【0001】
【産業上の利用分野】
本発明は、排ガスへの液体噴霧装置に係り、特に、腐食性ガスを含む排ガスへ水又は水含有液体を噴霧する装置に関する。
【0002】
【従来の技術】
一般に、排ガスへの水等の液体噴霧装置は、集じんや塩化水素、硫黄酸化物、窒素酸化物、その他有害ガス除去のための湿式排ガス処理の入口部などに使い、排ガスを湿らせ、かつ温度を下げ、除じんや有害ガスの吸収と同時に金属に対する腐食性を低減したり、セラミックや有機材料又はそれらの複合材料への熱ショックを防止したり、有機材料を使用可能とする。
また、該噴霧装置は、排ガス脱硝装置のアンモニア添加のためのアンモニア水を噴霧するためにも使えるし、カルシウム化合物での脱塩化水素反応を促進したり、排ガスのダイオキシン類合成を防いだり、バグフィルタを使用したり、活性炭などによる有害ガス吸着等を行うための排ガス温度を下げるための装置としても使用可能である。
【0003】
従来、この種の噴霧装置は、図3に示されるように、排ガス流路5の壁1に設けられた空気ノズル2中に、噴霧水配管3に接続するスプレーノズル4を設けて、排ガスにスプレーノズルが接しない構造とするのが普通であった。
この改良型として、図4に示されるように、内部に空気7を供給した保護管2を排ガス5中に挿入し、その管2の窓9の内側に噴霧水配管3に接解したスプレーノズル4を設ける方法が行われていた。
【0004】
ところで、図3の方式では、排ガス流路径が大きな場合は、特に噴霧水が流路断面に対して不均一となる。このため、後続の設備までの距離が十分でないと、完全に湿りとならないか、あるいは均一に水滴が蒸発しないままで、排ガスが流入して腐食やスケーリングその他のトラブルを引き起こしてしまう。このため、高価な耐熱、耐水ライニング付の長い排ガスダクトをレイアウトを工夫しながら設けざるを得なかった。
また、噴霧水が湿式排ガス処理設備の循環水の時など塩類を含有している時には、排ガスにあおられた噴霧水水滴が壁については乾くなどして析出した塩が重なり大きな塊を形成してしまう。
しかも、ノズル先端はシール空気で保護しているといっても、排ガスにあおられた噴霧水滴をあびることを完全にはさけられないため、激しい腐食にさらされてしまう。このため、しばしば運転を止めて付着塩を除去したり腐食したノズルを交換したりする必要があった。
【0005】
図4は、これらを軽減するための改良型であるが、保護管自体によって発生する排ガスの乱れにより、噴霧水滴が保護管に吸い寄せられてしまうため、保護管の特に下流側が激しい腐食にさらされる。保護管に腐食で孔があくとシール空気が洩れてしまって保護管内に排ガスが浸入し、噴霧水の温度による結露や吸い寄せられたスプレーの水滴の作用で噴霧水配管やスプレーノズルチップまでも腐食してしまう。
このように、図4の改良型においても、腐食の問題は完全には解決できず、保護管やスプレーノズルチップ、保護管内の噴霧水配管をハステロイ、チタン等の高級材質として腐食性を改善し、実用に耐える3〜5年の寿命とするか、SUS316L程度として3〜6か月毎に腐食状態をみはからっては交換することを繰り返すしかなかった。
【0006】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解決し、比較的安価な材料を用いて長期にわたって腐食が防止できる排ガスへの液体噴霧装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明では、排ガスに液体を噴霧する噴霧装置において、前記排ガス中に、液体配管を内臓し、かつ該排ガスよりも高い圧力の空気が管内に供給されている保護管を挿入し、該挿入した保護管に開口部を設け、該保護管の開口部より突出して液体配管に接続したスプレーノズルを設け、該スプレーノズルの保護管より突出させた部分は少なくとも表面を非金属で形成されていることとしたものである。
本発明の排ガスとは、水露点又は酸露点に達すると金属に対して強い腐食性を有する塩化水素、硫黄酸化物等の酸性ガスを含む乾いたガスで、例えば廃棄物焼却炉や、重油、オイルコークス、石炭、各種プロセス副成ガスや副成油を燃料とするボイラなどより排出される燃焼排ガスなどである。また、液体は、主に水又は水を含む液体であるが、これらに限定されるものではない。
【0008】
本発明で使用できるノズル表面に形成する非金属としては、ノズル温度が200℃前後までは、ガラスの細かい薄片(フレーク)をビニールエステル樹脂等の耐熱性の高いプラスチックで結合し、硬い数mmの層を作ったもの、即ちガラスフレークと硬化性樹脂を混ぜて塗布するフレークライニング等が好ましい。このフレークライニングは、表層が損傷を受けてはがれてもよく、ガラスの強度をもち、水蒸気等の浸透もしにくく、また、プラスチックとの複合でありきわめて割れにくい特性を有する。
ノズル温度が、300℃前後までは、緻密なカーボン製が好ましい。これは腐食せずに、水がかかっても割れたり溶けたりせず問題がない。ノズル本体とは、かぶせてエポキシ等の硬化性樹脂接着材で密着させるのがよい。
また、ノズル温度が300℃より高温の場合は、セラミックス溶射層を形成するのが好ましい。これは、ノズルにアルミナ等を溶射し、封孔処理を行ったものがよく、1mm以下と薄いため温度がノズル金属部とほとんど一致し、サーマルショックや熱膨張による破損が生じにくい。封孔処理をすれば、排ガスがノズル金属部まで浸透できず腐食から守られる。
【0009】
【作用】
排ガス流路中に突出した形式の噴霧装置においては、保護管の排ガス下流側に保護管によって生じた排ガスの乱れが生じている。本発明では、スプレーノズル先端を排ガスの乱れが生ずる領域外まで突出させているため、スプレーノズルから噴出する水滴は排ガスの乱れに巻きこまれて保護管に吸い寄せられることがなくなり、保護管の腐食が防止できる。
また、スプレーノズルの表面は非金属製としたことにより、スプレーノズルの腐食も防止することができた。
【0010】
【実施例】
以下、本発明を図面を用いて具体的に説明するが、本発明はこれに限定されるものではない。
実施例1
図1(a)に本発明の排ガス中への液体噴霧装置の正断面図を示し、図1(b)に図1(a)の側断面図を示す。図2に図1のスプレーノズルの拡大断面図を示す。
図1において、1は排ガス流路の壁(鋼板ダクト)であり、該流路中に保護管2が設けられている。保護管2には、内部に噴霧水配管3が配され、その配管3の先端にはスプレーノズル4が保護管2の窓9から突出して設けられている。また、噴霧水配管3には噴霧水6が、保護管2にはシールエア7が接続されている。
【0011】
上記装置において、スプレーノズル4突出方向が排ガス流向下流側にほぼ一致している場合にはスプレーノズル4の保護管2からの突出長さは、保護管断面形状が円の場合、その半径程度以上あればよい。
また、保護管2挿入位置を図1(b)の様に排ガスダクト1中心から外した場合、スプレーノズル4突出方向を排ガスダクト中心に20〜30°程度ふる様にすれば、排ガスに対し効果的に噴霧水をあびせることができる。この様な場合、保護管2によって生じた排ガスの乱れにより保護管へと吸い寄せられる流れが生じる領域外に、スプレーノズル噴霧端をより確実に出すことができる。
【0012】
突出させる向きは、挿入保護管2の位置や取付ノズル4の個数によって異なるが、上流側に噴霧された水滴が排ガスによって運ばれ保護管2をぬらす事を防ぐには、少くとも排ガスの流向に対して直角方向か、それよりも下流側とする必要がある。ただし、下流側から上流側の方へと突出方向をふればふるほど排ガスの流れを止めた際に噴霧水でダクト壁1がぬれる領域が上流側へのびるため、耐熱耐水ライニング領域が広くなり好ましくなく、できればふる角度は30°以下にとどめるのがよい。
また、シールエア7が、保護管内に排ガスが逆流することのないように、外の排ガスよりも若干高くなる程度の圧力で保護管2に供給されており、そしてシールエア7はスプレーノズル4を突出させるための保護管2の開口9とスプレーノズル4とのすきまより吹き出している。このため、噴霧水はシールエアによっても排ガスの方に押しやる状態としており、スプレーノズル4をつたって噴霧水が保護管2の方にもどってくる事はない。
【0013】
水噴霧される前の排ガスは熱回収や集じん後であれば、ほとんどの場合150〜350℃の範囲にある。このため、保護管2は非常停止などの特別な場合でも350〜400℃の耐熱があれば問題なく、SUS系の金属が使える。
保護管2は、SUS316L程度であれば申し分なく、SUS304でも運転状態が変化して噴霧水をあびるような事がなければ十分使用できる。シール空気量はせまい保護管とスプレーノズルのすきまから吹き出す程度の少量であるため、大気に近い温度であっても保護管を露点まで冷却する心配はなく、排ガスに近い温度である。従って噴霧水の飛沫をかぶらぬ限り低温腐食はないといってよい。
【0014】
保護管より突出させた部分は、金属とすると噴霧水の温度にひきずられて排ガスの露点、少くとも酸露点以下となっしまうため、激しい腐食雰囲気に曝される事になる。この対策として図2で示すように、例えば緻密なカーボン製の保護カバー8付のスプレーノズルチップ10とし、耐熱耐食性を持たせる必要がある。特に緻密カーボンは200〜300℃の通常のボイラ出口排ガスやそれ以上の温度に耐え、酸等に対しての耐食性は完全であり、耐水耐スポーリング性もあり、サーマルショックに対しても熱伝導性がよいために耐える事ができるなど本発明にきわめて合致した材料といえる。
【0015】
内部は噴霧水配管3にネジ込等で接続させるため、金属製が好ましく、SUS316等でも十分使用できる。ただし、噴霧水に接しているため、ポリプロピレン等の樹脂製でもよい。カーボン等の外側の保護カバー8と内部スプレーノズルチップ10は体積収縮の少い例えばエポキシ系の接着剤11を用い、すきまをなくすようにすれば湿式排ガス処理設備循環水などの塩類を含む噴霧水であってもすきま腐食の心配がない。なお、この形式とすれば市販の金属スプレーノズルチップ10を使用する事ができるため、安価でかつ代品を容易に得られるため都合がよい。上記接着剤11は内部金属スプレーノズルチップ10が噴霧水により冷却されその温度に近いために、60〜70℃の耐熱性があればよく、容易に入手可能である。
【0016】
排ガス温度が150℃弱と比較的低ければ例えばポリプロピレン性の市販ノズルチップ10をそのまま用い、接続配管で保護管から出ている部分はFRPパイプとしてやれば、内部の噴霧水により冷却されているために問題なく使用できる。
なお、前記の説明は全てスプレーノズルが1個の場合で行ったが、スプレーノズルは1個に限らず、複数であっても当然よい。保護管に設けるスプレーノズルは、できればシール空気の効果を考えて1つの保護管に1個とするのが好ましいが、1本の保護管に2〜4個を互いに離して設けてもよい。
【0017】
【発明の効果】
以上のように、従来、激しい腐食により、ハステロイやチタンなどの高級材料で作っても数年の寿命であり、メンテナンスに多大の負担を要していたものが、本発明により、市販性のあるノズルチップを用いSUS316L程度の容易に入手できるものでよくなった。
また、本発明の液体噴霧装置は、従来排ガス中への液体噴霧に用いられている噴霧装置のすべてに使用でき、これらを使用する施設、例えば湿式排ガス処理設備等のコストダウン、メンテナンス軽減、信頼性向上に多大な効果をもたらすものである。
【図面の簡単な説明】
【図1】本発明の液体噴霧装置の一例を示し、(a)は正断面図、(b)は側断面図。
【図2】図1のスプレーノズルの拡大断面図。
【図3】従来の液体噴霧装置で(a)は正断面図、(b)は(a)のA−A′断面図。
【図4】従来の液体噴霧装置の他の例を示し、(a)は正断面図、(b)は(a)のB−B′断面図。
【符号の説明】
1:排ガス流路の壁、2:保護管、3:噴霧水配管、4:スプレーノズル:5:排ガス流れ、6:噴霧水、7:シールエア、8:保護カバー、9:保護管の窓、10:ノズルチップ、11:接着剤[0001]
[Industrial applications]
The present invention relates to an apparatus for spraying liquid onto exhaust gas, and more particularly, to an apparatus for spraying water or a water-containing liquid onto exhaust gas containing corrosive gas.
[0002]
[Prior art]
In general, a liquid spraying device such as water for exhaust gas is used at the inlet of wet exhaust gas treatment to remove dust, hydrogen chloride, sulfur oxides, nitrogen oxides, and other harmful gases, so as to wet the exhaust gas, and It lowers the temperature, reduces the corrosiveness to metals at the same time as dust and absorbs harmful gases, prevents heat shock to ceramics, organic materials or composite materials thereof, and makes it possible to use organic materials.
The spraying device can also be used to spray ammonia water for adding ammonia in an exhaust gas denitration device, promote a dehydrochlorination reaction with a calcium compound, prevent the synthesis of dioxins in exhaust gas, and prevent It can also be used as a device for lowering the exhaust gas temperature for using a filter or for adsorbing harmful gas by activated carbon or the like.
[0003]
Conventionally, as shown in FIG. 3, this type of spraying device has a spray nozzle 4 connected to a spray water pipe 3 in an air nozzle 2 provided on a wall 1 of an exhaust gas flow path 5 so as to reduce exhaust gas. It was common to have a structure in which the spray nozzle did not touch.
As an improved type, as shown in FIG. 4, a protective tube 2 having air 7 supplied therein is inserted into an exhaust gas 5, and a spray nozzle which is connected to a spray water pipe 3 inside a window 9 of the tube 2. 4 was provided.
[0004]
By the way, in the method of FIG. 3, when the exhaust gas flow path diameter is large, the spray water is particularly non-uniform with respect to the flow path cross section. For this reason, if the distance to the subsequent equipment is not sufficient, the exhaust gas will flow in and will cause corrosion, scaling, and other troubles without complete wetness or without uniform evaporation of water droplets. For this reason, a long exhaust gas duct with an expensive heat-resistant and water-resistant lining had to be provided while devising the layout.
Also, when the spray water contains salts, such as when circulating water in a wet exhaust gas treatment facility, the spray water droplets flooded by the exhaust gas dry on the wall, and the deposited salts overlap to form large lumps. I will.
In addition, even though the nozzle tip is protected by seal air, it cannot be completely prevented from spraying water droplets from exhaust gas, so that the nozzle is exposed to severe corrosion. For this reason, it was often necessary to stop the operation to remove the adhering salt or replace the corroded nozzle.
[0005]
FIG. 4 shows an improved type for reducing these. However, since the exhaust gas turbulence generated by the protective tube itself causes spray water droplets to be attracted to the protective tube, particularly the downstream side of the protective tube is exposed to severe corrosion. . If the protective tube is corroded, the seal air will leak and the exhaust gas will enter the protective tube, causing dew condensation due to the temperature of the spray water and the effect of the water droplets of the spray sprayed on, causing corrosion of the spray water piping and spray nozzle tip. Resulting in.
As described above, even with the improved type shown in FIG. 4, the problem of corrosion cannot be completely solved, and the protective tube, spray nozzle tip, and spray water pipe in the protective tube are made of high-grade materials such as Hastelloy and titanium to improve the corrosiveness. However, it has been necessary to repeat the replacement after checking the corrosion state every 3 to 6 months with a service life of 3 to 5 years that can withstand practical use or about SUS316L.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide a liquid spraying apparatus for exhaust gas which can prevent corrosion for a long time using a relatively inexpensive material.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, according to the present invention, in a spraying device for spraying a liquid to exhaust gas, a protection device in which a liquid pipe is incorporated in the exhaust gas and air at a pressure higher than the exhaust gas is supplied into the pipe. A tube is inserted , an opening is provided in the inserted protection tube, a spray nozzle protruding from the opening of the protection tube and connected to a liquid pipe is provided, and a portion of the spray nozzle protruding from the protection tube has at least a surface. It is to be formed of non-metal.
The exhaust gas of the present invention is a dry gas containing an acidic gas such as hydrogen chloride or sulfur oxide having strong corrosiveness to metals when reaching a water dew point or an acid dew point, for example, a waste incinerator, heavy oil, This includes flue gas discharged from oil coke, coal, boilers using various process by-product gases and by-product oil as fuel, and the like. Further, the liquid is mainly water or a liquid containing water, but is not limited thereto.
[0008]
As the nonmetal formed on the nozzle surface that can be used in the present invention, up to a nozzle temperature of about 200 ° C., a thin piece of glass (flakes) is bonded with a highly heat-resistant plastic such as a vinyl ester resin to form a hard, several mm It is preferable to form a layer, that is, flake lining, in which glass flakes and a curable resin are mixed and applied. In this flake lining, the surface layer may be damaged and peeled off, has the strength of glass, hardly penetrates water vapor or the like, and has a property that it is very hard to break because it is a composite with plastic.
Until the nozzle temperature is around 300 ° C., it is preferable to use a dense carbon. It does not corrode and does not break or melt when exposed to water, so there is no problem. The nozzle body is preferably covered with a curable resin adhesive such as epoxy or the like.
When the nozzle temperature is higher than 300 ° C., it is preferable to form a ceramic sprayed layer. It is preferable that the nozzle is sprayed with alumina or the like and subjected to a sealing process. Since the thickness is as thin as 1 mm or less, the temperature almost coincides with the metal portion of the nozzle, and damage due to thermal shock or thermal expansion hardly occurs. If the sealing treatment is performed, the exhaust gas cannot penetrate to the nozzle metal part and is protected from corrosion.
[0009]
[Action]
In the spray device of the type protruding into the exhaust gas flow path, the exhaust gas generated by the protective tube is disturbed downstream of the exhaust gas from the protective tube. In the present invention, since the tip of the spray nozzle is projected outside the region where the exhaust gas is turbulent, water droplets ejected from the spray nozzle are not engulfed by the turbulence of the exhaust gas and are not attracted to the protective tube. Can be prevented.
Further, since the surface of the spray nozzle was made of non-metal, corrosion of the spray nozzle could be prevented.
[0010]
【Example】
Hereinafter, the present invention will be specifically described with reference to the drawings, but the present invention is not limited thereto.
Example 1
FIG. 1 (a) shows a front sectional view of the apparatus for spraying liquid into exhaust gas of the present invention, and FIG. 1 (b) shows a side sectional view of FIG. 1 (a). FIG. 2 shows an enlarged sectional view of the spray nozzle of FIG.
In FIG. 1, reference numeral 1 denotes a wall (steel plate duct) of an exhaust gas passage, in which a protection tube 2 is provided. A spray water pipe 3 is disposed inside the protection pipe 2, and a spray nozzle 4 is provided at a tip of the pipe 3 so as to protrude from a window 9 of the protection pipe 2. Further, a spray water 6 is connected to the spray water pipe 3, and a seal air 7 is connected to the protection pipe 2.
[0011]
In the above apparatus, when the projecting direction of the spray nozzle 4 substantially coincides with the downstream side of the exhaust gas flow direction, the projecting length of the spray nozzle 4 from the protective tube 2 is about the radius or more when the sectional shape of the protective tube is circular. I just need.
Also, when the insertion position of the protection tube 2 is removed from the center of the exhaust gas duct 1 as shown in FIG. The spray water can be blown away. In such a case, the spray end of the spray nozzle can be more reliably put out of the region where the flow sucked into the protection tube occurs due to the turbulence of the exhaust gas generated by the protection tube 2.
[0012]
The direction in which the projection is made depends on the position of the insertion protection tube 2 and the number of the mounting nozzles 4. However, in order to prevent water droplets sprayed on the upstream side from being carried by the exhaust gas and wet the protection tube 2, at least the flow direction of the exhaust gas is required. It must be at right angles to or downstream of it. However, the more the protruding direction is shifted from the downstream side toward the upstream side, the more the area in which the duct wall 1 is wetted by the spray water when the flow of the exhaust gas is stopped extends to the upstream side, so that the heat-resistant and water-resistant lining area is widened. If possible, it is better to keep the swing angle to 30 ° or less.
Further, the seal air 7 is supplied to the protective tube 2 at a pressure slightly higher than the outside exhaust gas so that the exhaust gas does not flow back into the protective tube, and the seal air 7 causes the spray nozzle 4 to protrude. From the opening 9 of the protective tube 2 and the spray nozzle 4. Therefore, the spray water is pushed toward the exhaust gas by the seal air, and the spray water does not return to the protection tube 2 through the spray nozzle 4.
[0013]
Exhaust gas before being sprayed with water is mostly in the range of 150 to 350 ° C. after heat recovery or dust collection. For this reason, SUS-based metal can be used for the protection tube 2 without any problem as long as the protection tube 2 has a heat resistance of 350 to 400 ° C. even in a special case such as an emergency stop.
The protective tube 2 is satisfactory if it is about SUS316L, and can be used satisfactorily with SUS304 as long as the operation state does not change and the spray water does not flow. Since the amount of sealing air is small enough to blow out from the gap between the narrow protective tube and the spray nozzle, there is no need to worry about cooling the protective tube to the dew point even at a temperature close to the atmosphere, and a temperature close to exhaust gas. Therefore, it can be said that there is no low-temperature corrosion unless the spray water is covered.
[0014]
If the portion protruded from the protective tube is made of metal, it will be shifted to the temperature of the spray water and will be lower than the dew point of exhaust gas, at least below the acid dew point, so that it will be exposed to a severe corrosive atmosphere. As a countermeasure for this, as shown in FIG. 2, it is necessary to provide a spray nozzle tip 10 with a protective cover 8 made of, for example, a dense carbon to have heat resistance and corrosion resistance. In particular, dense carbon withstands normal boiler outlet exhaust gas at 200 to 300 ° C and higher temperatures, has perfect corrosion resistance to acids, etc., has water and spalling resistance, and is heat conductive to thermal shock. It can be said that the material is very suitable for the present invention because it has good properties and can withstand.
[0015]
Since the inside is connected to the spray water pipe 3 by screwing or the like, it is preferably made of metal, and SUS316 or the like can be used satisfactorily. However, since it is in contact with the spray water, it may be made of a resin such as polypropylene. The outer protective cover 8 made of carbon or the like and the inner spray nozzle tip 10 are made of, for example, an epoxy-based adhesive 11 having a small volume shrinkage. Even so, there is no concern about crevice corrosion. In this case, a commercially available metal spray nozzle tip 10 can be used, so that it is inexpensive and a substitute can be easily obtained, which is convenient. Since the internal metal spray nozzle tip 10 is cooled by the spray water and is close to the temperature, the adhesive 11 only needs to have a heat resistance of 60 to 70 ° C. and can be easily obtained.
[0016]
If the temperature of the exhaust gas is relatively low at a little less than 150 ° C., for example, a commercially available nozzle tip 10 made of polypropylene is used as it is, and the portion of the connecting pipe that comes out of the protective tube is cooled by the spray water inside if it is used as an FRP pipe. Can be used without any problem.
The above description has been made in the case where the number of spray nozzles is one, but the number of spray nozzles is not limited to one, and may be plural. The number of spray nozzles provided in the protective tube is preferably one in one protective tube in consideration of the effect of sealing air if possible, but two to four spray nozzles may be provided in one protective tube apart from each other.
[0017]
【The invention's effect】
As described above, conventionally, due to severe corrosion, even if made of a high-grade material such as Hastelloy or titanium, it has a life of several years, and what required a large burden for maintenance, according to the present invention, is commercially available An easily available one of about SUS316L using a nozzle tip has improved.
Further, the liquid spraying device of the present invention can be used for all spraying devices conventionally used for liquid spraying into exhaust gas, and the cost reduction, maintenance reduction, and reliability of facilities using such devices, for example, wet exhaust gas treatment equipment, etc. This has a great effect on improving the performance.
[Brief description of the drawings]
FIG. 1 shows an example of a liquid spraying device according to the present invention, in which (a) is a front sectional view and (b) is a side sectional view.
FIG. 2 is an enlarged sectional view of the spray nozzle of FIG.
3A is a front sectional view of a conventional liquid spraying apparatus, and FIG. 3B is a sectional view taken along line AA ′ of FIG. 3A.
4A and 4B show another example of the conventional liquid spraying apparatus, in which FIG. 4A is a front sectional view, and FIG. 4B is a sectional view taken along line BB ′ of FIG.
[Explanation of symbols]
1: wall of exhaust gas channel, 2: protective tube, 3: spray water pipe, 4: spray nozzle: 5: exhaust gas flow, 6: spray water, 7: seal air, 8: protective cover, 9: window of protective tube, 10: nozzle tip, 11: adhesive