001-03-26 マツダ株式会社 Engine control device
JP2533719B2 (en) * 1992-10-16 1996-09-11 名古屋電機工業株式会社 Traffic situation detection method
JP3157953B2 (en) * 1993-06-21 2001-04-23 株式会社東芝 Traffic flow prediction device
JP3079881B2 (en) * 1993-08-10 2000-08-21 三菱自動車工業株式会社 Road traffic condition estimation method and vehicle driving characteristic control method
JPH07101272A (en) * 1993-08-10 1995-04-18 Mitsubishi Motors Corp Vehicle driving operating state estimating method and vehicle driving characteristic control method
JP3451665B2 (en) * 1993-09-02 2003-09-29 マツダ株式会社 Powertrain controls
JP3508265B2 (en) * 1995-01-31 2004-03-22 マツダ株式会社 Driving environment determination method and determination device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11447152B2 (en) * 2019-01-25 2022-09-20 Cavh Llc System and methods for partially instrumented connected automated vehicle highway systems
US20230012934A1 (en) * 2019-01-25 2023-01-19 Cavh Llc Autonomous vehicle with partially instrumened roadside unit network
US11964674B2 (en) * 2022-08-02 2024-04-23 Cavh Llc Autonomous vehicle with partially instrumened roadside unit network

Also Published As

Publication number Publication date
JPH10324175A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
US6571162B2 (en) Controller for automatic transmission
CN103195917B (en) The control gear of vehicle automatic transmission
JP3481946B2 (en) Control device for automotive automatic transmission
JP2002523735A (en) Method and apparatus for calculating vehicle mass
JPH0921457A (en) Controller for automatic transmission for vehicle
JPH11240358A (en) Traveling behavior adaptive control method of automobile apparatus which can be variably set
JP2000205405A (en) Method for controlling automatic transmission
JP3559425B2 (en) Driving direction estimation device
JP3536523B2 (en) Driving force control device for vehicles
EP1302357B1 (en) Method and system for controlling the cruising speed of a vehicle
JP4935065B2 (en) Vehicle driving force control device
JP4720572B2 (en) Vehicle driving force control device
JP4710625B2 (en) Vehicle driving force control device
JP4138649B2 (en) Automatic shift control method as a function of road profile.
JP2007313925A (en) Driving force controller for vehicle
JP4843967B2 (en) Vehicle deceleration control device
JP2011207242A (en) Vehicle travel control system
JP4715594B2 (en) Vehicle driving force control device
JPH09240321A (en) Controller for vehicle
JP2005147215A (en) Speed change control unit for vehicle
JPH06331014A (en) Controller for device in car
CN110446643A (en) Travel controlling system, vehicle and travel control method
JP2007313926A (en) Driving force controller for vehicle
JP4617995B2 (en) Vehicle driving force control device
JPH1153687A (en) Road condition estimation device and vehicle driving characteristic controller

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees