JP3555706B2 - Correcting colorimetric values - Google Patents

Correcting colorimetric values Download PDF

Info

Publication number
JP3555706B2
JP3555706B2 JP08068195A JP8068195A JP3555706B2 JP 3555706 B2 JP3555706 B2 JP 3555706B2 JP 08068195 A JP08068195 A JP 08068195A JP 8068195 A JP8068195 A JP 8068195A JP 3555706 B2 JP3555706 B2 JP 3555706B2
Authority
JP
Japan
Prior art keywords
measured
wavelength
temperature
value
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08068195A
Other languages
Japanese (ja)
Other versions
JPH08247932A (en
Inventor
義浩 重森
和雄 佐野
富夫 斉藤
文義 斉藤
臣子 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP08068195A priority Critical patent/JP3555706B2/en
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to KR1019960006445A priority patent/KR100288310B1/en
Priority to ES96103848T priority patent/ES2220950T3/en
Priority to CA002171586A priority patent/CA2171586C/en
Priority to DE69632499T priority patent/DE69632499T2/en
Priority to EP96103848A priority patent/EP0732577B1/en
Priority to US08/614,467 priority patent/US5740079A/en
Priority to CN96103581A priority patent/CN1088836C/en
Priority to AU48069/96A priority patent/AU710272B2/en
Priority to BR9601005A priority patent/BR9601005A/en
Priority to TW085103081A priority patent/TW321720B/zh
Publication of JPH08247932A publication Critical patent/JPH08247932A/en
Application granted granted Critical
Publication of JP3555706B2 publication Critical patent/JP3555706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、各種着色物体の測色値を修正する方法、詳しくは温度変化による測定値の誤差を補正して単一または混合色の測色値を高精度で利用することができる測色値の修正方法に関する。
【0002】
近時、コンピュータカラーマッチイング(以下「CCM」という)や着色製品の色相を管理するにあたり、例えばマンセル値のような数値化した値を用いる方法が盛んに行われている。ところが、得られる測色値は測定温度によって変動誤差を生ずる欠点がある。このため、複数の試料を測色して色相を比較する場合には、同一の温度条件下で測定した測色値を用いるか、もしくはその都度標準試料を再測定して比較する方法が従来から行われている。
【0003】
通常、温度による測色値の変動は、温度が1℃変化すると色差(ΔE)としてで約0.1〜0.3の誤差が生じる。したがって、高精度の測定が要求される場合には、試料の温度を約±1℃以内に制御しながら測定操作を実施する必要があるが、測定の度に試料温度を±1℃範囲内に調整するには高価な設備と複雑な操作を伴う関係で、通常は標準試料と被測色試料を同時に測定して可及的に温度変化による誤差を除去する方法が採られている。
【0004】
しかしながら、標準試料について繰り返し測色する操作は、管理工程としては煩雑であるばかりでなく、標準試料を長期間保存する過程で変色や汚染が生じることがないような配慮も必要となる。また、保存中に経時変化して変色を発生するようなものは標準試料として使用することができないため、測定の都度、標準試料を作製しなければならないといった不都合な問題もある。
【0005】
更に、例えば生産工程のラインで連続生産されている製品や、屋外にある製品や建造物等を対象とする測色においては、温度変化のない状態で測定することが困難となり、誤差を含む測色値をそのまま使用するケースも少なくない。
【0006】
【発明が解決しようとする課題】
本発明者らは、測色値の温度依存性について詳細に解明するため、着色物体の温度との関係を調査したところ、温度変化に基づく分光反射・透過率の変動は各波長域によって異なるが、染顔料の種類によって固有の値を示し、この温度変化に依存する分光反射・透過率の変動現象を利用することにより任意の温度条件下で測色した値を特定温度の測色値に補正することが可能であることを確認した。
【0007】
本発明は、前記の知見に基づいて開発されたもので、その目的とするところは、任意の温度条件においても温度変化による測定誤差を伴うことなく、単一または混合色の測色値を補正するころができるため、温度条件を気にすることなく常に高精度かつ簡便に測定操作を行うことができる測色値の修正方法を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するための本発明による測色値の修正方法は、分光光度計を用いて着色試料の380〜700 nm の範囲内における分光反射率を任意の温度で測定し、得られた分光反射率の実測値を、予めベース染顔料につき少なくとも2点の異なる温度条件で測定した分光反射率から求められた380〜700 nm の範囲内且つ一定の波長間隔おきに特定した波長における波長毎の吸収係数(K)および散乱係数(S)の差(ΔK、ΔS)を補正係数として数値補正することを構成上の特徴とする。
【0009】
また、透過物体においては、分光光度計を用いて着色試料の380〜700 nm の範囲内における分光透過率を任意の温度で測定し、得られた分光透過率の実測値を、予めベース染顔料につき少なくとも2点の異なる温度条件で測定した分光透過率から求められた380〜700 nm の範囲内且つ一定の波長間隔おきに特定した波長における波長毎の吸光度(D)の差(ΔD)を補正係数として数値補正することを構成上の特徴とするものである。
【0010】
本発明において、混合色からなる物体の分光反射率は、下記のクベルカ・ムンクやダンカンの理論によって合成が可能である。すなわち、物体の分光反射率はクベルカ・ムンクの理論により、下記(1) 式によって吸収係数と散乱係数として表わされる。
R=1+K/S−{(K/S)+(K/S)}1/2 …(1)
(1) 式において、Rは各波長の反射率、Kは各波長の吸収係数、Sは各波長の散乱係数である。
【0011】
染顔料が数種類の混合物からなり、塗料のような隠蔽力が高い場合には、(1) 式に基づいてK/Sがダンカンの(2) 式によって表わされる。
K/S=(ΣKiCi+Ko)/(ΣSiCi+So)…(2)
(2) 式において、Kiは各色材の吸収係数、Siは各色材の散乱係数、Koは媒体の吸収係数、Soは媒体の散乱係数、Ciは各色材の混合比率である。
【0012】
一方、印刷物のような下地にコ−ティングした場合のK/Sは、(3) 式で表される。
K/S=ΣεiCi+(K/S)…(3)
(3) 式において、εiは各色材の単位あたりのK/S、Ciは各色材の混合比率、(K/S)は下地のK/Sを示す。
【0013】
また、透過物体の場合は下記(4) 、(5) 式によるランバ−トベ−ルの理論により、各染顔料の透過率(T)から吸光度(D)が算出できる。
T=10−D …(4)
D=ΣdiCi+do…(5)
(5) 式において、diは各色材の単位あたりの吸光度、Ciは各色材の混合比率、doは媒体の吸光度である。
【0014】
したがって、例えば1℃当たりの分光反射・透過率の変化量から、染顔料毎に吸収係数と散乱係数の変化量を、あるいは分光透過率の変化量から吸光度の変化量を求めておいて、任意の温度における混色着色試料の分光反射・透過率の実測値を前記変化量を補正係数として数値補正することにより温度条件の影響を消去することが可能となる。
【0015】
本発明において、補正係数となる変化量は、ベース染顔料につき少なくとも2点の異なる温度条件で測定された分光反射率から求められる各波長毎の吸収係数(K)および散乱係数(S)、あるいは分光透過率(T)から求められる各波長毎の吸光度の差で与えられる。この際、補正係数の変化量は1℃当たりの差量とし、これら補正係数の算定は、CCM手法で自動的に行うことができる。
【0016】
本発明で適用するベース染顔料は、単一または混合色の染顔料で着色されたプラスチック材や着色塗装された金属材料など各種の物体を用いることができ、とくに限定はない。例えば、染料としては、アントラキノン系、複素環系、メチン系、ペリノン系、ペリレン系を、また顔料としては、酸化チタン、カーボンブラック、酸化鉄系、ウルトラマリーン系等の無機系、アゾ系、銅フタロシアニン系、ペリノン系、ペリレン系、キナクリドン系、ピロール系等の有機系のものが挙げられる。
【0017】
具体的には、例えば硬質塩化ビニル樹脂に黄鉛顔料(添加量1phr )からなるベース染顔料で着色した試料を用い、分光光度計により29℃と60℃における分光反射率を測定し、10nm波長毎の吸収係数(K)および散乱係数(S)に換算する。その値から、各波長毎の1℃当たりの差(ΔK、ΔS)を算出すると、表1のb欄に示す値となる。次に、29℃の温度での実測値について、補正係数ΔK、ΔSを使って25℃における吸収係数(K)と散乱係数(S)を各波長毎に補正すると、その予測値は表1のa欄に示した数値となる。すなわち、25℃を測定の標準温度とすると、黄鉛顔料の標準温度における吸収係数と散乱係数が計算によって容易に表される。同様にして、ポリアゾエローをベース染顔料とした場合には、表2のようになる。
【0018】
【表1】

Figure 0003555706
【0019】
【表2】
Figure 0003555706
【0020】
このようして、その他のベース染顔料についても同様にして求めた1℃当たりの波長毎の変化量(ΔK、ΔS、ΔD)を補正係数とし、各ベース染顔料の標準温度25℃における吸収係数(K)と散乱係数(S)、あるいは吸光度(D)の値を算出し、これを補正係数(ΔK、ΔS、ΔD)と共にコンピュータにインプットしてデータベースとしておくことにより色の数値管理を行うことができる。
【0021】
測定方法は、任意の温度で測定対象となる着色試料について測定された分光反射・透過率を上記の補正係数(ΔK、ΔS、ΔD)により補正換算処理したのち、最終的にJIS Z8721「三属性による色の表示方法」の付表1「三属性による色票系の基準」に基づいてマンセル値(CIE表示値)に換算して表値とする。
【0022】
なお、上記の測定操作は、分光光度計、その他の周辺機器に温度センサーを内蔵しておき、該センサーにより測定温度を感知するようにでき、コンピュータのキーボードにより温度を指定して実行することも可能である。
【0023】
本発明により測定される対象は、染顔料を配合した塗料やインキ、これらにより着色されたプラスチック、繊維、紙等の製品はもとより、自然界に存在する着色物体にも適用することができる。
【0024】
【作用】
本発明は、染顔料の分光反射・透過率と温度の間に存在する固有の相関性を利用し、任意の温度で測定した分光反射・透過率を予め定めた波長毎の特定温度の測定値に補正換算する方法を採ることにより、工業的な管理手法として好適な色の管理方法として確立したものである。すなわち、予めベース染顔料について少なくとも2点の異なる温度条件で測定した分光反射・透過率から求めた波長毎の吸収係数(K)および散乱係数(S)あるいは吸光度(D)の差(ΔK、ΔS、ΔD)を補正係数とし、任意の温度で実測された被測定試料の測定値を前記補正係数で標準温度の測色値に補正することにより、温度変化による測定誤差の影響を効果的に除去することが可能となる。
【0025】
更に、本発明によれば単一色ばかりでなく混合色の測色値についても容易に補正することができる。実用に際しては、補正係数をベース染顔料のデーターベースとして扱い、クベルカ・ムンクおよびダンカンの理論式から数種類からなる混合色の配合比率をインプットし、分光反射・透過率を任意の温度にシミュレーションすることもできる。つまり、簡易な日常管理として極めて有効である。また、現在一般化しているCCMへ応用することにより指定温度での配合比率を計算することができる。
【0026】
【実施例】
以下、本発明の実施例を比較例と対比して説明する。しかし、本発明はこれらの実施例に限定されるものではない。
【0027】
比較例1〜8
表3に示す組成の混合顔料を用いて着色した厚さ1mmのポリ塩化ビニル(PVC;100,安定剤;3, 滑剤;1) 板を試料とし、分光光度計〔大日精化工業(株)製、カラコムC型〕を用いて25℃、40℃および50℃の各温度における分光放射率を実測し、この値からCIE(L*,a*,b*)表示系における測色値を算出した。その結果を配合顔料No. と対比させて表4および表5に示した。なお、25℃実測時の値を基準として40℃と50℃実測時の色差(ΔE)を求め、表4および表5に併載した。
【0028】
【表3】
Figure 0003555706
【0029】
【表4】
Figure 0003555706
【0030】
【表5】
Figure 0003555706
【0031】実施例1〜8
比較例1〜8で得た分光反射率の各温度段階における実測値を、予め各波長毎にコンピュータにデータベースとしてインプットしてある1℃当たりのベース顔料の補正係数を用いて25℃の実測値を基準にして40℃、50℃の値を予測した。その値と各温度におけるΔE* を計算し、その値を表6に示した。
【0032】
表6の色差(ΔE)を対応する比較例(表4〜5)の色差(ΔE)と対比して明らかなとおり、各温度段階の値ともに実施例において誤差が減少しており、微少差で一致していることが認められる。
【0033】
【表6】
Figure 0003555706
【0034】
実施例9
ペリレン系染料〔有本化学工業(株)製、プラストレッド8315)を0.5%添加した着色ポリスチレンの射出成形板を試料とし、58℃と25℃の温度で分光反射率を測定し、この実測値から計算した色差(ΔE)は2.3であった。一方、実施例1と同様にして58℃で実測した各波長の値を、予め各波長毎に求めておいた1℃当たりの変化量(ΔD)を使って25℃の分光透過率を計算し補正した。この補正値と25℃の実測値の色差(ΔE)を比較したところ0.06で僅少であることが確認された。
【0035】
【発明の効果】
以上のとおり、本発明によれば簡単な分光放射率の補正操作により、従来欠点とされていた測色時の温度変化に起因する測定値のバラツキを僅少な範囲に抑制することができ、CCMや着色物体の色管理に際して測定の度に温度差があっても常に優れた精度で数値化することが可能となる。したがって、例えば色合わせでベース染顔料の配合比率を決める場合、任意の温度における正しい配合比率が予測でき、また色の数値管理の面では、異なる温度で測定しても基準となる温度を指定するとその温度に補正することができるので、測定の度に標準を再測定することも保管管理する必要もなくなるから、色相に関する品質管理の手法を著しく改善することができる。[0001]
[Industrial applications]
The present invention relates to a method for correcting colorimetric values of various colored objects, and more specifically, a colorimetric value that can use a single or mixed colorimetric value with high accuracy by correcting an error of the measured value due to a temperature change. On how to fix.
[0002]
In recent years, in managing computer color matching (hereinafter referred to as “CCM”) and hue of a colored product, a method using a digitized value such as a Munsell value has been actively performed. However, the obtained colorimetric value has a disadvantage that a fluctuation error occurs depending on the measurement temperature. For this reason, when comparing the hues by measuring the colors of a plurality of samples, there has been conventionally used a method in which the colorimetric values measured under the same temperature condition are used or a standard sample is remeasured and compared each time. Is being done.
[0003]
Normally, a change in the colorimetric value due to temperature causes an error of about 0.1 to 0.3 as a color difference (ΔE) when the temperature changes by 1 ° C. Therefore, when high-precision measurement is required, it is necessary to carry out the measurement operation while controlling the temperature of the sample to within about ± 1 ° C. Since the adjustment involves expensive equipment and complicated operations, a method of measuring a standard sample and a color sample to be measured simultaneously to remove an error due to a temperature change as much as possible is usually adopted.
[0004]
However, the operation of repeatedly measuring the color of the standard sample is not only complicated as a management step, but also requires consideration to prevent discoloration and contamination during storage of the standard sample for a long period of time. In addition, there is an inconvenient problem that a sample that changes with time and changes color during storage cannot be used as a standard sample, so that a standard sample must be prepared each time measurement is performed.
[0005]
Further, for example, in colorimetry for products that are continuously produced in a production process line, or for outdoor products or buildings, it is difficult to perform measurement without a temperature change, and measurement including errors is difficult. In many cases, the color values are used as they are.
[0006]
[Problems to be solved by the invention]
The present inventors have investigated the relationship between the temperature of a colored object and the temperature in order to elucidate the temperature dependence of the colorimetric value in detail. , Shows a unique value depending on the type of dye / pigment, and corrects the value measured under arbitrary temperature conditions to the colorimetric value at a specific temperature by utilizing the fluctuation phenomenon of spectral reflection and transmittance depending on this temperature change It was confirmed that it was possible.
[0007]
The present invention has been developed on the basis of the above findings, and its object is to correct a single or mixed colorimetric value without a measurement error due to a temperature change even under an arbitrary temperature condition. An object of the present invention is to provide a method for correcting a colorimetric value that can always perform a measurement operation with high accuracy and easily without worrying about temperature conditions.
[0008]
[Means for Solving the Problems]
The colorimetric value correcting method according to the present invention for achieving the above object is obtained by measuring the spectral reflectance of a colored sample in the range of 380 to 700 nm at an arbitrary temperature using a spectrophotometer. The actual measured value of the spectral reflectance was determined for each wavelength at a wavelength within a range of 380 to 700 nm , which was previously determined from the spectral reflectance measured at least at two different temperature conditions for the base dye and at regular wavelength intervals. It is characterized in that the difference (ΔK, ΔS) between the absorption coefficient (K) and the scattering coefficient (S) is numerically corrected as a correction coefficient.
[0009]
Further, for the transmission object, the spectral transmittance of the colored sample in the range of 380 to 700 nm was measured at an arbitrary temperature using a spectrophotometer, and the measured value of the obtained spectral transmittance was previously determined as the base dye / pigment. The difference (ΔD) of the absorbance (D) for each wavelength at the specified wavelength within the range of 380 to 700 nm and at regular wavelength intervals obtained from the spectral transmittance measured under at least two different temperature conditions. The feature of the configuration is that the value is corrected as a coefficient.
[0010]
In the present invention, the spectral reflectance of an object composed of mixed colors can be synthesized by the following Kubelka-Munk or Duncan theory. That is, the spectral reflectance of an object is expressed as an absorption coefficient and a scattering coefficient by the following equation (1) according to Kubelka-Munk's theory.
R = 1 + K / S-{(K / S) 2 + (K / S)} 1/2 (1)
In the equation (1), R is the reflectance at each wavelength, K is the absorption coefficient at each wavelength, and S is the scattering coefficient at each wavelength.
[0011]
When the dye / pigment is composed of a mixture of several kinds and has a high hiding power like a paint, K / S is expressed by Duncan's formula (2) based on formula (1).
K / S = (ΣKiCi + Ko) / (ΣSiCi + So) (2)
In the equation (2), Ki is the absorption coefficient of each color material, Si is the scattering coefficient of each color material, Ko is the absorption coefficient of the medium, So is the scattering coefficient of the medium, and Ci is the mixing ratio of each color material.
[0012]
On the other hand, K / S when coated on a base such as a printed matter is expressed by equation (3).
K / S = ΣεiCi + (K / S) 0 (3)
In the formula (3), εi denotes K / S per unit of each color material, Ci denotes a mixture ratio of each color material, and (K / S) 0 denotes K / S of the base.
[0013]
In the case of a transmissive object, the absorbance (D) can be calculated from the transmittance (T) of each dye / pigment by the Lambert-Beer theory according to the following equations (4) and (5).
T = 10− D (4)
D = ΣdiCi + do (5)
In the equation (5), di is the absorbance of each color material per unit, Ci is the mixing ratio of each color material, and do is the absorbance of the medium.
[0014]
Therefore, for example, the amount of change in the absorption coefficient and the scattering coefficient for each dye and pigment, or the amount of change in the absorbance from the amount of change in the spectral transmittance can be determined from the amount of change in spectral reflection / transmittance per 1 ° C. The influence of the temperature condition can be eliminated by numerically correcting the actually measured values of the spectral reflection and transmittance of the mixed-colored colored sample at the above temperature using the change amount as a correction coefficient.
[0015]
In the present invention, the amount of change serving as the correction coefficient is determined by the absorption coefficient (K) and the scattering coefficient (S) for each wavelength obtained from the spectral reflectances of the base dye / pigment measured at least at two different temperature conditions, or It is given by the difference in absorbance for each wavelength determined from the spectral transmittance (T). At this time, the change amount of the correction coefficient is a difference amount per 1 ° C., and the calculation of these correction coefficients can be automatically performed by the CCM method.
[0016]
As the base dye / pigment applied in the present invention, various objects such as a plastic material colored with a single or mixed color dye / pigment and a colored metal material can be used, and there is no particular limitation. For example, as dyes, anthraquinone type, heterocyclic type, methine type, perinone type, perylene type, and as pigments, titanium oxide, carbon black, iron oxide type, inorganic type such as ultramarine type, azo type, copper Organic compounds such as phthalocyanine, perinone, perylene, quinacridone, and pyrrole are exemplified.
[0017]
Specifically, for example, using a sample obtained by coloring a hard vinyl chloride resin with a base dye / pigment made of a graphite pigment (addition amount: 1 phr), the spectral reflectance at 29 ° C. and 60 ° C. was measured with a spectrophotometer, and the 10 nm wavelength was measured. It is converted into an absorption coefficient (K) and a scattering coefficient (S) for each. When the difference (ΔK, ΔS) per 1 ° C. for each wavelength is calculated from the value, it becomes the value shown in column b of Table 1. Next, when the absorption coefficient (K) and the scattering coefficient (S) at 25 ° C. are corrected for each wavelength using the correction coefficients ΔK and ΔS for the measured values at a temperature of 29 ° C., the predicted values are shown in Table 1. This is the numerical value shown in column a. That is, assuming that 25 ° C. is the standard temperature for measurement, the absorption coefficient and the scattering coefficient of the graphite pigment at the standard temperature can be easily represented by calculation. Similarly, when polyazo yellow is used as the base dye / pigment, the results are as shown in Table 2.
[0018]
[Table 1]
Figure 0003555706
[0019]
[Table 2]
Figure 0003555706
[0020]
In this manner, the change amount (ΔK, ΔS, ΔD) per wavelength per 1 ° C. similarly obtained for other base dyes and pigments is used as a correction coefficient, and the absorption coefficient at a standard temperature of 25 ° C. of each base dye and pigment is used. Calculate the values of (K) and scattering coefficient (S) or absorbance (D), and input them together with correction coefficients (ΔK, ΔS, ΔD) to a computer and store them in a database to perform color numerical management. Can be.
[0021]
As for the measuring method, the spectral reflection / transmittance measured for the colored sample to be measured at an arbitrary temperature is corrected and converted by the above correction coefficients (ΔK, ΔS, ΔD), and finally JIS Z8721 “Three attributes” Based on the attached table 1 of "Color Display Method by Color", a Munsell value (CIE display value) is converted to a table value.
[0022]
The above-described measurement operation can be performed by incorporating a temperature sensor in a spectrophotometer or other peripheral device and detecting the measured temperature with the sensor, and specifying the temperature with a computer keyboard. It is possible.
[0023]
The object to be measured according to the present invention can be applied not only to paints and inks mixed with dyes and pigments, but also to products such as plastics, fibers and paper colored by these, as well as to colored objects existing in the natural world.
[0024]
[Action]
The present invention utilizes a specific correlation existing between the spectral reflection / transmittance of the dye / pigment and the temperature, and measures the spectral reflection / transmittance measured at an arbitrary temperature at a specific temperature for each predetermined wavelength. This method has been established as a color management method suitable as an industrial management method by adopting a method of performing correction conversion. That is, the difference (ΔK, ΔS) between the absorption coefficient (K) and the scattering coefficient (S) or the absorbance (D) for each wavelength obtained from the spectral reflection / transmittance of the base dye / pigment measured under at least two different temperature conditions. , ΔD) as a correction coefficient, and by correcting the measured value of the sample measured at an arbitrary temperature to the colorimetric value of the standard temperature with the correction coefficient, the effect of the measurement error due to the temperature change is effectively removed. It is possible to do.
[0025]
Further, according to the present invention, it is possible to easily correct not only a single color but also a colorimetric value of a mixed color. For practical use, treat the correction coefficient as a database of base dyes and pigments, input the mixture ratio of several mixed colors from the theoretical formula of Kubelka Munch and Duncan, and simulate the spectral reflection and transmittance to an arbitrary temperature You can also. That is, it is extremely effective as simple daily management. Further, by applying the present invention to the currently generalized CCM, it is possible to calculate the mixing ratio at a specified temperature.
[0026]
【Example】
Hereinafter, examples of the present invention will be described in comparison with comparative examples. However, the present invention is not limited to these examples.
[0027]
Comparative Examples 1 to 8
A 1 mm thick polyvinyl chloride (PVC; 100, stabilizer; 3, lubricant; 1) plate colored with a mixed pigment having the composition shown in Table 3 was used as a sample, and a spectrophotometer [Dainichi Seika Kogyo Co., Ltd. Manufactured by KARACOM C type) at 25 ° C., 40 ° C. and 50 ° C., and calorimetric values in the CIE (L *, a *, b *) display system are calculated from these values. did. The results are shown in Formulation No. The results are shown in Tables 4 and 5 in comparison with Table 1. The color difference (ΔE) at the time of actual measurement at 40 ° C. and 50 ° C. was determined based on the value at the time of actual measurement at 25 ° C., and is shown in Tables 4 and 5.
[0028]
[Table 3]
Figure 0003555706
[0029]
[Table 4]
Figure 0003555706
[0030]
[Table 5]
Figure 0003555706
Examples 1 to 8
The measured values of the spectral reflectances obtained in Comparative Examples 1 to 8 at each temperature stage were measured at 25 ° C. using the correction coefficient of the base pigment per 1 ° C. previously input to a computer as a database for each wavelength. The values at 40 ° C. and 50 ° C. were predicted on the basis of. The value and ΔE * at each temperature were calculated, and the values are shown in Table 6.
[0032]
As is clear from the comparison between the color difference (ΔE) in Table 6 and the color difference (ΔE) in the corresponding comparative examples (Tables 4 and 5), the error in each of the temperature steps was reduced in the examples, and the difference was small. A match is found.
[0033]
[Table 6]
Figure 0003555706
[0034]
Example 9
As a sample, a colored polystyrene injection molded plate to which 0.5% of a perylene dye (Arimoto Chemical Industry Co., Ltd., Plastread 8315) was added was used as a sample, and its spectral reflectance was measured at 58 ° C. and 25 ° C. The color difference (ΔE) calculated from the actually measured value was 2.3. On the other hand, the spectral transmittance at 25 ° C. was calculated using the value of each wavelength actually measured at 58 ° C. in the same manner as in Example 1 and using the variation per 1 ° C. (ΔD) previously determined for each wavelength. Corrected. When the color difference (ΔE) between the correction value and the actually measured value at 25 ° C. was compared, it was confirmed that the difference was 0.06, which was small.
[0035]
【The invention's effect】
As described above, according to the present invention, the dispersion of the measured values due to the temperature change at the time of color measurement, which has been regarded as a drawback, can be suppressed to a small range by a simple operation of correcting the spectral emissivity. It is possible to always digitize with excellent accuracy even if there is a temperature difference between measurements at the time of color management of a colored object. Therefore, for example, when determining the compounding ratio of the base dye / pigment by color matching, the correct compounding ratio at any temperature can be predicted, and in terms of color numerical management, it is necessary to specify a reference temperature even when measuring at different temperatures. Since the temperature can be corrected, there is no need to re-measure and store and maintain the standard every time measurement is performed, so that the quality control method for the hue can be remarkably improved.

Claims (2)

分光光度計を用いて着色試料の380〜700 nm の範囲内における分光反射率を任意の温度で測定し、得られた分光反射率の実測値を、予めベース染顔料につき少なくとも2点の異なる温度条件で測定した分光反射率から求められた380〜700 nm の範囲内且つ一定の波長間隔おきに特定した波長における波長毎の吸収係数(K)および散乱係数(S)の差(ΔK,ΔS)を補正係数として数値補正することを特徴とする測色値の修正方法。 The spectral reflectance in the range of 380 to 700 nm of the colored sample is measured at an arbitrary temperature using a spectrophotometer, and the actually measured value of the obtained spectral reflectance is determined in advance at least at two different temperatures for the base dye / pigment. The difference (ΔK, ΔS) between the absorption coefficient (K) and the scattering coefficient (S) for each wavelength at the wavelength specified within a range of 380 to 700 nm and at regular wavelength intervals, which is obtained from the spectral reflectance measured under the conditions. A colorimetric value correction method characterized by numerically correcting the colorimetric value as a correction coefficient. 分光光度計を用いて着色試料の380〜700 nm の範囲内における分光透過率を任意の温度で測定し、得られた分光透過率の実測値を、予めベース染顔料につき少なくとも2点の異なる温度条件で測定した分光透過率から求められた380〜700 nm の範囲内且つ一定の波長間隔おきに特定した波長における波長毎の吸光度(D)の差(ΔD)を補正係数として数値補正することを特徴とする測色値の修正方法。 The spectral transmittance of the colored sample in the range of 380 to 700 nm is measured at an arbitrary temperature using a spectrophotometer, and the measured actual value of the spectral transmittance is determined in advance at least at two different temperatures for the base dye / pigment. Numerical correction of the difference (ΔD) of the absorbance (D) for each wavelength at a wavelength specified within a range of 380 to 700 nm and at regular wavelength intervals obtained from the spectral transmittance measured under the condition as a correction coefficient. How to modify the characteristic colorimetric value.
JP08068195A 1995-03-13 1995-03-13 Correcting colorimetric values Expired - Fee Related JP3555706B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP08068195A JP3555706B2 (en) 1995-03-13 1995-03-13 Correcting colorimetric values
ES96103848T ES2220950T3 (en) 1995-03-13 1996-03-12 PROCEDURE FOR CORRECTION OF COLORIMETRIC VALUES OF MISCELLANEOUS MATERIALS.
CA002171586A CA2171586C (en) 1995-03-13 1996-03-12 Method for determining colorimetric value
DE69632499T DE69632499T2 (en) 1995-03-13 1996-03-12 Method for determining the colorimetric value
EP96103848A EP0732577B1 (en) 1995-03-13 1996-03-12 Method for determining colorimetric value
US08/614,467 US5740079A (en) 1995-03-13 1996-03-12 Method for determining colorimetric value
KR1019960006445A KR100288310B1 (en) 1995-03-13 1996-03-12 How to correct colorimetric values
CN96103581A CN1088836C (en) 1995-03-13 1996-03-13 Method for determining colorimetric value
AU48069/96A AU710272B2 (en) 1995-03-13 1996-03-13 Method for determining colorimetric value
BR9601005A BR9601005A (en) 1995-03-13 1996-03-13 Process for determining the colorimetric value of a colored material
TW085103081A TW321720B (en) 1995-03-13 1996-03-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08068195A JP3555706B2 (en) 1995-03-13 1995-03-13 Correcting colorimetric values

Publications (2)

Publication Number Publication Date
JPH08247932A JPH08247932A (en) 1996-09-27
JP3555706B2 true JP3555706B2 (en) 2004-08-18

Family

ID=13725097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08068195A Expired - Fee Related JP3555706B2 (en) 1995-03-13 1995-03-13 Correcting colorimetric values

Country Status (1)

Country Link
JP (1) JP3555706B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027720A (en) * 2009-07-02 2011-02-10 Canon Inc Printer and method of controlling the same
US8587831B2 (en) 2008-10-02 2013-11-19 Canon Kabushiki Kaisha Media-dependent image processing
US8610960B2 (en) 2008-10-02 2013-12-17 Canon Kabushiki Kaisha Image processing using colorimetric values
US8625175B2 (en) 2009-03-11 2014-01-07 Canon Kabushiki Kaisha Image processing for correction of colorimetric values based on temperature

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3131184B2 (en) * 1998-03-19 2001-01-31 ニチハ株式会社 Inspection system
KR100686995B1 (en) * 2000-02-23 2007-02-27 다이니치 세이카 고교 가부시키가이샤 Method for evaluating reproducibility of toning sample by ccm
JP2002098590A (en) * 2000-09-26 2002-04-05 Kurabo Ind Ltd Method and device for color arrangement simulation
JP5268542B2 (en) * 2008-10-02 2013-08-21 キヤノン株式会社 Image processing apparatus and color processing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758225B2 (en) * 1986-11-22 1995-06-21 住化カラー株式会社 Prediction method of color mixture result
JPH0690089B2 (en) * 1989-07-19 1994-11-14 住化カラー株式会社 Prediction method of color mixture result
JPH06105217B2 (en) * 1990-01-11 1994-12-21 倉敷紡績株式会社 Spectrometry
JP2987014B2 (en) * 1992-07-27 1999-12-06 井関農機株式会社 Near-infrared analyzer
JPH06313754A (en) * 1993-03-02 1994-11-08 Kubota Corp Constituent quantitative analysis device and taste evaluation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8587831B2 (en) 2008-10-02 2013-11-19 Canon Kabushiki Kaisha Media-dependent image processing
US8610960B2 (en) 2008-10-02 2013-12-17 Canon Kabushiki Kaisha Image processing using colorimetric values
US8625175B2 (en) 2009-03-11 2014-01-07 Canon Kabushiki Kaisha Image processing for correction of colorimetric values based on temperature
JP2011027720A (en) * 2009-07-02 2011-02-10 Canon Inc Printer and method of controlling the same

Also Published As

Publication number Publication date
JPH08247932A (en) 1996-09-27

Similar Documents

Publication Publication Date Title
KR100288310B1 (en) How to correct colorimetric values
CN101506633B (en) Method for color matching
US5023814A (en) Method and apparatus for countertyping a tint from a collection of base tints
US10996110B2 (en) Learning method for producing color formulas
Berns A generic approach to color modeling
EP2149038A1 (en) Method for color matching
JP3555706B2 (en) Correcting colorimetric values
WO2001063229A1 (en) Method for evaluating reproducibility of toning sample by ccm
US20070139667A1 (en) Digitally mapped formulaic color space and method of making and using same
JP5694655B2 (en) Computer color matching method and computer readable recording medium recording computer color matching program
JP3776492B2 (en) Colorimetric correction method
JPH04314768A (en) Color matching of liquid colorant
JPH0351724A (en) Estimation of result of color mixture
JP4731739B2 (en) CCM calculation system, CCM calculation method and recording medium
Compton The thermochromic properties of the ceramic colour standards
Rich The effect of measuring geometry on computer color matching
US7148900B2 (en) CCM calculating system, CCM calculating method and recording medium
Franz et al. Colour technology of coatings
JPH11326054A (en) Predecting method for k/s parameter of mixed coloring material, measuring method for spectral reflectance of coloring material and color matching method for mixed coloring material
JPH08179104A (en) Method for determining dyeing condition for lens and prodution of dyed lens
JP3604075B2 (en) Correction method of ink mixing ratio
JP3406675B2 (en) Color matching method of paint
Gangakhedkar Colour measurement of paint films and coatings
JPS62149760A (en) Preparation of coloring material
JPH0894442A (en) Computerrized color matching method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees