JP3557540B2 - Energizing heat discoloring body and energizing discoloring tool set for discoloring the discoloring body - Google Patents

Energizing heat discoloring body and energizing discoloring tool set for discoloring the discoloring body Download PDF

Info

Publication number
JP3557540B2
JP3557540B2 JP33071394A JP33071394A JP3557540B2 JP 3557540 B2 JP3557540 B2 JP 3557540B2 JP 33071394 A JP33071394 A JP 33071394A JP 33071394 A JP33071394 A JP 33071394A JP 3557540 B2 JP3557540 B2 JP 3557540B2
Authority
JP
Japan
Prior art keywords
layer
discoloring
current
heat
thermochromic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33071394A
Other languages
Japanese (ja)
Other versions
JPH08156422A (en
Inventor
尚政 宮下
伸明 松波
勤 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilot Ink Co Ltd
Original Assignee
Pilot Ink Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot Ink Co Ltd filed Critical Pilot Ink Co Ltd
Priority to JP33071394A priority Critical patent/JP3557540B2/en
Publication of JPH08156422A publication Critical patent/JPH08156422A/en
Application granted granted Critical
Publication of JP3557540B2 publication Critical patent/JP3557540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Illuminated Signs And Luminous Advertising (AREA)
  • Toys (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

【0001】
【産業上の利用分野】
本発明は通電発熱変色体及び前記変色体を変色させる通電変色具セットに関する。さらに詳細には、低電圧の印加により通電発熱体を熱変色層の変色に要する適正温度に速やかに昇温させ、比較的大面積の熱変色層を速やかに熱変色可能に構成した通電発熱体及び前記変色体を簡易且つ過熱等の危険もなく安全に変色させる軽便な通電変色具セットに関する。
【0002】
【従来の技術】
従来より、通電発熱体を発熱させて熱変色層を変色させる試みは、幾つか開示されている。
例えば、導電性インキ等の印刷層を発熱させ、前記印刷層上に形成した熱変色層を変色させる試み(実公平5−32862号公報、実開平6−27180号公報等)やセラミック材料からなる正特性抵抗発熱体を適用する試み(特開平4−109986号公報等)が開示されている。
【0003】
【発明が解決しようとする課題】
ところで、前記導電性インキ等の導電印刷層による系では、前記導電印刷層自体が導電性金属微粉末がバインダーに分散固着されているので、抵抗値が比較的高く、短時間での昇温には高電圧の印加を必要とし、更には、前記導電性インキは高粘性のため、複雑かつ細線の印刷回路を形成することが困難であり、加えて印刷層の厚みバラツキ等を余儀なくされ、所望の均質性の発熱回路が得られない。 一方、セラミック材料からなる正特性抵抗発熱体を適用する系では、発熱温度を自己制御できるが、発熱までの時間が長い上、材料自体が硬質であると共に大きさがその成形性の面から制約されており、屈曲性或いは比較的大面積の熱変色には不向きであった。
本発明は前記した従来の通電発熱体による熱変色系の不具合を解消し、低電圧の印加により、長い距離にわたる、比較的大面積の熱変色層を速やかに変色させることができ、更には細線の導電発熱回路の多様なパターンが形成でき、その均質性も満たす通電発熱変色体、及び前記変色体を低電圧の印加により速やかに且つ過熱の危険もなく、効果的に熱変色させる軽便且つ安全性の高い通電変色具セットを提供しようとするものである。
【0004】
【課題を解決するための手段】
本発明を図面について説明する。(図1〜図18参照)
第1の発明は熱変色層が通電発熱層に接触、近接又は中間層を介して配置され、前記通電発熱層に通電することにより、熱変色層を変色させる通電発熱変色体において、前記通電発熱層11が非導電性支持体13表面に配設された金属薄膜による適宜形状の導電発熱回路であり、前記金属薄膜が、常温における体積抵抗率が1.4×10−6Ω・cm〜2.5×10−5Ω・cmの範囲にある金属から選ばれる、厚さ400Å〜100μmであり、且つ単位面積当り発熱量が、常温域で10×10−3W/cm〜3W/cmの範囲にある薄膜からなり、0.8V〜15Vの電圧印加により、熱変色層12を熱変色可能に構成した通電発熱変色体1を要件とする。 第2の発明は、熱変色層が通電発熱層に接触、近接又は中間層を介して配置され、前記通電発熱層に通電することにより、熱変色層を変色させる通電発熱変色体において、前記通電発熱層11が非導電性支持体13表面に配設された金属薄膜による適宜形状の導電発熱回路であり、前記金属薄膜が、常温における体積抵抗率が1.4×10−6Ω・cm〜2.5×10−5Ω・cmの範囲にある金属から選ばれる、厚さ400Å〜100μmであり、且つ単位面積当り発熱量が、常温域で10×10−3W/cm〜3W/cmの範囲にある薄膜からなり、一端及び他端に電極17が形成されており、0.8V〜15Vの電圧印加により、熱変色層12を熱変色可能に構成した通電発熱変色体1の、前記電極17と接続して通電変色させる下記構成(1)、即ち、
(1)電気二重層コンデンサ21を保護部材22に主体部を装着し、端子部23を前記通電発熱変色体1の電極17と接続自在に構成してなり、放電電流を前記導電回路に通電する通電変色具2と、前記電気二重層コンデンサ21に電力を供給して充電させる電源体3からなる通電変色具セットを要件とする。
前記において、更には熱変色層12の下層に非変色像15が配設されており、前記熱変色層12の変色により非変色像15が視覚可能に構成されてなること、通電発熱層11の上層には、非変色性ベース層14が配設されてなること、導電発熱回路の一端及び他端に電極17が形成されてなること、金属薄膜層が銅箔からなり、エッチング加工により得られた導電発熱回路であること、導電発熱回路は、複数の細幅の発熱線路が3mm以下の間隔に近接配置されてなること、導電発熱回路は、太幅線と細幅線の組合わせからなり、前記細幅線の箇所に熱変色層12が形成されてなること、導電発熱回路は、一様な厚みを備えた1mm幅から5mm幅にテーパー状に拡幅されてなること、等を要件とする。
更には第2の発明において、電気二重層コンデンサ21は、静電容量範囲0.22〜100Fの範囲から選ばれ、前記コンデンサ21に充電電力を供給する直流電源は、単セル当り0.5V〜6.0Vの電圧を有する電池又はACアダプターによる変換電流であること、電気二重層コンデンサ21の端子部23には、前記電極17以外の導電材料に接触することによるショートを回避させるショート防止機構24が設けられてなること、電源体3は電池をケース内にセットしてなり、前記電源体3の電極33と電気二重層コンデンサ21の端子部23との間には誤接続防止機構25が設けられてなること、電気二重層コンデンサ21の端子は、その端子をリング状導電部材231に接続して端子部23を構成していると共に該端子部を内在させ、端部を開口した環状突部からなるショート防止機構24が保護部材22の前端部に設けられてなること、電気二重層コンデンサの端子部23と、通電発熱層11の電極との接続をガイドするガイド機構26が保護部材22の前端に設けられてなること、電気二重層コンデンサ21には、発光体27が接続され、充電時及び可使状態において点灯するよう構成したこと、等を要件とする。
【0005】
前記第1の発明について、更に詳細に説明する。
本発明は、良導電性金属材料による薄膜の導電発熱回路を形成することにより、低電圧の印加により所望の発熱温度に速やかに昇温させ、熱変色層を熱変色させることを特徴とし、既述の如き導電性インキによる高抵抗値の導電印刷層の系の不具合を解消しようとするものである。
金属薄膜層を形成する金属は、体積抵抗率1.4×10−6〜2.5×10−5Ω・cmの範囲にあるものが有効であり、具体的には、銅、銅合金、アルミニウム、ニッケル、亜鉛、スズ、チタン、金、銀等の良導電性金属材料が挙げられるが、比較的低コストであり、低抵抗値を有する銅からなる薄膜を適用した系が最も有効である。更に、具体的には、プラスチックフイルム等の基材表面に形成した銅箔層(通常、2μm〜50μm厚程度、より好ましくは3〜15μm厚)をエッチング加工により所望の発熱回路パターンを配設した系が、前記回路パターンの形成し易さ、導電性、持久性、発熱性等の面で実用性を満たす。
更に、目的に応じて、金属蒸着による400Å程度のものから、他の金属箔による100μm程度の厚みの範囲が適用される。
単位面積当りの発熱量は、10×10−3W/cm〜3W/cm、好ましくは50×10−3〜2W/cm、より好ましくは、200×10−3W/cm〜1W/cmであり、前記好適範囲の発熱量に設定することにより、速やかに所望の発熱温度に昇温し、且つ過熱等による危険もなく安全温度に保持される。
10×10−3W/cm未満の系では低電圧の印加では、短時間で発熱しない。一方、3W/cmを越えると瞬時に高温に発熱し危険性を有する。
印加電圧は、0.8V未満では、常温域で熱変色層を変色させて視覚できる程度の温度に短時間で昇温でき難いし、15V以上では、玩具用等への適用に不向きであり、通常、1.5V〜9Vの範囲の直流電源が印加される。
前記した導電発熱回路の上層には、特殊な系を除き、通常、非変色性顔料の分散インキ等を隠蔽印刷して、前記回路の視覚を妨げる非変色性ベース層14を形成し、次いで、前記非変色性ベース層14上に非変色像15を非熱変色性インキにより形成し、前記非変色像15の上層に該非変色像の常温での視覚を妨げる熱変色層12を形成する。ここで、導電発熱回路パターンは、発熱により熱変色層12を変色させて非変色像15を顕出させる関連性を満たすよう、非変色像15に相応するパターンの設計がなされる。
非変色性輪郭層16は、熱変色層12の変色による熱の拡がりにより輪郭が不鮮明となることを防ぐためのものであり、適宜、配設される。
熱変色層12を形成する熱変色性材料は、従来より公知の感温変色性色素を含む熱変色性材料、例えば、電子供与性呈色性有機化合物、電子受容性化合物及び前記両者の呈色反応を可逆的に生起させる有機化合物媒体の3成分を含む熱変色性材料又は前記成分の樹脂固溶体の微粒子の形態の熱変色性を示す熱変色性材料(例えば、特公昭51−35414号公報、特公昭51−44706号公報、特公平1−29398号公報等)を挙げることができる。前記は所定の温度(変色点)を境として、その前後で変色し、変化前後の両状態のうち常温域では特定の一方の状態しか存在しえない。即ち、もう一方の状態では、その状態が発現するのに要する熱または冷熱が適用されている間は維持されるが、前記熱又は冷熱の適用がなくなれば、常温域で呈する状態に戻る(所謂、温度変化による温度−色濃度について小さいヒステリシス幅を示して変色する)タイプである。
又、本出願人が先に提案した特公平4−17154号公報、特開平6−135144号公報等に記載されている、大きなヒステリシス特性を示して変色する色彩記憶性感温変色性色素を含む熱変色性材料(即ち、温度変化による着色濃度の変化をプロットした曲線の形状が、温度を変色温度域より低温側から温度を上昇させていく場合と逆に変色温度より高温側から下降させていく場合とで大きく異なる経路を辿って変色するタイプ:低温側変色点と高温側変色点の間の常温域において、前記低温側変色点以下又は高温側変色点以上の温度で変化させた様相を記憶保持できる)で彩色された熱変色層が挙げられる。
尚、熱変色層12の表面には、透明樹脂或いはマット状のコーティング層を適宜、設けることができる。
次に、第2の発明について更に詳細に説明する。
【0006】
前記した電気二重層コンデンサ21は、公知のものを適用できる。その構成は基本セルにおいて、活性炭と電解液(希硫酸水溶液)の混合系からなり、活性炭同士の接触による短絡を防止するため電気的絶縁性の多孔質セパレーターを介在させて構成し、前記固体と液体との異なった二層が接触すると、その界面において正負の電荷が極めて短い距離を隔てて相対して分布し、そこへ外部から電圧を印加すると、更に大きな電荷を短時間で蓄える作用をなすものであり、本発明における低電圧の印加により作動する玩具要素への通電手段として有効に機能する。市販品として、松下電子部品株式会社製の商品名ゴールドキャパシタALシリーズ(円筒形であり、単セル2.5V耐電圧、容量0.22F(外径寸法:φ6.8×L21mm)〜10F(外径寸法:φ18×L35mm)のものを例示できる。 前記した電気二重層コンデンサ31は、蓄電池的機能を果たし、電気容量はコンデンサと較べ大容量であり、大電流の瞬時の放電が可能であり、電源電池の電力を小分けして蓄えるので、放電電力は限られており、過熱によるトラブルを発生させず、温度センサや制御回路が不要である。又、電源電池の容量が減少したとしても、充電時間が長くなるだけであり、一回の放電出力は略一定であり、電池を経済的に使用できる。又、放電特性が電池より優れており、瞬時に所要電流を放電する。
【0007】
前記直流電源体3としては、乾電池、太陽電池等のバッテリ−、或いはACアダプターによるDC変換電流を適用でき、電気二重層コンデンサ21は前記直流電源よりの電流を受けて充電され、大電流を瞬時に放電し、前記充放電は繰り返しの適用に際して機能を低下させることもなく、玩具要素を繰り返し作動させるために効果的に機能する。
【0008】
電気二重層コンデンサ21からなる通電変色具2は、前記直流電源から所要電流を受けて充電された後、前記電源から分離され、単体として通電発熱層11に放電電流を供給して作動させ、電力消費後にあっては、前記充電−放電操作により繰り返しの通電、作動を行うことができる。
前記電気二重層コンデンサ21を単体の通電手段として適用し、利便性、安全性、持久性を付与させるために、プラスチック製の容筒等からなる保護部材22に主体部を収容させ、端子部23を通電発熱変色体1の電極17に接続、接続解除自在に構成し、更には端子部23が前記電極17以外の導電材料に接触することによるショートを回避させるショート防止機構24等が設けられる。前記における保護部材22は、玩具性或いは意匠性を高めるために適宜形象に造形したプラスチック成形体等を適宜使用できる。
【0009】
【作用】
第1の発明において、通電発熱層11は電気抵抗値の低い、良導電性の金属材料により、発熱所要部位の抵抗値を熱変色層を変色させるに要する適正温度に昇温させるよう設計し、この際、単位面積当り特定の発熱量に設定されているので、低電圧の印加により速やかに適正温度に昇温され、熱変色層12を変色させ、非変色像15を視覚させる。中でも、銅箔のエッチングにより発熱回路を形成する系にあっては、低電圧の印加に即応する適正な良導電性と、目的の箇所を発熱させる抵抗値を高めた細線からなる多様な均質性の発熱回路が形成されており、速やかに熱変色する多様な形状の比較的大面積の熱変色像及び非変色像15を視覚させるのに有効に機能する。
第2の発明における、電気二重層コンデンサ21を適用した通電変色具2は、別に用意した直流電源体3の電流を受けて充電され、放電電流を通電発熱層11に通電して熱変色させる。
ここで、電気二重層コンデンサ21が低抵抗であり、比較的大容量である特性に依存して、急速充放電がおこなわれ、低電圧印加による通電発熱手段として効果的に機能する。
更には、電気二重層コンデンサ21は、その特性に依存して電源電池の電気量を小分けして蓄えており、過電流が継続して放電されることがなく、過熱によるトラブルを発生させない。
【0010】
【実施例】
実施例1(図1〜図7参照)
図1は通電発熱により熱変色層12を消色させ、非変色像15(星座模様)を現出させた状態を示し、図2は前記非変色像15が熱変色層12で隠蔽された非通電時の状態を示す。
図3は前記星座模様を現出させるための導電発熱回路を示し、A部分が星、B部分が星と星を結ぶ線に相当し、図4は前記A部分の非熱変色状態の、図5は熱変色状態の各拡大縦断面説明図である。図6は前記B部分の非熱変色状態の、図7は熱変色状態の各縦断面説明図である。
前記における導電発熱回路は、PETフイルム(ポリエチレンテレフタレートフイルム)に0.3μm厚の銅蒸着薄膜を形成した加工フイルム基材をエッチング加工により形成した、2mm幅の発熱回路であり、両端部を5mm幅となして電極17を構成する(通常、リング状導電部材を取り付け、通電変色具2の端子23との接続の便宜を図る)。前記通電発熱回路は、発熱回路の全長が45cmであり、単位面積当り発熱量は、概略1.23W/cmであった。
前記導電発熱回路の上層に非変色性白色顔料インキによる印刷層を形成して、前記回路を隠蔽した後、非変色像15(星座模様)を非変色性インキにより印刷形成し、前記星座模様を可逆性熱変色性インキ(30℃以上で無色、30℃未満で黒色を呈する)により隠蔽印刷し熱変色層12を形成した。
得られた通電発熱体1について、12Vの直流電圧を印加したところ、星座模様の上層の熱変色層が消色し、星座模様を視覚させた。前記通電を解除すると再び熱変色層12は黒色に発色し、星座模様は不可視状態に戻った。
実施例2(図8〜図14)
図8は通電発熱により熱変色層12を消色させ、非変色像15(A、B、C、D、E)を現出させた状態を示し、図9は前記非変色像15が熱変色層12で隠蔽された非通電時の状態を示す。
図10は前記非変色像15を現出させるための導電発熱回路を示し、連続した発熱回路により、A〜Eの各単離像を熱変色層の変色に伴ってって視覚させる。図11は、前記図10のC部分の拡大縦断面状態を示し、導電発熱回路上には非変色性ベース層14が形成され、次いで所望の像を形成する輪郭をもつ熱変色層12〔色彩記憶性熱変色性インキ(低温側変色点18℃、高温側変色点30℃:18℃未満で赤色を呈し、30℃以上で無色に変化し、室温(25℃)で赤色或いは無色の様相を互変的に記憶保持〕を設けると共に、前記熱変色層12を内在状態に赤色の非変色性輪郭層16を配設する。
図12〜図14は、前記図10のC部分に関連して、通電変色により鮮明な像を視覚させる他の例をそれぞれ示し、図12は導電発熱回路11の上層の非変色性ベース層14の上層に熱変色層12を設けると共に非変色性輪郭層16を設けてなり、図13は非変色層16上に熱変色像12を形成した例であり、図14は、図11の変形例であり、熱変色像12の周辺に非変色性輪郭層16を適宜間隔をおいて配設した例である。
前記における基材はアクリルフイルム表面に、10μmの銅箔層が形成されており、エッチング加工により2mm幅の発熱回路(全長80cm)が形成されており、単位面積当り発熱量は、概略57.5×10−3W/cmであり、0.8Vの電圧印加により熱変色層を消色させ、前記非変色像15(A〜E)を視覚させた。前記模様は室温下て記憶保持され、一方、18℃以下の冷却により再度、前記像を不可視状態に戻した。
実施例3(図15〜16)
図15は、複数の花柄模様を複数の導電発熱回路の組み合わせにより表現した例であり、D部分の熱変色層12を変色させ、非変色像15(花柄模様)の一部を視覚させた状態を示し、図13は、前記D部分を含む全体の導電発熱回路の平面状態を示す。
図16における導電発熱回路は、PETフイルム表面に5μm厚みの銅箔層が形成された基材を用い、レジストインキにより前記回路と同じ印刷像をスクリーン印刷により形成した後、エッチングにより不要の銅を溶解除去し、導電発熱回路〔2mm線幅を有し、両端を5mm幅の線(端部に電極)に形成〕を形成した。前記各導電回路(各回路の端部には電極17がそれぞれ形成されている)の抵抗値は1.0Ω〜2.0Ωの範囲にあり、D部分の導電発熱回路の面積は約20cmである。
前記導電発熱層上に非変色性ベース層14(白色顔料インキによる印刷層)を形成し、次いで非変色像15(花柄模様)を非変色性インキによる印刷形成し、前記花柄模様を含む全表面に色彩記憶性熱色性インキ(低温側変色点:18℃、高温側変色点:30℃、18℃未満で黒色を呈し、30℃以上で無色に変化し、室温(25℃)で前記黒色、無色の様相を互変的に記憶保持させる)にて熱変色層12を印刷形成した。
前記通電発熱体1は、各電極に通電することにより室温下で黒色状態とある熱変色層12をそれぞれ消色させ、全花柄模様を現出させる。
比較例
実施例3の銅箔による導電発熱回路に代えて銀ペースト〔藤倉化成(株)製、ドータイトFA−303〕を用いて、同様のパターンを形成した。各導電回路の抵抗値は、平均値で30Ω〜400Ωであり、印刷の度毎に抵抗値は変動し、均質且つ低電圧で短時間で所定温度に昇温させる回路を形成させることは出来なかった 前記D部分について、抵抗値、変色特性について、前記銅箔による系と銅ペーストによる系を比較すると以下のとおり〔( )内は銀ペーストの系である〕。 銅箔の系では、室温(23℃)において、抵抗値1.7Ω(34〜225Ω)、10秒以内に熱変色層を変色完了させるための電位:2.83V(8.6〜14.5V)、単位面積当り電力(発熱量):235×10−3W/cm(47〜109×10−3W/cm)をそれぞれ示した。
前記比較データにみられる如く、銀ペーストの系は、銅箔の系に較べ、抵抗値が高い上、バラツキあり、短時間に熱変色させるに要する電位も高く、低電圧の印加により速やかに高精度で熱変色させる用途には実用性を満足させ難い。
次に通電変色具2についての実施例を記載する。
電気二重層コンデンサ21として、ゴールドキャパシタALシリーズ〔(松下電子部品株式会社製)、円筒形状の外観ボディーを有し、単セル2.5Vの耐電圧、静電容量3.3F、1KHzにおける内部抵抗0.3(Ω)、外径寸法φ12.5×L23.0mm、端子の径0.8mmφを有してなる〕を用い、前記コンデンサ21をプラスチック製の保護部材22に収容させ、両端子を真鍮製鳩目231に接続させて端子部23を構成しており、該端子部23は前記保護部材22の前端の開口端に位置させ、ショート防止のための環状突起24に端子部23を内在させており、前記開口端の近傍の軸線方向には電源体3との誤接続を防止するための突条25が設けられており、前記保護部材22の後端には、該コンデンサ21に接続させた発光ダイオード27の一部を突出状態に組み付けて、通電変色具2を構成する。
【0011】
前記通電変色具2に充電電力を供給する電源体3は、プラスチックケース32内に1.5Vの乾電池2個を収容し、その電極33(真鍮製鳩目)をケース32上面の開口部に位置させ、前記開口部には前記突条25と係合する切り欠き34が設けられており、前記端子部23と誤接続することなく、係脱自在に構成される。
通電発熱体1の導電発熱回路の両端部に一体的に連接形成した5mm線幅の端部に形成した電極17(真鍮製鳩目で構成)と接続することにより通電させる。
【0012】
前記の通電変色具2の端子部23と電源体3の電極33と接続させ、10秒間、充電した後、該変色具を単離し、端子部23を前記通電発熱変色体1の電極17に接続し、通電したところ、27℃の室温下において着色状態にある熱変色層12を15秒間、消色状態に保持させることができ、発熱線路の温度は48℃以上に昇温することはなかった。
前記電池による直接印加では長時間、電流が流れ続けるため、発熱線路の温度は80℃以上に昇温した。
【0013】
【発明の効果】
低電圧の印加(0.8〜15V)により、発熱所要部位を通電発熱させ、熱変色層を速やかに変色させ、熱変色像は勿論、熱変色層に隠蔽状態にある非変色像を現出させて視覚させる。導電性インキによる導電印刷回路による系が、高い抵抗値であり、短時間で変色させるには高電圧の印加を必要とし、更には、電極形成の困難さ、大面積の変色が困難なこと等の不具合を一挙に解消する。
中でも、基材表面に形成した銅箔層のエッチング加工により得られる導電発熱回路は、多様な均質性の回路を比較的簡易に形成でき、前記回路に相応する像を現出、視覚させることができる。
更には、低電圧の印加により通電発熱し、熱変色させる通電発熱変色体への通電手段として、電気二重層コンデンサを適用することにより、急速充放電による特性を効果的に発現させる。
前記コンデンサは、電源体に接続して所要の電流を受けて充電された後は、単離され、コードレス状態の単体の通電要素として機能し、通電発熱層の電極に放電し、電力を消費後にあっては、再度、前記の充電操作を行い、繰り返しの放電による通電操作に供することができ、軽便性を満たすと同時に、適正の電流が瞬時に導電発熱層に供給されて発熱させ、熱変色層を効果的に変色させる。この際、過電流が継続して供給されることもなく、過熱の危険もない。更には、ショート防止機構、誤接続防止機構、ガイド機構、充放電時の発光機構等が備えられているので、幼児等にあっても操作を間違うことなく、適正に使用でき、低電圧の作動特性と相まって安全性、実用性を満たし、なかんずく、玩具分野に有効な通電変色セットを提供できる。
【図面の簡単な説明】
【図1】本発明通電発熱変色体の一実施例を示し、通電発熱により熱変色層を変色させ、非変色像を顕出させた平面状態説明図である。
【図2】図1の通電発熱変色体の非通電時の平面状態説明図である。
【図3】図1の通電発熱変色体の導電発熱回路図である。
【図4】図1の通電発熱変色体のA部分が非熱変色状態の拡大縦断説明図である。
【図5】図1の通電発熱変色体のA部分が熱変色状態の拡大縦断説明図である。
【図6】図1の通電発熱変色体のB部分が非熱変色状態の拡大縦断説明図である。
【図7】図1の通電発熱変色体のB部分が熱変色状態の拡大縦断説明図である。
【図8】本発明通電発熱変色体の他の実施例を示し、通電発熱により熱変色層を変色させ、非変色像を顕出させた平面状態説明図である。
【図9】図8の通電発熱変色体の非通電時の平面状態説明図である。
【図10】図8の通電発熱変色体の導電発熱回路図である。
【図11】図8の通電発熱変色体のC部分の拡大縦断説明図である。
【図12】図8のC部分の他の例の拡大縦断説明図である。
【図13】図8のC部分の他の例の拡大縦断説明図である。
【図14】図8のC部分の他の例の拡大縦断説明図である。
【図15】本発明通電発熱変色体の他の実施例を示し、通電発熱によりD部分の熱変色層を変色させ、非変色像を顕出させた平面状態説明図である。
【図16】図15の通電発熱変色体の導電発熱回路図である。
【図17】本発明通電発熱変色体及び通電変色具セットの各斜視図である。
【図18】本発明通電変色具の適用による操作説明図である。
【符号の説明】
1 通電発熱変色体
11 通電発熱層
12 熱変色層
13 非導電性支持体
14 非変色性ベース層
15 非変色像
16 非変色性輪郭層
17 電極
18 非変色性隠蔽層
2 通電変色具
21 電気二重層コンデンサ
22 保護部材
23 端子部
231 リング状導電部材
232 バネ
24 ショート防止機構
25 誤接続防止機構
26 ガイド機構
27 発光体
3 電源体
31 電源
32 ケース
33 電極
34 誤接続防止機構
[0001]
[Industrial applications]
The present invention relates to a current-carrying discoloration body and a current-carrying discoloration tool set for discoloring the discoloration body. More specifically, an energizing heating element configured to quickly raise the temperature of the energizing heating element to an appropriate temperature required for discoloration of the thermochromic layer by applying a low voltage, and to quickly discolor the thermochromic layer of a relatively large area. The present invention also relates to a simple and easy-to-use energizing discoloration tool set for discoloring the discolored body safely without danger such as overheating.
[0002]
[Prior art]
Hitherto, several attempts to discolor the thermochromic layer by causing the energized heating element to generate heat have been disclosed.
For example, an attempt is made to generate heat in a printing layer of conductive ink or the like to change the color of a thermochromic layer formed on the printing layer (Japanese Utility Model Publication No. 5-32862, Japanese Utility Model Publication No. 6-27180, etc.), or a ceramic material. An attempt to apply a positive characteristic resistance heating element (Japanese Patent Laid-Open No. 4-109996) has been disclosed.
[0003]
[Problems to be solved by the invention]
By the way, in a system using a conductive printing layer such as the conductive ink, the conductive printing layer itself has a conductive metal fine powder dispersed and fixed in a binder, so that the resistance value is relatively high, and the temperature can be increased in a short time. Requires the application of a high voltage, and furthermore, the conductive ink has a high viscosity, so that it is difficult to form a complicated and fine-line printed circuit, and in addition, the thickness variation of the printed layer is inevitably required. Heating circuit of uniformity cannot be obtained. On the other hand, in a system using a positive resistance heating element made of a ceramic material, the heating temperature can be self-controlled, but the time until heat generation is long, and the material itself is hard and the size is limited due to its formability. Therefore, it is not suitable for flexibility or thermal discoloration of a relatively large area.
The present invention solves the problem of the thermochromic system caused by the above-described conventional energized heating element, and can rapidly discolor a thermochromic layer having a relatively large area over a long distance by applying a low voltage. A variety of patterns of conductive heat generating circuit can be formed and the heat generating heat discoloring body that satisfies the homogeneity thereof, and the heat discoloration can be effected quickly and without danger of overheating by applying a low voltage, and the heat discoloration is effective and safe. It is an object of the present invention to provide a highly conductive energetic discoloration tool set.
[0004]
[Means for Solving the Problems]
The present invention will be described with reference to the drawings. (See FIGS. 1 to 18)
According to a first aspect of the present invention, there is provided a current-carrying heat discoloring body in which a thermochromic layer is disposed in contact with, close to, or via an intermediate layer with a current-carrying layer, and a current is supplied to the current-carrying layer to discolor the thermochromic layer. The layer 11 is a suitably formed conductive heating circuit formed of a metal thin film disposed on the surface of the non-conductive support 13, and the metal thin film has a volume resistivity of 1.4 × 10 4 at room temperature. -6 Ω · cm to 2.5 × 10 -5 Å · cm, a thickness of 400Å-100 μm, and a calorific value per unit area of 10 × 10 -3 W / cm 2 ~ 3W / cm 2 The heat-generating and heat-discoloring body 1 which is composed of a thin film in the range described above and in which the thermochromic layer 12 can be thermally discolored by applying a voltage of 0.8 V to 15 V is a requirement. According to a second aspect of the present invention, in the energized heat discoloring body, the thermochromic layer is disposed in contact with, close to, or via an intermediate layer with the energized heat generating layer, and energizes the energized heat generating layer to discolor the thermochromic layer. The heat generating layer 11 is a suitably formed conductive heat generating circuit formed by a metal thin film disposed on the surface of the non-conductive support 13, and the metal thin film has a volume resistivity of 1.4 × 10 4 at room temperature. -6 Ω · cm to 2.5 × 10 -5 Å · cm, a thickness of 400Å-100 μm, and a calorific value per unit area of 10 × 10 -3 W / cm 2 ~ 3W / cm 2 The electrode 17 is formed at one end and the other end of the thin film in the range described above, and when a voltage of 0.8 V to 15 V is applied, the thermochromic layer 12 is configured to be capable of thermally discoloring. The following configuration (1) that connects to the electrode 17 and changes the color by energization,
(1) The electric double layer capacitor 21 is attached to the protective member 22 with the main part attached thereto, and the terminal part 23 is configured to be freely connectable to the electrode 17 of the energized heat-discoloring body 1 so that a discharge current is supplied to the conductive circuit. A current-carrying discoloration tool set including a current-carrying discoloration tool 2 and a power supply 3 for supplying power to the electric double layer capacitor 21 for charging is required.
In the above, further, a non-color-change image 15 is provided below the thermochromic layer 12, and the non-color-change image 15 is configured to be visible by the color change of the thermochromic layer 12. In the upper layer, a non-discolorable base layer 14 is provided, electrodes 17 are formed on one end and the other end of the conductive heating circuit, and the metal thin film layer is made of copper foil, and is obtained by etching. A conductive heat generating circuit, the conductive heat generating circuit includes a plurality of narrow heat generating lines arranged close to each other at an interval of 3 mm or less, and the conductive heat generating circuit includes a combination of a wide line and a narrow line. The thermochromic layer 12 is formed at the narrow line, and the conductive heat generating circuit is tapered from a width of 1 mm having a uniform thickness to a width of 5 mm. I do.
Further, in the second invention, the electric double layer capacitor 21 is selected from a capacitance range of 0.22 to 100 F, and a DC power supply for supplying charging power to the capacitor 21 is 0.5 V to 0.5 V per unit cell. A short-circuit prevention mechanism 24 for avoiding a short-circuit caused by contacting a conductive material other than the electrode 17 with a terminal 23 of the electric double-layer capacitor 21 being a conversion current by a battery or an AC adapter having a voltage of 6.0 V; Is provided, and the power source 3 has a battery set in a case, and an erroneous connection prevention mechanism 25 is provided between the electrode 33 of the power source 3 and the terminal portion 23 of the electric double layer capacitor 21. The terminal of the electric double layer capacitor 21 is connected to the ring-shaped conductive member 231 to form the terminal portion 23, and the terminal portion is provided inside. A short-circuit prevention mechanism 24 having an annular projection with an open end is provided at the front end of the protection member 22 to guide the connection between the terminal 23 of the electric double layer capacitor and the electrode of the energized heating layer 11. A guide mechanism 26 is provided at the front end of the protection member 22, and a light emitting body 27 is connected to the electric double layer capacitor 21 so that the electric double layer capacitor 21 is turned on during charging and in a usable state. I do.
[0005]
The first invention will be described in more detail.
The present invention is characterized in that by forming a conductive heating circuit of a thin film made of a good conductive metal material, the temperature is quickly raised to a desired heating temperature by applying a low voltage, and the thermochromic layer is thermally discolored. An object of the present invention is to solve the problems of the conductive printing layer system having a high resistance value by the conductive ink as described above.
The metal forming the metal thin film layer has a volume resistivity of 1.4 × 10 -6 ~ 2.5 × 10 -5 Those in the range of Ω · cm are effective, and specific examples thereof include copper, copper alloy, aluminum, nickel, zinc, tin, titanium, gold, silver, and other good conductive metal materials. A system in which a low-cost, low-resistance copper thin film is applied is most effective. Further, specifically, a desired heat generating circuit pattern is provided by etching a copper foil layer (typically about 2 μm to 50 μm thick, more preferably 3 to 15 μm thick) formed on the surface of a base material such as a plastic film. The system satisfies practicality in terms of ease of forming the circuit pattern, conductivity, durability, heat generation, and the like.
Further, depending on the purpose, a range of about 400 ° from metal vapor deposition to a thickness of about 100 μm from another metal foil is applied.
The calorific value per unit area is 10 × 10 -3 W / cm 2 ~ 3W / cm 2 , Preferably 50 × 10 -3 ~ 2W / cm 2 , More preferably 200 × 10 -3 W / cm 2 ~ 1W / cm 2 By setting the calorific value within the above-described preferred range, the temperature is quickly raised to a desired heat-generating temperature, and is maintained at a safe temperature without danger due to overheating or the like.
10 × 10 -3 W / cm 2 In a system of less than, no heat is generated in a short time when a low voltage is applied. On the other hand, 3W / cm 2 Exceeding the limit instantaneously generates heat and has a risk.
When the applied voltage is less than 0.8 V, it is difficult to raise the temperature in a short time to a temperature at which the thermochromic layer discolors in a normal temperature range and can be visually observed, and when the applied voltage is 15 V or more, it is unsuitable for application to toys and the like. Normally, a DC power supply in the range of 1.5V to 9V is applied.
On the upper layer of the above-mentioned conductive heat generating circuit, except for a special system, usually, concealed printing of a non-color-changing pigment dispersion ink or the like to form a non-color-changing base layer 14 that hinders the visual sense of the circuit, A non-color-changing image 15 is formed on the non-color-changing base layer 14 with a non-thermochromic ink, and a thermochromic layer 12 is formed on the non-color-changing image 15 to prevent the non-color-changing image from being viewed at room temperature. Here, the conductive heating circuit pattern is designed to have a pattern corresponding to the non-color-changed image 15 so as to satisfy the relationship of discoloring the thermochromic layer 12 by heat generation to reveal the non-color-changed image 15.
The non-color-changing contour layer 16 is for preventing the contour from becoming unclear due to the spread of heat due to the discoloration of the thermochromic layer 12, and is appropriately disposed.
The thermochromic material forming the thermochromic layer 12 is a thermochromic material containing a conventionally known thermochromic dye, for example, an electron-donating color-forming organic compound, an electron-accepting compound, and coloring of both. A thermochromic material containing three components of an organic compound medium that causes a reversible reaction or a thermochromic material exhibiting thermochromic properties in the form of fine particles of a resin solid solution of the component (for example, JP-B-51-35414, JP-B-51-44706, JP-B-1-29398 and the like. The color changes before and after a predetermined temperature (discoloration point), and only one specific state can exist in a normal temperature range between the two states before and after the change. That is, in the other state, the state is maintained while the heat or cold required for the state to appear is applied, but when the heat or cold is no longer applied, the state returns to the state exhibited in the normal temperature range (a so-called state). , The color changes due to a small hysteresis width with respect to the temperature-color density due to the temperature change).
In addition, a heat-containing thermochromic dye containing a color-memorizing thermochromic dye, which exhibits large hysteresis characteristics and is discolored, described in Japanese Patent Publication No. Hei 4-17154 and Japanese Patent Laid-Open No. Hei 6-135144 previously proposed by the present applicant. The color-changing material (that is, the shape of the curve plotting the change in the color density due to the temperature change is such that the temperature is lowered from a temperature higher than the color change temperature, in contrast to a case where the temperature is increased from a temperature lower than the color change temperature range. A type that changes color by following a path that is significantly different from the case: in a normal temperature range between the low-temperature color change point and the high-temperature color change point, the appearance of changing at a temperature below the low-temperature color change point or above the high-temperature color change point is stored. Thermochromic layer colored with (can be retained).
In addition, a transparent resin or a mat-like coating layer can be appropriately provided on the surface of the thermochromic layer 12.
Next, the second invention will be described in more detail.
[0006]
Known electric double layer capacitors 21 can be used. The basic cell is composed of a mixed system of activated carbon and an electrolytic solution (dilute sulfuric acid aqueous solution) in a basic cell, with an electrically insulating porous separator interposed between the activated carbons to prevent short-circuiting due to contact between the activated carbons. When two different layers come into contact with the liquid, positive and negative charges are distributed relative to each other at a very short distance at the interface, and when a voltage is applied to the layer from outside, it acts to store even larger charges in a short time. And effectively functions as a means for energizing a toy element that operates by applying a low voltage in the present invention. As a commercially available product, Gold Capacitor AL series (trade name, manufactured by Matsushita Electronic Components Co., Ltd.) (cylindrical, single cell 2.5V withstand voltage, capacity 0.22F (outer diameter: φ6.8 × L21mm) to 10F (outer The electric double layer capacitor 31 has a function of a storage battery, has a large electric capacity as compared with a capacitor, and can discharge a large current instantaneously. Since the power of the power battery is stored in small parts, the discharge power is limited, there is no trouble due to overheating, no temperature sensor or control circuit is required, and even if the capacity of the power battery is reduced, the battery is charged. Only a long time is required, the output of one discharge is substantially constant, the battery can be used economically, and the discharge characteristics are superior to that of the battery, and the required current is discharged instantaneously.
[0007]
As the DC power supply 3, a battery such as a dry cell or a solar cell, or a DC conversion current by an AC adapter can be applied. The electric double layer capacitor 21 is charged by receiving the current from the DC power supply, and instantaneously outputs a large current. The charging / discharging functions effectively for repeatedly operating the toy element without deteriorating its function upon repeated application.
[0008]
The energizing discoloration device 2 including the electric double layer capacitor 21 is charged by receiving a required current from the DC power source, is separated from the power source, and operates by supplying a discharge current to the energizing heat generating layer 11 as a single unit. After consumption, repetitive energization and operation can be performed by the charge-discharge operation.
The electric double layer capacitor 21 is applied as a single energizing means, and in order to impart convenience, safety, and durability, a main body is housed in a protective member 22 made of a plastic cylinder or the like, and a terminal 23 Is connected to and disconnected from the electrode 17 of the energized heat-discoloring body 1, and a short-circuit preventing mechanism 24 for preventing a short-circuit caused by the terminal portion 23 contacting a conductive material other than the electrode 17 is provided. As the protective member 22 in the above, a plastic molded body or the like that is appropriately shaped in order to enhance toy or design can be used as appropriate.
[0009]
[Action]
In the first invention, the energizing heat generating layer 11 is designed by using a good conductive metal material having a low electric resistance value so as to raise the resistance value of the heat generation required portion to an appropriate temperature required for discoloring the thermochromic layer, At this time, since a specific heat value is set per unit area, the temperature is quickly raised to an appropriate temperature by applying a low voltage, the thermochromic layer 12 is discolored, and the non-discolored image 15 is visually recognized. In particular, in systems where a heating circuit is formed by etching copper foil, a variety of uniformity consisting of appropriate good conductivity that responds immediately to the application of a low voltage, and thin wires with increased resistance to generate heat at the target location Is formed, and effectively functions to visualize a relatively large-area thermochromic image and a non-color-changing image 15 of various shapes that rapidly undergo thermal discoloration.
In the second invention, the energizing discoloration device 2 to which the electric double layer capacitor 21 is applied is charged by receiving the current of the separately prepared DC power supply 3, and supplies a discharging current to the energizing heating layer 11 to thermally discolor.
Here, depending on the characteristics of the electric double layer capacitor 21 having a low resistance and a relatively large capacity, rapid charging / discharging is performed, and the electric double layer capacitor 21 effectively functions as an energizing and heating means by applying a low voltage.
Further, the electric double-layer capacitor 21 stores the amount of electricity of the power supply battery in small portions depending on the characteristics thereof, so that the overcurrent is not continuously discharged and the trouble due to overheating does not occur.
[0010]
【Example】
Example 1 (see FIGS. 1 to 7)
FIG. 1 shows a state in which the thermochromic layer 12 is decolorized by energizing heat and a non-color-changing image 15 (constellation pattern) appears, and FIG. 2 shows a state in which the non-color-changing image 15 is concealed by the thermochromic layer 12. This shows the state at the time of energization.
FIG. 3 shows a conductive heating circuit for causing the constellation pattern to appear, in which A portion corresponds to a star, B portion corresponds to a line connecting the star and the star, and FIG. 4 is a diagram of the non-thermal discoloration state of the A portion. FIG. 5 is an enlarged vertical cross-sectional explanatory view of a thermochromic state. FIG. 6 is a vertical sectional view of the portion B in a non-thermochromic state, and FIG.
The conductive heat generating circuit described above is a heat generating circuit having a width of 2 mm formed by etching a processed film base material in which a 0.3 μm thick copper vapor-deposited thin film is formed on a PET film (polyethylene terephthalate film). Thus, the electrode 17 is formed (usually, a ring-shaped conductive member is attached to facilitate the connection with the terminal 23 of the energizing discoloration tool 2). In the energization heating circuit, the total length of the heating circuit is 45 cm, and the heat generation per unit area is approximately 1.23 W / cm. 2 Met.
After forming a printing layer of a non-color-changing white pigment ink on the upper layer of the conductive heat generating circuit and concealing the circuit, a non-color-changing image 15 (constellation pattern) is printed and formed with the non-color-changing ink to form the constellation pattern. Concealment printing was performed with a reversible thermochromic ink (colorless above 30 ° C. and black below 30 ° C.) to form a thermochromic layer 12.
When a DC voltage of 12 V was applied to the obtained current-carrying heating element 1, the thermochromic layer on the constellation pattern was discolored and the constellation pattern was visualized. When the energization was stopped, the thermochromic layer 12 developed black again, and the constellation pattern returned to the invisible state.
Example 2 (FIGS. 8 to 14)
FIG. 8 shows a state in which the thermochromic layer 12 is decolorized by the heat generated by energization and a non-color-changed image 15 (A, B, C, D, E) appears, and FIG. The state at the time of non-energization hidden by the layer 12 is shown.
FIG. 10 shows a conductive heating circuit for causing the non-color-changed image 15 to appear, and each isolated image of A to E is visualized by the continuous heat generation circuit along with the color change of the thermochromic layer. FIG. 11 shows an enlarged vertical cross-sectional view of the portion C in FIG. 10, in which a non-color-changing base layer 14 is formed on the conductive heating circuit, and then a thermochromic layer 12 having a contour for forming a desired image [color Memory thermochromic ink (low-temperature discoloration point 18 ° C, high-temperature discoloration point 30 ° C: turns red at less than 18 ° C, turns colorless at 30 ° C or more, and turns red or colorless at room temperature (25 ° C). And a red non-color-changing contour layer 16 is provided while the thermochromic layer 12 is contained therein.
FIGS. 12 to 14 show other examples related to the portion C in FIG. 10 in which a clear image is visually recognized by energizing discoloration. FIG. 12 shows the non-discolorable base layer 14 on the conductive heating circuit 11. FIG. 13 shows an example in which a thermochromic image 12 is formed on the non-color-changing layer 16 and a thermochromic image 12, and FIG. This is an example in which a non-color-change contour layer 16 is arranged around the thermochromic image 12 at appropriate intervals.
In the above substrate, a 10 μm copper foil layer was formed on the surface of an acrylic film, a heating circuit having a width of 2 mm (total length: 80 cm) was formed by etching, and the heat generation per unit area was approximately 57.5. × 10 -3 W / cm 2 The thermochromic layer was decolorized by applying a voltage of 0.8 V, and the non-color-change images 15 (A to E) were visually recognized. The pattern was stored at room temperature while the image was returned to the invisible state again by cooling below 18 ° C.
Example 3 (FIGS. 15 and 16)
FIG. 15 is an example in which a plurality of flower patterns are represented by a combination of a plurality of conductive heat generating circuits. The thermochromic layer 12 in the D portion is discolored, and a part of the non-discolored image 15 (flower pattern) is visually recognized. FIG. 13 shows a planar state of the entire conductive heating circuit including the portion D.
The conductive heat generating circuit in FIG. 16 uses a substrate having a 5 μm thick copper foil layer formed on the surface of a PET film, forms the same printed image as the circuit by screen printing with a resist ink, and removes unnecessary copper by etching. By dissolving and removing, a conductive heat generating circuit [having a line width of 2 mm and both ends formed into a line having a width of 5 mm (electrodes at the ends)] was formed. The resistance value of each of the conductive circuits (the electrodes 17 are formed at the ends of each circuit) is in the range of 1.0Ω to 2.0Ω, and the area of the conductive heat generating circuit in the D portion is about 20 cm. 2 It is.
A non-discolorable base layer 14 (printed layer using a white pigment ink) is formed on the conductive heat generating layer, and a non-discolored image 15 (a flower pattern) is formed by printing using a non-discolorable ink, and includes the flower pattern. Color-memorizing thermochromatic ink on all surfaces (low-temperature discoloration point: 18 ° C, high-temperature discoloration point: 30 ° C, turns black at less than 18 ° C, turns colorless at 30 ° C or more, at room temperature (25 ° C) The thermochromic layer 12 was formed by printing under the condition that the black and colorless aspects were stored and held alternately.
The energizing heating element 1 decolorizes the thermochromic layer 12, which is in a black state at room temperature, by applying a current to each of the electrodes, so that an entire floral pattern appears.
Comparative example
A similar pattern was formed by using a silver paste [Doitite FA-303, manufactured by Fujikura Kasei Co., Ltd.] instead of the conductive heating circuit using the copper foil of Example 3. The resistance value of each conductive circuit is an average value of 30Ω to 400Ω, and the resistance value fluctuates every time printing is performed, and it is not possible to form a circuit that raises the temperature to a predetermined temperature in a short time with uniform and low voltage. The resistance value and discoloration characteristics of the portion D are as follows when the system using the copper foil and the system using the copper paste are compared (in parentheses, the system based on silver paste). In a copper foil system, at room temperature (23 ° C.), a resistance value of 1.7Ω (34 to 225Ω) and a potential for completing color change of the thermochromic layer within 10 seconds: 2.83 V (8.6 to 14.5 V). ), Power per unit area (calorific value): 235 × 10 -3 W / cm 2 (47-109 × 10 -3 W / cm 2 ) Are indicated.
As can be seen from the above comparison data, the silver paste system has a higher resistance value, a variation, a higher potential required for thermal discoloration in a short time, and a higher potential by applying a low voltage, as compared with the copper foil system. It is difficult to satisfy the practicality for the purpose of thermal discoloration with high accuracy.
Next, an example of the energizing discoloration tool 2 will be described.
As the electric double layer capacitor 21, a gold capacitor AL series [manufactured by Matsushita Electronic Components Co., Ltd.], having a cylindrical appearance body, a withstand voltage of a single cell of 2.5 V, a capacitance of 3.3 F, and an internal resistance at 1 kHz. 0.3 (Ω), outer diameter φ12.5 × L23.0 mm, terminal diameter 0.8 mmφ], the capacitor 21 is housed in a plastic protective member 22, and both terminals are connected. The terminal portion 23 is formed by being connected to a brass eyelet 231. The terminal portion 23 is located at the open end of the front end of the protective member 22, and the terminal portion 23 is provided inside the annular protrusion 24 for preventing short circuit. In the axial direction near the opening end, a ridge 25 is provided to prevent erroneous connection with the power supply body 3, and the rear end of the protection member 22 is connected to the capacitor 21. Departure By assembling some of diode 27 in the projecting state, it constitutes a current discoloration tool 2.
[0011]
A power supply 3 for supplying charging power to the energizing discoloring device 2 accommodates two 1.5 V dry batteries in a plastic case 32 and positions its electrode 33 (brass eyelet) in an opening on the upper surface of the case 32. The opening is provided with a notch 34 that engages with the ridge 25, and is configured to be freely detachable without being erroneously connected to the terminal 23.
Electricity is supplied by connecting to electrodes 17 (formed of brass eyelets) formed at ends of a line width of 5 mm integrally connected to both ends of the conductive heating circuit of the energizing heating element 1.
[0012]
After connecting the terminal portion 23 of the energizing discoloration device 2 and the electrode 33 of the power source 3 and charging for 10 seconds, the discoloring device is isolated, and the terminal portion 23 is connected to the electrode 17 of the energizing heat discoloring device 1. Then, when electricity was supplied, the thermochromic layer 12 which was in a colored state at a room temperature of 27 ° C. could be kept in a decolored state for 15 seconds, and the temperature of the heat generating line did not rise to 48 ° C. or more. .
Since the current continued to flow for a long time in the direct application by the battery, the temperature of the heating line rose to 80 ° C. or more.
[0013]
【The invention's effect】
By applying a low voltage (0.8 to 15 V), heat is applied to the heat-generating portions to rapidly generate heat, thereby discoloring the thermochromic layer quickly, and revealing a non-color-changed image in a concealed state as well as the thermochromic image. Let me see. A system using a conductive printed circuit made of conductive ink has a high resistance value, and requires a high voltage to be applied in order to change color in a short time. Further, it is difficult to form an electrode, and it is difficult to change color in a large area. At once.
Above all, the conductive heating circuit obtained by etching the copper foil layer formed on the base material surface can relatively easily form circuits of various homogeneity, and an image corresponding to the circuit can appear and be visualized. it can.
Furthermore, by applying an electric double layer capacitor as a means for energizing the energized heat discoloring body that generates heat and discolors heat by applying a low voltage, characteristics by rapid charging and discharging are effectively exhibited.
After the capacitor is connected to a power source and charged by receiving a required current, it is isolated, functions as a single energizing element in a cordless state, discharges to an electrode of an energizing heating layer, and consumes power. Then, the charging operation described above can be performed again, and the current can be supplied to the energizing operation by repeated discharging. At the same time as satisfying the convenience, an appropriate current is instantaneously supplied to the conductive heat generating layer to generate heat, thereby causing heat discoloration. Discolor the layer effectively. At this time, no overcurrent is continuously supplied and there is no danger of overheating. In addition, a short prevention mechanism, misconnection prevention mechanism, guide mechanism, light emitting mechanism at the time of charging and discharging, etc. are provided, so that even children etc. can use properly without mistaken operation, low voltage operation In combination with the characteristics, safety and practicality can be satisfied, and above all, an energizing discoloration set effective in the toy field can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory plan view showing an embodiment of an energized heat discoloring body according to the present invention, in which a thermochromic layer is discolored by energized heat generation to make a non-discolored image appear.
FIG. 2 is an explanatory plan view of the energized heat discoloring body of FIG. 1 when no current is applied;
FIG. 3 is a conductive heating circuit diagram of the energized heat discoloring body of FIG. 1;
FIG. 4 is an enlarged vertical cross-sectional explanatory view of a portion A of the energized heat-induced discoloration body of FIG. 1 in a non-thermal discoloration state.
FIG. 5 is an enlarged vertical cross-sectional explanatory view of a portion A of the energized heat-induced discoloration body of FIG. 1 in a thermal discoloration state.
FIG. 6 is an enlarged vertical cross-sectional explanatory view of a portion B of the energized heat-induced discoloration body of FIG. 1 in a non-thermal discoloration state.
FIG. 7 is an enlarged vertical cross-sectional explanatory view of a heat discoloration state of part B of the energized heat discoloration body of FIG. 1;
FIG. 8 is a plan view illustrating another embodiment of the energized heat discoloring body of the present invention, in which the thermochromic layer is discolored by energized heat generation to reveal a non-discolored image.
9 is an explanatory plan view of the energized heat discoloring body of FIG. 8 when no current is applied;
FIG. 10 is a diagram showing a conductive heating circuit of the energized heat discoloring body of FIG. 8;
11 is an enlarged vertical cross-sectional explanatory view of a portion C of the energized heat discoloring body of FIG. 8;
FIG. 12 is an enlarged vertical cross-sectional explanatory view of another example of a portion C in FIG. 8;
FIG. 13 is an enlarged vertical cross-sectional explanatory view of another example of the portion C in FIG. 8;
FIG. 14 is an enlarged vertical cross-sectional explanatory view of another example of the portion C in FIG. 8;
FIG. 15 is an explanatory plan view showing another embodiment of the energized heat discoloring body of the present invention, in which the thermochromic layer in the portion D is discolored by energized heat generation to make a non-discolored image appear.
FIG. 16 is a diagram showing a conductive heat generation circuit of the energized heat discoloring body of FIG. 15;
FIG. 17 is a perspective view of the energized heat-discoloring body and the energized discoloration tool set of the present invention.
FIG. 18 is an explanatory diagram of an operation by applying the energizing discoloration tool of the present invention.
[Explanation of symbols]
1 Heating discoloration body
11 Electric heating layer
12 Thermochromic layer
13 Non-conductive support
14 Non-discolorable base layer
15 Non-discolored image
16 Non-discolorable contour layer
17 electrodes
18 Non-discolorable hiding layer
2 Electricity discoloration tool
21 Electric Double Layer Capacitor
22 Protective member
23 Terminal
231 Ring-shaped conductive member
232 spring
24 Short prevention mechanism
25 Incorrect connection prevention mechanism
26 Guide mechanism
27 luminous body
3 power supply
31 power supply
32 cases
33 electrodes
34 Incorrect connection prevention mechanism

Claims (15)

熱変色層が通電発熱層に接触、近接又は中間層を介して配置され、前記通電発熱層に通電することにより、熱変色層を変色させる通電発熱変色体において、前記通電発熱層が非導電性支持体表面に配設された金属薄膜による適宜形状の導電発熱回路であり、前記金属薄膜が、常温における体積抵抗率が1.4×10−6Ω・cm〜2.5×10−5Ω・cmの範囲にある金属から選ばれる、厚さ400Å〜100μmであり、且つ単位面積当り発熱量が、常温域で10×10−3W/cm〜3W/cmの範囲にある薄膜からなり、0.8V〜15Vの電圧印加により、熱変色層を熱変色可能に構成した通電発熱変色体。A thermochromic layer is disposed in contact with, close to, or via an intermediate layer in contact with the current-carrying layer, and a current-carrying heat-discoloring body that discolors the thermochromic layer by applying a current to the current-carrying layer. A conductive heat generating circuit having a suitably shaped metal thin film disposed on a surface of a support, wherein the metal thin film has a volume resistivity at room temperature of 1.4 × 10 −6 Ω · cm to 2.5 × 10 −5 Ω. · cm are selected from metals in the range of a thickness of 400A~100myuemu, and per unit area amount of heat generated from the thin film in the range of 10 × 10 -3 W / cm 2 ~3W / cm 2 at a normal temperature range An energized heat-generating discolored body in which a thermochromic layer can be thermally discolored by applying a voltage of 0.8 V to 15 V. 熱変色層の下層に非変色像が配設されており、前記熱変色層の変色により非変色像が視覚可能に構成された請求項1記載の通電発熱変色体。2. The energized heat-discolored body according to claim 1, wherein a non-discolored image is provided below the thermochromic layer, and the discoloration of the thermochromic layer makes the non-discolored image visible. 通電発熱層の上層には、非変色性ベース層が配設されてなる請求項1記載の通電発熱変色体。2. The heat-generating discolored body according to claim 1, wherein a non-discolorable base layer is provided on the current-heating layer. 導電発熱回路の一端及び他端に電極が形成されてなる請求項1記載の通電発熱変色体。The energized heat discoloring body according to claim 1, wherein electrodes are formed at one end and the other end of the conductive heat generating circuit. 金属薄膜層が銅箔からなり、エッチング加工により得られた導電発熱回路である請求項1記載の通電発熱変色体。The energized heat discoloring body according to claim 1, wherein the metal thin film layer is made of copper foil, and is a conductive heat generating circuit obtained by etching. 導電発熱回路は、複数の細幅の発熱線路が3mm以下の間隔に近接配置されてなる請求項1記載の通電発熱変色体。The energized heat discoloring body according to claim 1, wherein the conductive heat generating circuit includes a plurality of narrow heat generating lines arranged close to each other at an interval of 3 mm or less. 導電発熱回路は、太幅線と細幅線の組合わせからなり、前記細幅線の箇所に熱変色層が形成されてなる請求項1記載の通電発熱変色体。The energized heat discoloring body according to claim 1, wherein the conductive heat generating circuit includes a combination of a wide line and a narrow line, and a thermochromic layer is formed at a position of the narrow line. 導電発熱回路は、一様な厚みを備えた1mm幅から5mm幅にテーパー状に拡幅されてなる請求項1記載の通電発熱変色体。The energized heat discoloring body according to claim 1, wherein the conductive heat generating circuit is tapered from a width of 1 mm having a uniform thickness to a width of 5 mm. 熱変色層が通電発熱層に接触、近接又は中間層を介して配置され、前記通電発熱層に通電することにより、熱変色層を変色させる通電発熱変色体において、前記通電発熱層が非導電性支持体表面に配設された金属薄膜による適宜形状の導電発熱回路であり、前記金属薄膜が、常温における体積抵抗率が1.4×10−6Ω・cm〜2.5×10−5Ω・cmの範囲にある金属から選ばれる、厚さ400Å〜100μmであり、且つ単位面積当り発熱量が、常温域で10×10−3W/cm〜3W/cmの範囲にある薄膜からなり、一端及び他端に電極が形成されており、0.8V〜15Vの電圧印加により、熱変色層を熱変色可能に構成した通電発熱変色体の、前記電極と接続して通電変色させる下記構成(1)からなる通電変色具セット。
(1)電気二重層コンデンサを保護部材に主体部を装着し、端子部を前記通電変色体の電極と接続自在に構成してなり、放電電流を前記導電発熱回路に供給する通電変色具と、前記電気二重層コンデンサに電力を供給して充電させる電源体からなる通電変色具セット。
A thermochromic layer is disposed in contact with, close to, or via an intermediate layer in contact with the current-carrying layer, and a current-carrying heat-discoloring body that discolors the thermochromic layer by applying a current to the current-carrying layer. A conductive heat generating circuit having a suitably shaped metal thin film disposed on a surface of a support, wherein the metal thin film has a volume resistivity at room temperature of 1.4 × 10 −6 Ω · cm to 2.5 × 10 −5 Ω. · cm are selected from metals in the range of a thickness of 400A~100myuemu, and per unit area amount of heat generated from the thin film in the range of 10 × 10 -3 W / cm 2 ~3W / cm 2 at a normal temperature range An electrode is formed at one end and the other end, and when a voltage of 0.8 V to 15 V is applied, the thermochromic layer is configured to be thermochromic so as to be electrically discolored by being connected to the electrode. An energizing discoloration tool comprising the configuration (1) Door.
(1) a current-discoloring device comprising a main body mounted on a protective member with an electric double-layer capacitor, and a terminal portion configured to be freely connected to an electrode of the current-discoloring body, and supplying a discharge current to the conductive heat-generating circuit; An energizing discoloration tool set including a power supply for supplying power to and charging the electric double layer capacitor.
電気二重層コンデンサは、静電容量範囲0.22〜100Fの範囲から選ばれ、前記コンデンサに充電電力を供給する直流電源は、単セル当り0.5V〜6.0Vの電圧を印加する電池又はACアダプターによる変換電流である請求項9記載の通電変色具セット。The electric double layer capacitor is selected from a capacitance range of 0.22 to 100 F, and a DC power supply for supplying charging power to the capacitor is a battery or a battery that applies a voltage of 0.5 V to 6.0 V per cell. The current-discoloring tool set according to claim 9, wherein the current is a conversion current by an AC adapter. 電気二重層コンデンサの端子部には、前記電極以外の導電材料に接触することによるショートを回避させるショート防止機構が設けられてなる請求項9記載の通電変色具。10. The current-discoloring tool according to claim 9, wherein a short-circuit preventing mechanism for avoiding a short-circuit caused by contacting a conductive material other than the electrodes is provided at a terminal of the electric double-layer capacitor. 電源体は電池をケース内にセットしてなり、前記電源の電極と電気二重層コンデンサの端子部との間には誤接続防止機構が設けられてなる請求項9記載の通電加熱変色具。10. The heating and discoloring device according to claim 9, wherein the power source body is configured by setting a battery in a case, and an erroneous connection prevention mechanism is provided between an electrode of the power source and a terminal of the electric double layer capacitor. 電気二重層コンデンサの端子は、その端子をリング状導電部材に接続して端子部を構成していると共に該端子部を内在させ、端部を開口した環状突部からなるショート防止機構が保護部材の前端部に設けられてなる請求項9記載の通電変色具。The terminal of the electric double-layer capacitor is connected to a ring-shaped conductive member to form a terminal portion, and the terminal portion is included therein. The current-carrying discoloration tool according to claim 9, which is provided at a front end of the power discoloration tool. 電気二重層コンデンサの端子部と、通電発熱体の電極との接続をガイドするガイド機構が保護部材の前端に設けられてなる請求項9記載の通電変色具。10. The energizing discoloration tool according to claim 9, wherein a guide mechanism for guiding connection between a terminal of the electric double layer capacitor and an electrode of the energizing heating element is provided at a front end of the protection member. 電気二重層コンデンサには、発光体が接続され、充電時及び可使状態において点灯するよう構成した請求項9記載の通電変色具。The energizing discoloring device according to claim 9, wherein a light emitter is connected to the electric double-layer capacitor, and the electric double-layer capacitor is configured to be lit during charging and in a usable state.
JP33071394A 1994-12-06 1994-12-06 Energizing heat discoloring body and energizing discoloring tool set for discoloring the discoloring body Expired - Fee Related JP3557540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33071394A JP3557540B2 (en) 1994-12-06 1994-12-06 Energizing heat discoloring body and energizing discoloring tool set for discoloring the discoloring body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33071394A JP3557540B2 (en) 1994-12-06 1994-12-06 Energizing heat discoloring body and energizing discoloring tool set for discoloring the discoloring body

Publications (2)

Publication Number Publication Date
JPH08156422A JPH08156422A (en) 1996-06-18
JP3557540B2 true JP3557540B2 (en) 2004-08-25

Family

ID=18235736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33071394A Expired - Fee Related JP3557540B2 (en) 1994-12-06 1994-12-06 Energizing heat discoloring body and energizing discoloring tool set for discoloring the discoloring body

Country Status (1)

Country Link
JP (1) JP3557540B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113625499A (en) * 2020-05-09 2021-11-09 昇印光电(昆山)股份有限公司 Electrochromic film

Also Published As

Publication number Publication date
JPH08156422A (en) 1996-06-18

Similar Documents

Publication Publication Date Title
US5316513A (en) Electrothermal color-varying device and toy utilizing the same
KR100211083B1 (en) Battery tester
US5654640A (en) Cell tester device employing a printed transparent electrically conductive electrode
TW297170B (en)
EP0450938B1 (en) Battery having a label comprising a voltmeter
US3935442A (en) Photoflash lamp array having electrically connected reflector
JPS6158819B2 (en)
US5932992A (en) Method for energizing energization-operated toy element and energization-operated toy
JP3557540B2 (en) Energizing heat discoloring body and energizing discoloring tool set for discoloring the discoloring body
CN105579244B (en) The color-changing device of thermochromic ink
JP3465200B2 (en) Electric heating discoloration set
JP2002126375A (en) Toy changing color by electroheating
EP0792669B1 (en) Method for energizing energization-operated toy element and energization-operated toy
US20240081394A1 (en) Electronic vaporization device
US4104706A (en) Photoflash lamp array having conductive reflector
JP3465203B2 (en) Energized toys
JP2905998B2 (en) Heating and cooling discoloration set
CA2169340C (en) Method for energizing energization-operated toy element and energization-operated toy
CN221081804U (en) Shell, energy storage power supply and power utilization device
US4176389A (en) Photoflash unit with two-color indicator
JPH076959Y2 (en) Electric heating tool
JP2873733B2 (en) Energized heat discoloring element for toys
JP2000164328A (en) Flat heater and manufacture thereof
CA2048814A1 (en) Built-in discharge bulb type ignition plug
JPH09129359A (en) Current-carrying heat generation wire material for thermal color change and thermal color changeable working body using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees