JP3558658B2 - Engine intake control device - Google Patents

Engine intake control device Download PDF

Info

Publication number
JP3558658B2
JP3558658B2 JP00519793A JP519793A JP3558658B2 JP 3558658 B2 JP3558658 B2 JP 3558658B2 JP 00519793 A JP00519793 A JP 00519793A JP 519793 A JP519793 A JP 519793A JP 3558658 B2 JP3558658 B2 JP 3558658B2
Authority
JP
Japan
Prior art keywords
intake
valve
passage
intake control
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00519793A
Other languages
Japanese (ja)
Other versions
JPH06212982A (en
Inventor
広幸 都竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP00519793A priority Critical patent/JP3558658B2/en
Publication of JPH06212982A publication Critical patent/JPH06212982A/en
Application granted granted Critical
Publication of JP3558658B2 publication Critical patent/JP3558658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、吸気通路面積を変化させる吸気制御弁を備えたエンジンの吸気制御装置に関し、詳細には吸気通路への組付が容易であり、また燃焼室中心側から気筒軸方向に流れる縦渦(順タンブル)及び燃焼室の外縁側(反排気弁側)から気筒軸方向に流れる逆タンブルの何れをも発生させることができるようにした吸気制御弁の構造及びその制御方法の改善に関する。
【0002】
【従来の技術】
従来から、燃費率向上を目的としたいわゆるリーンバーン(希薄空燃比燃焼)エンジンが各種提案されている。希薄空燃比での燃焼を安定化するためには、燃焼室に導入された混合気が気筒軸方向に回転する、いわゆるタンブルが効果的であることが知られている。
【0003】
上記タンブルを発生させるために、吸気を吸気通路の例えば天壁側又は底壁側に偏らせて流す吸気制御弁を設けた吸気制御装置が提案されている(例えば実開昭61−132442号公報参照)。この従来装置の吸気制御弁は、吸気通路をカム軸方向に横切るように駆動軸を配設し、該駆動軸の嵌合凹部を板状の弁体の嵌合溝に嵌め合わせ、両者をボルト締め固定し、また上記弁板の底壁側部分に切り欠きを設けた構造のものである。この従来装置では、吸気制御弁を閉位置に位置させることにより吸気は上記切り欠き部分を通って底壁側に偏って流れる。
【0004】
【発明が解決しようとする課題】
ところで上記従来装置では、吸気制御弁の吸気通路内への組み付けを可能にするために、駆動軸と弁板との2部品で構成し、かつ両者をボルト締め固定する構造を採用しており、その結果、吸気通路内で駆動軸と弁板とを組み立てるというように組立作業が煩雑であるという問題がある。
【0005】
また上記従来装置では、弁板を全開位置と全閉位置との間で、かつその切欠が下流側に位置するように回動させることにより吸気を底壁側に偏らせるようにしており、これにより吸気を底壁側、つまり燃焼室の外縁側から流入させるようしている。従ってこの従来装置では順方向又は逆方向の何れかのタンブルのみを発生させるようにしている。
【0006】
本発明は、上記従来の状況に鑑みてなされたもので、吸気通路への組付が容易であり、また順方向及び逆方向のタンブルを発生できるエンジンの吸気制御装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
請求項1の発明は、吸気通路の通路面積を変化させる吸気制御弁を備えたエンジンの吸気制御装置において、上記吸気制御弁を、吸気通路側壁の弁穴で軸支された横断面円形の回転軸部と、該回転軸部の軸方向投影面内に納まる大きさで吸気通路内に位置する板状の弁板とを固定した構造のものとし、該弁板は、全開時に上記吸気通路の軸線の近傍に位置し、かつ上記回転軸部の回転軸線から偏心しており、上記弁板を全閉位置に回動させると、該弁板が吸気通路の底壁側を絞り込んで吸気を天壁側に偏流させるとともに、底壁との間に隙間を開けて底壁側吸気流を生じさせることを特徴としている。
【0009】
また請求項2の発明は、吸気通路の通路面積を変化させる吸気制御弁を備えたエンジンの吸気制御装置において、上記吸気制御弁を、吸気通路側壁の弁穴で軸支された横断面円形の回転軸部と、該回転軸部の軸方向投影面内に納まる大きさで吸気通路内に位置する板状の弁板とを固定した構造のものとし、該弁板は、全開時に上記吸気通路の軸線の近傍に位置し、かつ上記回転軸部の回転軸線から偏心しており、エンジンの運転状態に応じて上記弁板の回動方向を、全開位置と吸気を天壁側に偏流させるとともに底壁側吸気流を生じさせる順タンブル位置との間で回動する順方向又は全開位置と吸気を底壁側に偏流させるとともに天壁側吸気流を生じさせる逆タンブル位置との間で回動する逆方向の何れかに選定する回動方向制御手段を設けたことを特徴としている。
【0010】
【作用】
本発明に係るエンジンの吸気制御装置によれば、吸気制御弁の組み付けに当たっては、吸気通路をカム軸方向に横切るように形成された弁穴に挿入するだけでよく、従来のような吸気通路内での駆動軸と弁板とのボルト締め作業は不要であり、それだけ吸気通路への組付を容易にできる。
【0011】
また吸気制御弁を、弁板を回転軸部の軸線から偏心させた構造としたので、吸気制御弁を回動させることにより吸気を天壁側又は底壁側に偏流させることができ、タンブルを発生できる。また吸気の偏流と反対側に底壁側又は天壁側吸気流を生じさせたので、燃料が壁面に付着するのを抑制できる。
【0012】
さらににまた請求項2の発明によれば、吸気制御弁をエンジンの運転状態に応じて正方向又は逆方向に回動制御するようにしたので、吸気を吸気通路の天壁側又は底壁側に偏らせて流すことができ、1つの吸気制御弁で順方向タンブル,及び逆方向タンブルを発生することができる。
【0013】
【実施例】
以下、本発明の実施例を添付図面に基づいて説明する。
図1ないし図6は本発明の第1実施例による4サイクルエンジンの吸気制御装置を説明するための図であり、図1は本実施例エンジンの断面側面図、図2は吸気制御弁回りの断面平面図、図3は吸気制御弁の斜視図、図4はシンリンダヘッドの底面図、図5は吸気制御弁回りの拡大断面側面図、図6はエンジン回転数−スロットル開度−吸気制御弁開度の関係を示す三次元マップ図である。
【0014】
図において、1は本実施例装置を備えた水冷式4サイクル直列4気筒4バルブエンジンであり、これはクランクケース(図示せず)にシリンダブロック2,シリンダヘッド3を積層してヘッドボルトで締結し、さらにシリンダヘッド3にヘッドカバー4を装着した構造となっている。
【0015】
上記シリンダブロック2のシリンダライナ2a内にはピストン5が摺動自在に挿入され、該ピストン5はコンロッド6でクランク軸(図示せず)に連結されている。また上記シリンダヘッド3のブロック側合面には上記ピストン5の上面とで燃焼室を構成する燃焼凹部3aが4組凹設されている。該各燃焼凹部3aには2つの吸気弁開口7a,7a、2つの排気弁開口8a,8aが形成されており、それぞれ二股状の吸気通路7,排気通路8でシリンダヘッド外壁に導出されている。
【0016】
上記吸気弁開口7a,排気弁開口8aはそれぞれ吸気弁9,排気弁10で開閉可能となっており、該各吸気弁9,排気弁10は弁ばね11で閉方向に付勢され、かつリフタ12を介して吸気,排気カム軸13,14で開方向に駆動される。
【0017】
上記吸気通路7の接続開口7bにはキャブジョイント15を介して気化器16が接続されている。この気化器16は、スロットル弁17の開度に応じてピストン弁16aが上下移動してベンチュリ径を変化させ、もって該ベンチュリ部分の吸気負圧を一定に保つ可変ベンリュリ型のものである。
【0018】
上記吸気通路7は、カム軸方向に見ると(図1参照)、上記吸気弁開口7aの直上流部分においてシリンダヘッド後壁側に屈曲し、そのまま略直線状に伸びていく。またこの吸気通路7は、気筒軸方向に見ると(図2参照)、2つの分岐通路7e,7eを上記屈曲部の少し上流側において1つにに合流した構造となっている。
【0019】
そして上記吸気通路7の上記屈曲部に本発明の特徴をなす吸気制御弁18が配設されている。この吸気制御弁18は、円形棒体に弁部を切削加工によって一体形成した構造のものであり、横断面円形の回転軸部18aと翼形の弁部(弁板)18bとを有している。上記回転軸部18aは、上記各分岐通路7eの左,右側壁7b及び中央の仕切壁7cをカム軸方向に貫通するように直線状に形成された弁穴7d内に挿通され、回転可能に支持されている。またこの回転軸部18aの回転軸線aは上記吸気通路7の軸線cと直交している。
【0020】
上記弁部18bは、吸気通路7の各分岐通路7eの通路面積を変化させるためのものであり、全開状態においてその図心bが底壁側にrだけ偏位するように配置されている。また上記各弁部18bには吸気弁9との干渉を回避するための切り欠き18cが形成されている。これにより上記弁部18bは、上記回転軸部18aを上記回転軸線a回りに回転させると、上記吸気通路の軸線cに略沿った全開位置(図5に二点鎖線で示す)と、各分岐通路7eの底壁側部分を絞り込む全閉位置(図5に実線で示す)との間で回転移動する。
【0021】
次に本実施例の作用効果について説明する。
本実施例装置の吸気制御弁18は、図6の制御マップに示すように、スロットル開度,及びエンジン回転数に応じた開度に制御される。即ち、吸気制御弁18の弁部18bの開度は、スロットル全閉,アイドル回転数の運転状態では、図5に実線で示す最小開度(図6の開度c1)に制御される。これにより吸気は各分岐通路7eの天壁7g側に偏って流れ、その結果図5に実線の矢印で示すように、燃焼室中心側から気筒軸方向に流れる順方向タンブルが発生する。なおこの場合、弁部18bは底壁7f側を完全に閉塞することはなく、若干の隙間があいている。そのため図5に破線で示すように若干の吸気がこの底壁7f側を通って流れる。この底壁側吸気流により、底壁部分に燃料が付着するのを抑制でき、壁面流による空燃比の変動を回避できる。
【0022】
そして例えば加速時のようにスロットル開度が大きくなるにつれて、またエンジン回転数が高くなるにつれて、上記吸気制御弁18はその弁部18bの開度が大きくなるように制御され、図5に二点鎖線で示す最大開度(図6の開度c2)まで時計回りに回転する。またこの最大開度から減速する場合のようにスロットル開度,エンジン回転数が小さくなると二点鎖線の開度から実線の開度に反時計回りに回転する。
【0023】
このように本実施例では、吸気制御弁18を、円形棒状の回転軸部18aと、翼形状で回転軸部18aの軸方向投影面内に納まる大きさの弁部18bとで構成したので、該吸気制御弁18の吸気通路への組付にあたっては、該吸気制御弁18を弁穴7d内に挿入するだけでよく、従来のような吸気通路内では駆動軸と弁板とのボルト締め作業は不要であり、部品点数を削減できるとともに、組立を容易に行うことができる。
【0024】
また弁部18bを回転軸線aから半径rだけ底壁側に偏心させたので、該吸気制御弁18を回動させることにより各分岐通路7eの底壁側を絞って吸気を天壁側に偏らせて流すことができ、吸気を燃焼室中心側から縦方向に導入して順方向のタンブルを発生させることができる。またこの場合、吸気の一部が底壁側に沿って流れるので、燃料が底壁表面に付着するのを防止でき、壁面流による空燃比の変動を回避できる。
【0025】
図7,図8は請求項2の発明に係る第2実施例を説明するための図であり、図中、図5と同一符号は同一又は相当部分を示す。
【0026】
本第2実施例では、吸気制御弁28は、その全開状態で弁部28bの図心が回転軸部28aの回転軸線aからrだけ天壁7g側に偏心するように構成されている。従って本実施例でも、吸気制御弁28を回動させることにより、各分岐通路7eの通路面積を変化させて吸気を偏流させることができ、気筒内でタンブルを発生させることができる。
【0027】
そして本実施例では、スロットル開度,エンジン回転数が大きい高吸入空気量運転域では、第1実施例と同様に、弁部28bを図7に二点鎖線で示す全開位置に位置させるが、この全開状態から低吸入空気量になった場合は、その運転状態に応じて、実線で示す逆最小開度位置(逆タンブル位置)に、又は破線で示す順最小開度位置(順タンブル位置)に回動させる。上記逆タンブル位置に位置させた場合は、実線の矢印で示すように逆方向のタンブルが発生し、上記順タンブル位置に位置させた場合は、破線の矢印で示すように順方向のタンブルが発生する。
【0028】
ここで上記吸気制御弁28の回動方向については、エンジン運転状態に応じて適宜使い分けることとなるが、例えば図8にフローチャートで示す例が採用できる。図8において、プログラムがスタートすると、エンジンの運転状態を示す検出値、例えばスロットル弁開度,スロットル弁開速度,エンジン回転数等が読み込まれ、例えばスロットル弁開速度からエンジン運転状態が過渡運転域(例えば急加速状態,急減速状態等)か否かが判定され、過渡域でない場合は、内蔵する定常運転域用マップから吸気制御弁開度が読み出され、該開度に吸気制御弁の開度が制御される(ステップS1〜S4)。
【0029】
一方、過渡運転域であると判定された場合は、例えば上記スロットル弁開速度の正負から加速状態か又は減速状態かが判定され(ステップS5)、加速状態の場合は、内蔵する過渡運転域用マップから吸気制御弁開度が読み出され、該開度になるように吸気制御弁28が、上記全開位置と順タンブル位置との間で順方向(矢印A方向)に回動制御される(ステップS6,S7)。また減速状態の場合は、読み出された開度になるように、上記全開位置と逆タンブル位置との間で逆方向(矢印B方向)に回動制御される(ステップS8,S9)。
【0030】
このような開度制御を行った場合、弁部28bは、エンジン始動時のアイドリング状態では図7に破線で示す順タンブル位置に位置し、これにより吸気が天壁7g側に偏って流れ、燃焼室の中心側から気筒内に流入し、同図に破線の矢印で示すように順タンブルが発生する。この状態から加速すると、弁部28bは矢印A方向時計回りに回動してその開度が増加し、スロットル開度,エンジン回転数によっては同図に二点鎖線で示す全開状態となる。またこの全開状態から徐々に速度を落とすと、上記弁部28bは順タンブル位置(破線で示す位置)側に矢印A方向反時計回りに回動する。
【0031】
また、上記全開状態から急減速した場合は、弁部28bは同図に実線で示す逆タンブル位置側に矢印B方向時計回りに回動してその開度が減少し、これにより逆タンブルが発生する。なお、この急減速時には燃料カットを行っても良い。また上記急減速状態から再び加速する場合は、吸気制御弁28は上記全開状態に矢印B方向反時計回りに回動し、その開度が増加する。
【0032】
このように本第2実施例によれば、第1実施例と同様に吸気制御弁28の部品点数を削減でき、組付作業を容易化できる効果があり、また吸気を偏らせて流すことによりタンブルを発生させることができる。
【0033】
そして本実施例では、弁部28bを回転軸線aから天壁7g側に偏心させるとともに、エンジンの運転状態に応じて、弁部28bを全開位置と順タンブル位置との間で正方向(矢印A方向)に、又は全開位置と逆タンブル位置との間で逆方向(矢印B方向)に回動させるようにしたので、1つの吸気制御弁28によって順タンブル及び逆タンブルの何れでも発生させることができる。
【0034】
また加速時には順タンブル位置と全開位置との間で弁部28bを順方向(矢印A方向)に回動させるようにしたので、点火プラグ近傍を通って流れる順タンブルが発生し、燃焼速度が速くなることから点火時期を遅らせることができ、ノッキングの発生を抑制でき、NOxの発生量を軽減できる。
【0035】
また減速時には逆タンブル位置と全開位置との間で弁部28bを逆方向(矢印B方向)に回動させ、逆タンブルを発生させるようにしたので、燃料の吹き抜けを抑制できる。
【0036】
なお上記実施例では、吸気制御弁を加速時には順方向に、減速時には逆方向に回動させるようにしたが、本発明の回動方向はこれと逆に設定してもよい。
【0037】
また上記実施例では、吸気制御弁が、棒体を切削加工することにより回転軸部と弁部とを一体形成した構造のものである場合を説明したが、本発明の吸気制御弁には、回転軸部と弁部とを鋳造によって一体化したもの、あるいは溶接,ろー付けによって一体化したもの、あるいはボルト締めによって組み立てたもの等、各種の構造が採用できる。
【0038】
また上記実施例では、気化器を備えたエンジンの場合を説明したが、本発明は燃料噴射弁を備えたエンジンにも勿論適用できる。この場合、例えば図9に示すように、燃料噴射位置を逆タンブル位置に位置する弁部28bの上流側面に向かうように設定することもできる。このようにした場合は、逆タンブル流に燃料を集中させることにより、高燃料濃度の流れと略空気だけの流れとに成層化することができ、希薄空燃比燃焼の安定化に有効である。なお、この場合、順タンブル流に燃料を集中させるようにしても良く、また燃料噴射弁を天壁側に配設してもよい。
【0039】
【発明の効果】
以上のように本発明に係るエンジンの吸気制御装置によれば、吸気制御弁を円形断面の回転軸部と板状の弁部とで構成し、弁部を回転軸部の回転軸線から偏心させたので、吸気制御弁の吸気通路への組付を容易化でき、かつタンブルを確実に発生させることができる効果がある。また吸気の偏流と反対側に底壁側又は天壁側吸気流を生じさせたので、燃料が壁面に付着するのを抑制できる。
【0040】また請求項2の発明によれば、弁部の回動方向をエンジン運転状態に応じて、全開位置と順タンブル位置との間で回動する順方向と、全開位置と逆タンブル位置との間で回動する逆方向との何れかに選択して制御するようにしたので、1つの吸気制御弁によって順タンブルと逆タンブルとの何れでも発生できる効果がある。
【図面の簡単な説明】
【図1】本発明の第1実施例による吸気制御装置を備えたエンジンの断面側面図である。
【図2】上記第1実施例エンジンの吸気制御弁部分の断面平面図である。
【図3】上記第1実施例装置の吸気制御弁の斜視図である。
【図4】上記第1実施例エンジンのシリンダヘッドの底面図である。
【図5】上記第1実施例装置の吸気制御弁回りを示す拡大断面側面図である。
【図6】上記第1実施例装置の制御マップ図である。
【図7】本発明の第2実施例による吸気制御装置の吸気制御弁回りを示す拡大断面側面図である。
【図8】上記第2実施例装置の動作を説明するためのフローチャート図である。
【図9】上記第2実施例装置の変形例を示す断面側面図である。
【符号の説明】
1 エンジン
7 吸気通路
7g 天壁
18,28 吸気制御弁
18a,28a 回転軸部
18b,28b 弁部(弁板)
a 回転軸線
[0001]
[Industrial applications]
The present invention relates to an intake control device for an engine provided with an intake control valve for changing an intake passage area. More specifically, the present invention relates to a vertical vortex that is easy to assemble into an intake passage, and that flows in a cylinder axial direction from a center side of a combustion chamber. The present invention relates to a structure of an intake control valve capable of generating both a reverse tumbling (forward tumbling) and a reverse tumbling flowing in the cylinder axial direction from an outer edge side (a side opposite to an exhaust valve) of a combustion chamber, and an improvement in a control method thereof.
[0002]
[Prior art]
Conventionally, various types of so-called lean burn (lean air-fuel ratio combustion) engines for improving the fuel efficiency have been proposed. It is known that so-called tumble, in which the air-fuel mixture introduced into the combustion chamber rotates in the cylinder axis direction, is effective for stabilizing the combustion at the lean air-fuel ratio.
[0003]
In order to generate the above-mentioned tumble, there has been proposed an intake control device provided with an intake control valve for causing intake air to be deflected to, for example, a top wall side or a bottom wall side of an intake passage (for example, Japanese Utility Model Laid-Open No. 61-132442). reference). In the intake control valve of this conventional device, a drive shaft is disposed so as to cross an intake passage in a cam shaft direction, a fitting recess of the drive shaft is fitted into a fitting groove of a plate-shaped valve body, and both are bolted. The valve plate has a structure in which the valve plate is fastened and fixed, and a cutout is provided in the bottom wall side portion of the valve plate. In this conventional device, the intake air flows deviated to the bottom wall side through the notch by positioning the intake control valve at the closed position.
[0004]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional device, in order to enable the assembling of the intake control valve into the intake passage, a structure in which the drive shaft and the valve plate are constituted by two parts and both are bolted and fixed is adopted. As a result, there is a problem that the assembling operation is complicated, such as assembling the drive shaft and the valve plate in the intake passage.
[0005]
Further, in the conventional device, the intake is biased toward the bottom wall by rotating the valve plate between the fully open position and the fully closed position, and so that the notch is located on the downstream side. This allows the intake air to flow from the bottom wall side, that is, the outer edge side of the combustion chamber. Therefore, in this conventional device, only a tumble in either the forward direction or the reverse direction is generated.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional circumstances, and has as its object to provide an intake control device for an engine that can be easily assembled into an intake passage and can generate forward and reverse tumble. I have.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an intake control device for an engine including an intake control valve for changing a passage area of an intake passage, wherein the intake control valve has a circular cross-sectional rotation supported by a valve hole in a side wall of the intake passage. A shaft portion and a plate-shaped valve plate located in the intake passage having a size that fits in the axial projection plane of the rotary shaft portion are fixed, and the valve plate is configured to be closed when the intake passage is fully opened. The valve plate is located near the axis and is eccentric from the rotation axis of the rotation shaft portion, and when the valve plate is turned to the fully closed position, the valve plate narrows the bottom wall side of the intake passage to allow the intake air to reach the top wall. And a gap is formed between the bottom wall and the bottom wall to generate a bottom wall side intake flow .
[0009]
According to a second aspect of the present invention, in the intake control device for an engine provided with an intake control valve for changing a passage area of the intake passage, the intake control valve has a circular cross-section supported by a valve hole in the intake passage side wall. and a rotating shaft portion, and a structure obtained by fixing the plate-like valve plate located in the intake passage in the axial direction projection plane size fall within of the rotary shaft portion, the valve plate, the intake passage when fully open bottom positioned in the vicinity of the axis, and is eccentric from the axis of rotation of the rotary shaft portion, the rotation direction of the valve plate in accordance with the operating condition of the engine, causes flow polarized intake and fully open position to the top wall side Rotating between a forward or full open position that rotates between a forward tumble position that generates a wall-side intake flow and a reverse tumble position that causes intake air to flow to the bottom wall side and generate a top wall-side intake flow Provide rotation direction control means to select one of the opposite directions It is characterized in that.
[0010]
[Action]
According to the intake control device for an engine according to the present invention, when assembling the intake control valve, it is only necessary to insert the intake passage into a valve hole formed so as to cross in the cam axis direction. The bolting work between the drive shaft and the valve plate in the above is unnecessary, and assembling to the intake passage can be facilitated accordingly.
[0011]
In addition, since the intake control valve has a structure in which the valve plate is eccentric from the axis of the rotating shaft portion, the intake air can be deflected to the top wall side or the bottom wall side by rotating the intake control valve, and the tumble can be reduced. Can occur. Further, since the bottom wall side or top wall side intake flow is generated on the side opposite to the drift of the intake air, it is possible to suppress the fuel from adhering to the wall surface.
[0012]
Furthermore, according to the second aspect of the present invention, the intake control valve is controlled to rotate in the forward or reverse direction according to the operating state of the engine, so that the intake air is directed toward the top wall or the bottom wall of the intake passage. And a single intake control valve can generate a forward tumble and a reverse tumble.
[0013]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
1 to 6 are views for explaining an intake control device for a four-stroke engine according to a first embodiment of the present invention. FIG. 1 is a sectional side view of the engine of the present embodiment, and FIG. FIG. 3 is a perspective view of the intake control valve, FIG. 4 is a bottom view of the cylinder head, FIG. 5 is an enlarged sectional side view around the intake control valve, and FIG. 6 is engine speed-throttle opening-intake control. It is a three-dimensional map figure which shows the relationship of a valve opening.
[0014]
In the drawing, reference numeral 1 denotes a water-cooled four-stroke in-line four-cylinder four-valve engine equipped with the apparatus of the present embodiment, which is formed by laminating a cylinder block 2 and a cylinder head 3 on a crankcase (not shown) and fastening them with head bolts. The head cover 4 is mounted on the cylinder head 3.
[0015]
A piston 5 is slidably inserted into a cylinder liner 2a of the cylinder block 2, and the piston 5 is connected to a crankshaft (not shown) by a connecting rod 6. On the block side mating surface of the cylinder head 3, four sets of combustion concave portions 3 a forming a combustion chamber with the upper surface of the piston 5 are provided. Each combustion recess 3a is formed with two intake valve openings 7a, 7a and two exhaust valve openings 8a, 8a, which are led to the outer wall of the cylinder head through a bifurcated intake passage 7 and exhaust passage 8, respectively. .
[0016]
The intake valve opening 7a and the exhaust valve opening 8a can be opened and closed by an intake valve 9 and an exhaust valve 10, respectively. The intake valve 9 and the exhaust valve 10 are urged in a closing direction by a valve spring 11, and are lifted. Driven in the opening direction by intake and exhaust camshafts 13, 14 via 12.
[0017]
A carburetor 16 is connected to a connection opening 7 b of the intake passage 7 via a cab joint 15. The carburetor 16 is of a variable venturi type, in which the piston valve 16a moves up and down in accordance with the opening degree of the throttle valve 17 to change the venturi diameter, thereby keeping the intake negative pressure in the venturi portion constant.
[0018]
When viewed in the camshaft direction (see FIG. 1), the intake passage 7 bends toward the rear wall of the cylinder head immediately upstream of the intake valve opening 7a and extends substantially straight. When viewed in the cylinder axial direction (see FIG. 2), the intake passage 7 has a structure in which two branch passages 7e, 7e are merged into one slightly upstream of the bent portion.
[0019]
An intake control valve 18, which is a feature of the present invention, is provided at the bent portion of the intake passage 7. The intake control valve 18 has a structure in which a valve portion is formed integrally with a circular rod by cutting, and has a rotary shaft portion 18a having a circular cross section and a wing-shaped valve portion (valve plate) 18b. I have. The rotary shaft portion 18a is inserted into a linearly formed valve hole 7d so as to penetrate the left and right side walls 7b and the central partition wall 7c of each of the branch passages 7e in the cam axis direction, and is rotatable. Supported. The rotation axis a of the rotation shaft portion 18a is orthogonal to the axis c of the intake passage 7.
[0020]
The valve portion 18b is for changing the passage area of each branch passage 7e of the intake passage 7, and is arranged such that its centroid b is deviated by r toward the bottom wall in the fully opened state. A cutout 18c is formed in each of the valve portions 18b to avoid interference with the intake valve 9. Thus, when the rotary shaft 18a is rotated about the rotary axis a, the valve portion 18b moves to a fully open position (shown by a two-dot chain line in FIG. 5) substantially along the axis c of the intake passage. It rotates between a fully closed position (shown by a solid line in FIG. 5) where the bottom wall side portion of the passage 7e is narrowed.
[0021]
Next, the operation and effect of this embodiment will be described.
As shown in the control map of FIG. 6, the intake control valve 18 of this embodiment is controlled to an opening corresponding to the throttle opening and the engine speed. That is, the opening of the valve portion 18b of the intake control valve 18 is controlled to the minimum opening (opening c1 in FIG. 6) indicated by a solid line in FIG. As a result, intake air flows toward the top wall 7g side of each branch passage 7e, and as a result, as shown by the solid arrow in FIG. 5, a forward tumble flows from the center of the combustion chamber toward the cylinder axis. In this case, the valve portion 18b does not completely close the bottom wall 7f side, and has a slight gap. Therefore, a small amount of intake air flows through the bottom wall 7f as shown by a broken line in FIG. The bottom wall side intake flow can suppress the fuel from adhering to the bottom wall portion, and can avoid the fluctuation of the air-fuel ratio due to the wall flow.
[0022]
The intake control valve 18 is controlled so that the opening of the valve portion 18b increases as the throttle opening increases and the engine speed increases, for example, during acceleration. It rotates clockwise to the maximum opening (opening c2 in FIG. 6) indicated by the chain line. When the throttle opening and the engine speed decrease as in the case of deceleration from the maximum opening, the engine rotates counterclockwise from the opening indicated by the two-dot chain line to the opening indicated by the solid line.
[0023]
As described above, in the present embodiment, the intake control valve 18 is configured by the circular rod-shaped rotary shaft portion 18a and the valve portion 18b having a wing shape and having a size that fits in the axial projection plane of the rotary shaft portion 18a. When assembling the intake control valve 18 to the intake passage, it is only necessary to insert the intake control valve 18 into the valve hole 7d. In the conventional intake passage, the bolting work between the drive shaft and the valve plate is performed. Is unnecessary, the number of parts can be reduced, and assembly can be performed easily.
[0024]
Further, since the valve portion 18b is eccentric to the bottom wall side by the radius r from the rotation axis a, the intake control valve 18 is rotated to narrow the bottom wall side of each branch passage 7e to bias the intake air toward the top wall side. The intake air can be introduced vertically from the center of the combustion chamber to generate a tumble in the forward direction. Further, in this case, since a part of the intake air flows along the bottom wall side, it is possible to prevent the fuel from adhering to the bottom wall surface, and to avoid a change in the air-fuel ratio due to the wall flow.
[0025]
7 and 8 are views for explaining a second embodiment according to the second aspect of the present invention, in which the same reference numerals as in FIG. 5 denote the same or corresponding parts.
[0026]
In the second embodiment, the intake control valve 28 is configured such that the centroid of the valve portion 28b is eccentric toward the ceiling wall 7g by r from the rotation axis a of the rotation shaft portion 28a in the fully opened state. Therefore, also in the present embodiment, by rotating the intake control valve 28, the passage area of each branch passage 7e can be changed so that intake air can be deflected, and a tumble can be generated in the cylinder.
[0027]
In this embodiment, in the high intake air amount operation range where the throttle opening and the engine speed are large, as in the first embodiment, the valve portion 28b is located at the fully open position shown by the two-dot chain line in FIG. When the amount of intake air is reduced from the fully opened state to a low intake air amount, the position is changed to a reverse minimum opening position (reverse tumble position) indicated by a solid line or a forward minimum opening position (forward tumble position) indicated by a broken line, depending on the operation state. To rotate. When positioned at the reverse tumble position, a reverse tumble occurs as indicated by a solid arrow, and when positioned at the forward tumble position, a forward tumble occurs as indicated by a broken arrow. I do.
[0028]
Here, the rotation direction of the intake control valve 28 is properly used depending on the engine operating state. For example, the example shown in the flowchart of FIG. 8 can be adopted. In FIG. 8, when the program starts, detected values indicating the operating state of the engine, such as the throttle valve opening, the throttle valve opening speed, and the engine speed, are read. (E.g., a sudden acceleration state, a sudden deceleration state, etc.) is determined. If the transition is not in the transition region, the opening of the intake control valve is read from the built-in steady operation region map, and the opening of the intake control valve is determined as the opening. The opening is controlled (steps S1 to S4).
[0029]
On the other hand, when it is determined that the engine is in the transient operation range, for example, it is determined whether the throttle valve is opening or decelerating from the positive or negative of the opening speed of the throttle valve (step S5). The intake control valve opening is read from the map, and the intake control valve 28 is rotationally controlled in the forward direction (the direction of the arrow A) between the fully open position and the forward tumble position so that the opening is attained. Steps S6 and S7). In the case of the deceleration state, the rotation is controlled in the opposite direction (the direction of the arrow B) between the fully open position and the reverse tumble position so that the read opening degree is obtained (steps S8 and S9).
[0030]
When such opening control is performed, the valve portion 28b is located at the forward tumble position shown by the broken line in FIG. 7 in the idling state at the time of engine start, whereby the intake air flows to the ceiling wall 7g side, and the combustion proceeds. The gas flows into the cylinder from the center side of the chamber, and a forward tumble is generated as shown by a broken arrow in FIG. When the vehicle is accelerated from this state, the valve portion 28b rotates clockwise in the direction of arrow A to increase its opening, and depending on the throttle opening and the engine speed, the valve portion 28b is fully opened as shown by a two-dot chain line in FIG. When the speed is gradually reduced from the fully opened state, the valve portion 28b rotates counterclockwise in the direction of arrow A toward the forward tumble position (the position indicated by the broken line).
[0031]
When the vehicle is suddenly decelerated from the fully opened state, the valve portion 28b rotates clockwise in the direction of the arrow B toward the reverse tumble position indicated by the solid line in FIG. I do. Note that a fuel cut may be performed during this rapid deceleration. When the vehicle accelerates again from the rapid deceleration state, the intake control valve 28 rotates counterclockwise in the direction of arrow B to the fully opened state, and its opening increases.
[0032]
As described above, according to the second embodiment, as in the first embodiment, the number of parts of the intake control valve 28 can be reduced, so that the assembling operation can be facilitated. A tumble can be generated.
[0033]
In this embodiment, the valve portion 28b is decentered from the rotation axis a toward the ceiling wall 7g, and the valve portion 28b is moved in the forward direction (arrow A) between the fully open position and the forward tumble position in accordance with the operation state of the engine. Direction) or in the reverse direction (arrow B direction) between the fully open position and the reverse tumble position, so that one intake control valve 28 can generate either forward or reverse tumble. it can.
[0034]
Further, during acceleration, the valve portion 28b is rotated in the forward direction (the direction of arrow A) between the forward tumble position and the fully open position, so that a forward tumble flowing near the ignition plug is generated, and the combustion speed is increased. Therefore, the ignition timing can be delayed, the occurrence of knocking can be suppressed, and the amount of generated NOx can be reduced.
[0035]
Further, at the time of deceleration, the valve portion 28b is rotated in the reverse direction (the direction of the arrow B) between the reverse tumble position and the fully open position to generate reverse tumble, so that fuel blow-through can be suppressed.
[0036]
In the above embodiment, the intake control valve is rotated in the forward direction during acceleration and in the reverse direction during deceleration. However, the rotation direction of the present invention may be set to the opposite direction.
[0037]
Further, in the above embodiment, the case where the intake control valve has a structure in which the rotary shaft portion and the valve portion are integrally formed by cutting a rod body has been described, but the intake control valve of the present invention includes: Various structures can be adopted, such as a structure in which the rotary shaft portion and the valve portion are integrated by casting, a structure in which they are integrated by welding or brazing, or a structure in which they are assembled by bolting.
[0038]
Further, in the above embodiment, the case of the engine provided with the carburetor has been described, but the present invention is of course applicable to the engine provided with the fuel injection valve. In this case, for example, as shown in FIG. 9, the fuel injection position may be set to be toward the upstream side surface of the valve portion 28b located at the reverse tumble position. In such a case, by concentrating the fuel in the reverse tumble flow, it is possible to stratify the flow into a flow having a high fuel concentration and a flow substantially containing only air, which is effective for stabilizing the lean air-fuel ratio combustion. In this case, the fuel may be concentrated in the forward tumble flow, and the fuel injection valve may be provided on the top wall side.
[0039]
【The invention's effect】
As described above, according to the intake control device for the engine according to the present invention, the intake control valve is configured by the rotary shaft having a circular cross section and the plate-shaped valve, and the valve is eccentric from the rotary axis of the rotary shaft. Therefore, there is an effect that the assembling of the intake control valve to the intake passage can be facilitated and a tumble can be reliably generated. Further, since the bottom wall side or top wall side intake flow is generated on the side opposite to the drift of the intake air, it is possible to suppress the fuel from adhering to the wall surface.
According to the second aspect of the present invention, the direction of rotation of the valve portion is changed between the fully open position and the forward tumble position according to the engine operating state, and the fully open position and the reverse tumble position. The control is performed by selecting either one of the reverse direction of rotation and the control of the reverse direction. Therefore, there is an effect that one intake control valve can generate either the forward tumble or the reverse tumble.
[Brief description of the drawings]
FIG. 1 is a sectional side view of an engine including an intake control device according to a first embodiment of the present invention.
FIG. 2 is a sectional plan view of an intake control valve portion of the engine of the first embodiment.
FIG. 3 is a perspective view of an intake control valve of the first embodiment.
FIG. 4 is a bottom view of the cylinder head of the engine of the first embodiment.
FIG. 5 is an enlarged sectional side view showing the periphery of an intake control valve of the first embodiment.
FIG. 6 is a control map of the first embodiment.
FIG. 7 is an enlarged cross-sectional side view showing the periphery of an intake control valve of an intake control device according to a second embodiment of the present invention.
FIG. 8 is a flowchart for explaining the operation of the second embodiment.
FIG. 9 is a cross-sectional side view showing a modification of the second embodiment.
[Explanation of symbols]
1 Engine 7 Intake passage 7g Top wall 18, 28 Intake control valve 18a, 28a Rotation shaft 18b, 28b Valve (valve plate)
a Rotation axis

Claims (2)

吸気通路の通路面積を変化させる吸気制御弁を備えたエンジンの吸気制御装置において、上記吸気制御弁を、吸気通路側壁の弁穴で軸支された横断面円形の回転軸部と、該回転軸部の軸方向投影面内に納まる大きさで吸気通路内に位置する板状の弁板とを固定した構造のものとし、該弁板は、全開時に上記吸気通路の軸線の近傍に位置し、かつ上記回転軸部の回転軸線から偏心しており、上記弁板を全閉位置に回動させると、該弁板が吸気通路の底壁側を絞り込んで吸気を天壁側に偏流させるとともに、底壁との間に隙間を開けて底壁側吸気流を生じさせることを特徴とするエンジンの吸気制御装置。An intake control device for an engine including an intake control valve for changing a passage area of an intake passage, wherein the intake control valve includes a rotary shaft portion having a circular cross section supported by a valve hole on a side wall of the intake passage; A plate-shaped valve plate positioned in the intake passage with a size that fits in the axial projection plane of the portion, and the valve plate is located near the axis of the intake passage when fully opened, and is eccentric from the axis of rotation of the rotary shaft portion, is rotated the valve plate in the fully closed position, the valve plate causes flow polarized intake air to the top wall side narrow down the bottom wall side of the intake passage, the bottom An intake control device for an engine , wherein a gap is formed between the intake wall and a wall to generate a bottom wall-side intake flow . 吸気通路の通路面積を変化させる吸気制御弁を備えたエンジンの吸気制御装置において、上記吸気制御弁を、吸気通路側壁の弁穴で軸支された横断面円形の回転軸部と、該回転軸部の軸方向投影面内に納まる大きさで吸気通路内に位置する板状の弁板とを固定した構造のものとし、該弁板は、全開時に上記吸気通路の軸線の近傍に位置し、かつ上記回転軸部の回転軸線から偏心しており、エンジンの運転状態に応じて上記弁板の回動方向を、全開位置と吸気を天壁側に偏流させるとともに底壁側吸気流を生じさせる順タンブル位置との間で回動する順方向又は全開位置と吸気を底壁側に偏流させるとともに天壁側吸気流を生じさせる逆タンブル位置との間で回動する逆方向の何れかに選定する回動方向制御手段を設けたことを特徴とするエンジンの吸気制御装置。An intake control device for an engine including an intake control valve for changing a passage area of an intake passage, wherein the intake control valve includes a rotary shaft portion having a circular cross section supported by a valve hole on a side wall of the intake passage; A plate-shaped valve plate positioned in the intake passage with a size that fits in the axial projection plane of the portion, and the valve plate is located near the axis of the intake passage when fully opened, In addition, the valve is eccentric from the rotation axis of the rotation shaft, and the direction of rotation of the valve plate is changed according to the operation state of the engine to the fully open position and the direction in which the intake air is deflected to the top wall side and the bottom wall side intake air flow is generated. Select either the forward direction that rotates between the tumble positions or the reverse direction that rotates between the fully open position and the reverse tumble position where the intake air is deflected to the bottom wall side and the top wall side intake air flow is generated. Characterized in that a rotation direction control means is provided. Down of the intake air control device.
JP00519793A 1993-01-14 1993-01-14 Engine intake control device Expired - Fee Related JP3558658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00519793A JP3558658B2 (en) 1993-01-14 1993-01-14 Engine intake control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00519793A JP3558658B2 (en) 1993-01-14 1993-01-14 Engine intake control device

Publications (2)

Publication Number Publication Date
JPH06212982A JPH06212982A (en) 1994-08-02
JP3558658B2 true JP3558658B2 (en) 2004-08-25

Family

ID=11604485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00519793A Expired - Fee Related JP3558658B2 (en) 1993-01-14 1993-01-14 Engine intake control device

Country Status (1)

Country Link
JP (1) JP3558658B2 (en)

Also Published As

Publication number Publication date
JPH06212982A (en) 1994-08-02

Similar Documents

Publication Publication Date Title
JP3319645B2 (en) Engine intake control device
JPH05312045A (en) Intake system of engine
JP3558658B2 (en) Engine intake control device
JPH06212983A (en) Intake control device of engine
JP3426296B2 (en) Engine intake system
US20100037840A1 (en) Internal combustion engine
AU2539999A (en) Internal combustion engine
JP3318359B2 (en) Engine intake control device
JPH07208182A (en) Intake control device of engine
JP7411142B2 (en) internal combustion engine
JP3506769B2 (en) Engine intake control device
JP2000145467A (en) Intake system for engine
JP3320775B2 (en) Engine intake control device
JP3468788B2 (en) Engine intake control device
JP3334064B2 (en) Engine intake control device
JPH06101486A (en) Intake air control device for engine
JP3320805B2 (en) 4-cycle engine intake system
JP3323315B2 (en) Engine intake control device
JPH077544Y2 (en) Engine combustion chamber structure
JP3258056B2 (en) Engine intake control device
JP3457751B2 (en) 4-cycle engine intake control system
JP3320777B2 (en) Engine intake control device
JP3248587B2 (en) Engine intake control device
JP3279600B2 (en) Engine intake control device
JPS5827054Y2 (en) engine intake system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees