JP3555281B2 - Revolving combustion device - Google Patents

Revolving combustion device Download PDF

Info

Publication number
JP3555281B2
JP3555281B2 JP26993395A JP26993395A JP3555281B2 JP 3555281 B2 JP3555281 B2 JP 3555281B2 JP 26993395 A JP26993395 A JP 26993395A JP 26993395 A JP26993395 A JP 26993395A JP 3555281 B2 JP3555281 B2 JP 3555281B2
Authority
JP
Japan
Prior art keywords
air
combustible gas
flow
combustion chamber
tangential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26993395A
Other languages
Japanese (ja)
Other versions
JPH09112861A (en
Inventor
稔 浅井
信 清水
良雄 武内
雅信 内藤
博 荒巻
武一 近藤
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP26993395A priority Critical patent/JP3555281B2/en
Publication of JPH09112861A publication Critical patent/JPH09112861A/en
Application granted granted Critical
Publication of JP3555281B2 publication Critical patent/JP3555281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、旋回式燃焼装置に関するものである。
【0002】
【従来の技術】
例えば廃棄物焼却炉などの燃焼装置は、一般に、燃焼室へ都市ゴミその他の廃棄物を投入して燃焼させるものであり、燃焼室の内部では、廃棄物の熱分解と、熱分解によって発生された可燃ガスの燃焼という2つの過程を経て、廃棄物が焼却処理されるようになっている。
【0003】
ところが、従来の燃焼装置では、廃棄物の熱分解と可燃ガスの燃焼という二種類の反応を一つの燃焼室内で同時に行わせていたので、廃棄物の熱分解も、可燃ガスの燃焼も共に十分に行われない傾向にあった。
【0004】
例えば、廃棄物の熱分解過程にあっては、可燃ガスの燃焼の影響による温度変化を受けて、熱分解速度を一定に保てなくなり易かった。
【0005】
又、可燃ガスの燃焼過程にあっては、燃焼室内で空気の十分な混合が得られず、可燃ガスが不完全燃焼を起こして有害物質が発生され易く、有害物質がそのまま大気へ排出されてしまうおそれがあった。
【0006】
そこで近年、既存の燃焼室を一次燃焼室とし、これに二次燃焼室を付設して、一次燃焼室で廃棄物の熱分解を専用に行わせ、熱分解によって発生した可燃ガスを二次燃焼室へ導いて、二次燃焼室で可燃ガスの完全燃焼を専用に行わせるようにした燃焼装置が提案されている。
【0007】
図5は、現在提案されている二次燃焼室(旋回式燃焼装置本体)を有する燃焼装置を示すものである。
【0008】
図中、1は上部に廃棄物供給口2を形成され下部にホッパ部3を形成された一次燃焼室、4は一次燃焼室1のホッパ部3の上部に間隔をおいて配置された水平な複数本の散気管、5は流動砂などの流動媒体で形成されて、散気管4から噴出される一次空気によって流動される流動層、6は一次燃焼室1の中間部に流動層5へ向けて取付けられたバーナである。
【0009】
7はホッパ部3の下端に設けられた流動媒体出口、8は一次燃焼室1の中間部に形成された流動媒体入口、9は流動媒体出口7と流動媒体入口8との間を接続するバケットコンベヤなどの流動媒体循環路、10は流動媒体循環路9の入側に設けられた流動媒体コンベヤ、11は流動媒体コンベヤ10出側に設けられた篩装置である。
【0010】
又、12は一次燃焼室1の上方に配設されて、上端に燃焼ガス排出口13を有し、下端にホッパ部14を有し上下方向へ延びるほぼ円筒形の二次燃焼室、15は一次燃焼室1で発生された、固形未燃分16を含む可燃ガス、17はホッパ部14下端に形成された灰出口である。
【0011】
そして、18は一次燃焼室1からの可燃ガス15を二次燃焼室12へ送るための搾流通路、19は二次燃焼室12の側壁下部に対し接線方向へ向けて接続された接線方向接続部である。
【0012】
20は外部の通風機21に接続された空気供給路、22は空気供給路20から分岐され散気管4へ一次空気を供給する一次空気供給路、23,24は前記空気供給路20から分岐され接線方向接続部19の数箇所の位置へ二次空気を供給し得るようにした二次空気供給路、25,26,27はそれぞれ一次空気供給路22及び二次空気供給路23,24の途中に設けられた弁である。
【0013】
そして、通風機21を作動して、空気供給路20及び一次空気供給路22を介し、一次燃焼室1の散気管4へ一次空気を供給することにより、流動層5を流動させると共に、バーナ6によって一次燃焼室1内の流動層5を予熱し、この状態で、廃棄物供給口2から一次燃焼室1内へ廃棄物を投入する。
【0014】
すると、一次燃焼室1内へ投入された廃棄物は、予熱された流動層5内で熱分解され、熱分解により可燃ガス15やチャー(炭)などの固形未燃分16などが発生される。
【0015】
そして、散気管4から一次燃焼室1へ供給された一次空気によってチャーなどの固形未燃分16が燃焼され、この燃焼熱によって廃棄物の熱分解が促進される。
【0016】
廃棄物の熱分解によって発生された可燃ガス15は上昇し、搾流通路18及び接線方向接続部19を通して、二次燃焼室12へ逃されるので、一次燃焼室1では可燃ガス15の燃焼の影響を受けずに廃棄物を一定の速度で熱分解させることができる。
【0017】
一方、搾流通路18及び接線方向接続部19を通って、二次燃焼室12へと送られる可燃ガス15と一部の固形未燃分16は、途中、搾流通路18で絞られ、接線方向接続部19で二次空気供給路23,24からの二次空気を供給されてある程度混合された後、ほぼ円筒形の二次燃焼室12へ接線方向に導入される。
【0018】
すると、二次燃焼室12内では、二次空気を混合された可燃ガス15による旋回上昇流が形成され、該旋回上昇流によって可燃ガス15と二次空気との混合が更に促進される。加えて、旋回により二次燃焼室12内部における可燃ガス15の燃焼に必要な炉内滞留時間が確保されることとなるので、その間に可燃ガス15の燃焼性が向上され、不完全燃焼による有害物質の発生などが抑制される。
【0019】
そして、燃焼により生成された燃焼ガスは、二次燃焼室12上端の燃焼ガス排出口13から排出される。
【0020】
又、上記とは別に、一次燃焼室1では、流動層5を構成する流動媒体の一部が、ホッパ部3下端の流動媒体出口7から流動媒体コンベヤ10を介して篩装置11へと送られ、篩装置11で不燃物を除去された後に、流動媒体循環路9を介して流動媒体入口8から一次燃焼室1へと循環される。
【0021】
更に、可燃ガス15に同伴されて搾流通路18を上昇した固形未燃分16は、二次燃焼室12で旋回上昇流によって遠心分離され、灰分として二次燃焼室12のホッパ部14下端の灰出口17から排出される。
【0022】
【発明が解決しようとする課題】
しかしながら、上記燃焼装置における二次燃焼室には、以下のような問題があった。
【0023】
即ち、可燃ガス15の燃焼に必要な二次空気は、接線方向接続部19で、二次空気供給路23と24から分配供給されるようになっているが、例えば、二次空気供給路23のみから接線方向接続部19における可燃ガス15の流れ方向へ向けて、燃焼に必要な二次空気の全量を供給した場合、図6・図7に示すように、二次燃焼室12内における可燃ガス15の旋回上昇流が強くなり過ぎて火炎aが長くなると共に、旋回上昇流が燃焼ガス排出口13の外部へ吹き抜けてしまうため、可燃ガス15の炉内滞留時間が短くなる傾向にある。これによって、燃焼ガス排出口13から外部へ排出される一酸化炭素の量を低減させる効果があまり得られなくなってしまう。
【0024】
反対に、二次空気供給路24のみから接線方向接続部19における可燃ガス15の流れ方向と直角方向へ向けて、燃焼に必要な二次空気の全量を供給した場合、可燃ガス15に対する二次空気の混合性が向上すると共に、図8・図9に示すように、二次燃焼室12内における可燃ガス15の旋回上昇流が弱くなって火炎aが短くなるため、可燃ガス15の炉内滞留時間が長くなる傾向にある。このため、燃焼ガス排出口13から外部へ排出される一酸化炭素の量を低減させることができるようになるが、今度は、短い火炎aによって、二次燃焼室12内に局部的に温度の高い部分ができるため、窒素酸化物の発生量が多くなったり、二次燃焼室12内に燃焼灰が付着するという問題が発生してしまう。
【0025】
そこで、従来は、二次空気供給路23と24から分配供給される二次空気の配分を作業員が手作業で変更して、旋回上昇流の強さや火炎aの長さを調整するようにしていたが、廃棄物の組成によって上記二次空気の配分を変えなければならないため、調整作業が煩雑であった。
【0026】
本発明は、上述の実情に鑑み、燃焼に必要な空気の配分を自動的に制御し得るようにした旋回式燃焼装置を提供することを目的とするものである。
【0027】
【課題を解決するための手段】
請求項1の発明は、ほぼ上下方向へ延びる円筒形の側壁を有する旋回式燃焼装置本体の中間部に、接線方向から可燃ガスを供給する接線方向接続部を接続し、該接線方向接続部に可燃ガスの流れ方向へ空気を供給する空気ノズルと、可燃ガスの流れ方向と直角方向へ空気を供給する空気ノズルを設けた旋回式燃焼装置において、旋回式燃焼装置本体の接線方向接続部の接続位置よりも上側の位置に、旋回式燃焼装置本体の周方向に間隔をおいて複数の火炎検出器を設け、火炎検出器からの火炎検出信号に基づき、前記各空気ノズルへ空気を分配する流量制御弁へ開度を制御するための制御信号を送る演算制御装置を設けたことを特徴とする旋回式燃焼装置にかかるものである。
【0028】
請求項2の発明は、ほぼ上下方向へ延びる円筒形の側壁を有する旋回式燃焼装置本体の中間部に、接線方向から可燃ガスを供給する接線方向接続部を接続し、該接線方向接続部に可燃ガスの流れ方向へ空気を供給する空気ノズルと、可燃ガスの流れ方向と直角方向へ空気を供給する空気ノズルを設けた旋回式燃焼装置において、旋回式燃焼装置本体の出側に一酸化炭素濃度検出器を設け、一酸化炭素濃度検出器で検出した一酸化炭素濃度検出信号と、一酸化炭素濃度設定器に設定された一酸化炭素濃度設定信号とを比較して、前記各空気ノズルへ空気を分配する流量制御弁へ開度を制御するための制御信号を送る演算制御装置を設けたことを特徴とする旋回式燃焼装置にかかるものである。
【0029】
請求項3の発明は、ほぼ上下方向へ延びる円筒形の側壁を有する旋回式燃焼装置本体の中間部に、接線方向から可燃ガスを供給する接線方向接続部を接続し、該接線方向接続部に可燃ガスの流れ方向へ空気を供給する空気ノズルと、可燃ガスの流れ方向と直角方向へ空気を供給する空気ノズルを設けた旋回式燃焼装置において、旋回式燃焼装置本体の出側に窒素酸化物濃度検出器を設け、窒素酸化物濃度検出器で検出した窒素酸化物濃度検出信号と、窒素酸化物濃度設定器に設定された窒素酸化物濃度設定信号とを比較して、前記各空気ノズルへ空気を分配する流量制御弁へ開度を制御するための制御信号を送る演算制御装置を設けたことを特徴とする旋回式燃焼装置にかかるものである。
【0030】
上記手段によれば、以下のような作用が得られる。
【0031】
接線方向接続部から旋回式燃焼装置本体の中間部に可燃ガスを供給すると、旋回式燃焼装置本体の内部に可燃ガスの旋回流が形成される。
【0032】
この状態で、接線方向接続部に可燃ガスの流れ方向へ向けて空気ノズルから空気を供給すると、旋回流が強くなって、火炎が長くなると共に、外部へ排出される一酸化炭素の量が多くなる。
【0033】
反対に、接線方向接続部に可燃ガスの流れ方向と直角方向へ向けて空気ノズルから空気を供給すると、旋回流が弱くなって、火炎が短くなると共に、発生する窒素酸化物の量が多くなる。
【0034】
そこで、請求項1の発明では、旋回式燃焼装置本体の接線方向接続部の接続位置よりも上側の位置に、旋回式燃焼装置本体の周方向に間隔をおいて複数設けた火炎検出器からの火炎検出信号に基づき、演算制御装置が制御信号を送って、前記各空気ノズルへ空気を分配する流量制御弁の開度を制御することにより、空気を自動的に分配させている。
【0035】
又、請求項2の発明では、旋回式燃焼装置本体の出側に設けた一酸化炭素濃度検出器で検出した一酸化炭素濃度検出信号と、一酸化炭素濃度設定器に設定された一酸化炭素濃度設定信号とを演算制御装置が比較し、演算制御装置が制御信号を送って、前記各空気ノズルへ空気を分配する流量制御弁の開度を制御することにより、空気を自動的に分配させている。
【0036】
更に、請求項3の発明では、旋回式燃焼装置本体の出側に設けた窒素酸化物濃度検出器で検出した窒素酸化物濃度検出信号と、窒素酸化物濃度設定器に設定された窒素酸化物濃度設定信号とを演算制御装置が比較し、演算制御装置が制御信号を送って、前記各空気ノズルへ空気を分配する流量制御弁の開度を制御することにより、空気を自動的に分配させている。
【0037】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。
【0038】
図1・図2は、本発明の第一の実施の形態である。
【0039】
図中、28は上部に廃棄物供給口29を形成され下部にホッパ部30を形成された一次燃焼室、31は一次燃焼室28のホッパ部30の上部に間隔をおいて配置された水平な複数本の散気管、32は流動砂などの流動媒体で形成されて、散気管31から噴出される一次空気によって流動される流動層、33は一次燃焼室28の中間部に流動層32へ向けて取付けられたバーナである。
【0040】
34はホッパ部30の下端に設けられた流動媒体出口、35は一次燃焼室28の中間部に形成された流動媒体入口、36は流動媒体出口34と流動媒体入口35との間を接続するバケットコンベヤなどの流動媒体循環路、37は流動媒体循環路36の入側に設けられた流動媒体コンベヤ、38は流動媒体コンベヤ37出側に設けられた篩装置である。
【0041】
又、39は一次燃焼室28の上方に配設されて、上端に燃焼ガス排出口40を有し、下端にホッパ部41を有しほぼ上下方向へ延びるほぼ円筒形の二次燃焼室(旋回式燃焼装置本体)、42は一次燃焼室28で発生された、固形未燃分43を含む可燃ガス、44はホッパ部41下端に形成された灰出口である。
【0042】
そして、45は一次燃焼室28からの可燃ガス42を二次燃焼室39へ送るための搾流通路、46は二次燃焼室39の側壁下部に対し接線方向へ向けて接続された接線方向接続部である。
【0043】
47は外部の通風機48に接続された空気供給路、49は空気供給路47から分岐され散気管31へ一次空気を供給する一次空気供給路、50,51は前記空気供給路47から分岐され、接線方向接続部46に可燃ガス42の流れ方向へ向けて設けられた二次空気ノズル55と、接線方向接続部46に可燃ガス42の流れ方向と直角方向へ向けて設けられた二次空気ノズル56へ二次空気を供給し得るようにした二次空気供給路、52は一次空気供給路49の途中に設けられた弁、53,54はそれぞれ二次空気供給路50,51の途中に設けられた流量制御弁である。
【0044】
本実施の形態では、更に、二次燃焼室39の周面で且つ、接線方向接続部46の接続位置と同じ高さかそれよりも上側の位置に、周方向に間隔をおいて複数の火炎検出器57〜59を取付ける。尚、図面の関係上、火炎検出器57〜59は、3基が、周方向の位相を90度ずつずらせて配置されると共に、下流側程位置が高くなって行くように描かれているが、個数及び取付け位置共にこれに限定されるものではない。但し、実際に設ける場合は、最低、火炎66の長さの許容範囲の上限位置と下限位置にそれぞれ1基ずつ、合計で2基設けるようにすれば十分である。
【0045】
そして、火炎検出器57〜59からの火炎検出信号60〜62を入力して、火炎66の長さが適正となるように前記流量制御弁53,54へ制御信号63,64を送る演算制御装置65を設ける。
【0046】
次に、本実施の形態の作動について説明する。
【0047】
通風機48を作動して、空気供給路47及び一次空気供給路49を介し、一次燃焼室28の散気管31へ一次空気を供給することにより、流動層32を流動させると共に、バーナ33によって一次燃焼室28内の流動層32を予熱し、この状態で、廃棄物供給口29から一次燃焼室28内へ廃棄物を投入する。
【0048】
すると、一次燃焼室28内へ投入された廃棄物は、予熱された流動層32内で熱分解され、熱分解により可燃ガス42やチャー(炭)などの固形未燃分43などが発生される。
【0049】
そして、散気管31から一次燃焼室28へ供給された一次空気によってチャーなどの固形未燃分43が燃焼され、この燃焼熱によって廃棄物の熱分解が促進される。
【0050】
廃棄物の熱分解によって発生された可燃ガス42は上昇し、搾流通路45及び接線方向接続部46を通して、二次燃焼室39へ逃されるので、一次燃焼室28では可燃ガス42の燃焼の影響を受けずに廃棄物を一定の速度で熱分解させることができる。
【0051】
一方、搾流通路45及び接線方向接続部46を通って、二次燃焼室39へと送られる可燃ガス42と一部の固形未燃分43は、途中、搾流通路45で絞られ、接線方向接続部46で二次空気供給路50,51からの二次空気を供給されてある程度混合された後、ほぼ円筒形の二次燃焼室39へ接線方向に導入される。
【0052】
すると、二次燃焼室39内では、二次空気を混合された可燃ガス42による旋回上昇流が形成され、該旋回上昇流によって可燃ガス42と二次空気との混合が更に促進される。加えて、旋回により二次燃焼室39内部における可燃ガス42の燃焼に必要な炉内滞留時間が確保されることとなるので、その間に可燃ガス42が燃焼性が向上され、不完全燃焼による有害物質の発生などが抑制される。
【0053】
そして、燃焼により生成された燃焼ガスは、二次燃焼室39上端の燃焼ガス排出口40から排出される。
【0054】
又、上記とは別に、一次燃焼室28では、流動層32を構成する流動媒体の一部が、ホッパ部30下端の流動媒体出口34から流動媒体コンベヤ37を介して篩装置38へと送られ、篩装置38で不燃物を除去された後に、流動媒体循環路36を介して流動媒体入口35から一次燃焼室28へと循環される。
【0055】
更に、可燃ガス42に同伴されて搾流通路45を上昇した固形未燃分43は、二次燃焼室39で旋回上昇流によって遠心分離され、灰分として二次燃焼室39のホッパ部41下端の灰出口44から排出される。
【0056】
ところで、可燃ガス42の燃焼に必要な二次空気は、接線方向接続部46で、二次空気供給路50と51から分配供給されるようになっているが、例えば、二次空気供給路50のみから接線方向接続部46における可燃ガス42の流れ方向へ向けて、燃焼に必要な二次空気の全量を供給した場合、二次燃焼室39内における可燃ガス42の旋回上昇流が強くなり過ぎて火炎66が長くなると共に、旋回上昇流が燃焼ガス排出口40の外部へ吹き抜けてしまうため、可燃ガス42の炉内滞留時間が短くなる傾向にある。これによって、燃焼ガス排出口40から外部へ排出される一酸化炭素の量を低減させる効果があまり得られなくなってしまう。
【0057】
反対に、二次空気供給路51のみから接線方向接続部46における可燃ガス42の流れ方向と直角方向へ向けて、燃焼に必要な二次空気の全量を供給した場合、可燃ガス42に対する二次空気の混合性が向上すると共に、二次燃焼室39内における可燃ガス42の旋回上昇流が弱くなって火炎66が短くなるため、可燃ガス42の炉内滞留時間が長くなる傾向にある。このため、燃焼ガス排出口40から外部へ排出される一酸化炭素の量を低減させることができるようになるが、今度は、短い火炎66によって、二次燃焼室39内に局部的に温度の高い部分ができるため、窒素酸化物の発生量が多くなったり、二次燃焼室39内に燃焼灰が付着するという問題が発生してしまう。
【0058】
そこで、本実施の形態では、二次燃焼室39の周面で且つ、接線方向接続部46の接続位置と同じ高さかそれよりも上側の位置に、周方向に間隔をおいて複数の火炎検出器57〜59を取付けて、各火炎検出器57〜59により火炎66を検出させる。
【0059】
こうして、火炎検出器57〜59が検出器した火炎検出信号60〜62は、演算制御装置65へ入力され、演算制御装置65で、火炎66を検出した火炎検出器57〜59の数によって火炎66の長さが求められる。
【0060】
こうして、火炎66の長さが求められたら、演算制御装置65は、前記流量制御弁53,54へ制御信号63,64を送って流量制御弁53,54の開度を調整させることにより、二次空気供給路50と二次空気供給路51からの二次空気の配分を自動的に制御させ、火炎66の長さが適正となるようにする。
【0061】
これにより、火炎66が長い場合には、二次空気供給路50から接線方向接続部46へ可燃ガス42の流れ方向に供給される二次空気を絞って、二次空気供給路51からの流れ方向と直角に供給される二次空気を増やすことにより、二次燃焼室39内の旋回上昇流を弱めて火炎66を短くし、旋回上昇流が外部へ吹き抜けて外部へ排出される一酸化炭素の量を低減させることができる。
【0062】
反対に、火炎66が短い場合には、二次空気供給路50から接線方向接続部46へ可燃ガス42の流れ方向に供給される二次空気を増やして、二次空気供給路51からの流れ方向と直角に供給される二次空気を絞ることにより、二次燃焼室39内の旋回上昇流を強めて火炎66を長くし、二次燃焼室39内の温度が局部的に上昇して窒素酸化物の発生量が多くなったり、二次燃焼室39内に燃焼灰が付着したりすることを防止することができるようにすることができる。
【0063】
図3は、本発明の第二の実施の形態である。
【0064】
本実施の形態では、二次燃焼室39に火炎検出器57〜59を設ける代りに、燃焼ガス排出口40に一酸化炭素濃度検出器67を設け、一酸化炭素濃度検出器67からの一酸化炭素濃度検出信号68を演算制御装置65へ入力して、演算制御装置65で一酸化炭素濃度設定器69からの一酸化炭素濃度設定信号70と比較して、火炎66の長さが適正となるように前記流量制御弁53,54へ制御信号63,64を送らせるようにしている。
【0065】
尚、一酸化炭素濃度設定器69は、最適値を1つのみ設定し得るようなものを用いても良いが、適正範囲の上限値と、下限値を設定し得るようなものを用いても良い。
【0066】
そして、燃焼ガス排出口40に設けた一酸化炭素濃度検出器67が、燃焼ガス排出口40から排出される一酸化炭素の濃度を検出して一酸化炭素濃度検出信号68を演算制御装置65へ送る。
【0067】
演算制御装置65では、一酸化炭素濃度検出器67からの一酸化炭素濃度検出信号68と、一酸化炭素濃度設定器69からの一酸化炭素濃度設定信号70とを比較して、前記流量制御弁53,54へ制御信号63,64を送って流量制御弁53,54の開度を調整させることにより、二次空気供給路50と二次空気供給路51からの二次空気の配分を自動的に制御させ、火炎66の長さが適正となるようにする。
【0068】
これにより、排出される一酸化炭素の量が一酸化炭素濃度設定信号70の値よりも多い場合には、旋回上昇流が強すぎることを示しているので、二次空気供給路50から接線方向接続部46へ可燃ガス42の流れ方向に供給される二次空気を絞って、二次空気供給路51からの流れ方向と直角に供給される二次空気を増やすことにより、二次燃焼室39内の旋回上昇流を弱めて火炎66を短くし、旋回上昇流が外部へ吹き抜けて外部へ排出される一酸化炭素の量を低減させるようにようにする。
【0069】
反対に、排出される一酸化炭素の量が一酸化炭素濃度設定信号70の値よりも少ない場合には、旋回上昇流が弱すぎることを示しているので、二次空気供給路50から接線方向接続部46へ可燃ガス42の流れ方向に供給される二次空気を増やして、二次空気供給路51からの流れ方向と直角に供給される二次空気を絞ることにより、二次燃焼室39内の旋回上昇流を強めて火炎66を長くし、二次燃焼室39内の温度が局部的に上昇して窒素酸化物の発生量が多くなったり、二次燃焼室39内に燃焼灰が付着したりすることを防止することができるようにする。
【0070】
又、上記以外については、前記実施の形態と同様の構成を備えており、同様の作用・効果を得ることができる。
【0071】
図4は、本発明の第三の実施の形態である。
【0072】
本実施の形態では、二次燃焼室39に火炎検出器57〜59を設ける代りに、燃焼ガス排出口40に窒素酸化物濃度検出器71を設け、窒素酸化物濃度検出器71からの窒素酸化物濃度検出信号72を演算制御装置65へ入力して、演算制御装置65で窒素酸化物濃度設定器73からの窒素酸化物濃度設定信号74と比較して、火炎66の長さが適正となるように前記流量制御弁53,54へ制御信号63,64を送らせるようにしている。
【0073】
尚、窒素酸化物濃度設定器73は、最適値を1つのみ設定し得るようなものを用いても良いが、適正範囲の上限値と、下限値を設定し得るようなものを用いても良い。
【0074】
そして、燃焼ガス排出口40に設けた窒素酸化物濃度検出器71が、燃焼ガス排出口40から排出される窒素酸化物の濃度を検出して窒素酸化物濃度検出信号72を演算制御装置65へ送る。
【0075】
演算制御装置65では、窒素酸化物濃度検出器71からの窒素酸化物濃度検出信号72と、窒素酸化物濃度設定器73からの窒素酸化物濃度設定信号74とを比較して、前記流量制御弁53,54へ制御信号63,64を送って流量制御弁53,54の開度を調整させることにより、二次空気供給路50と二次空気供給路51からの二次空気の配分を自動的に制御させ、火炎66の長さが適正となるようにする。
【0076】
これにより、排出される窒素酸化物の量が窒素酸化物濃度設定信号74の値よりも少ない場合には、旋回上昇流が強すぎることを示しているので、二次空気供給路50から接線方向接続部46へ可燃ガス42の流れ方向に供給される二次空気を絞って、二次空気供給路51からの流れ方向と直角に供給される二次空気を増やすことにより、二次燃焼室39内の旋回上昇流を弱めて火炎66を短くし、旋回上昇流が外部へ吹き抜けて外部へ排出される窒素酸化物の量を低減させるようにする。
【0077】
反対に、排出される窒素酸化物の量が窒素酸化物濃度設定信号74の値よりも多い場合には、旋回上昇流が弱すぎることを示しているので、二次空気供給路50から接線方向接続部46へ可燃ガス42の流れ方向に供給される二次空気を増やして、二次空気供給路51からの流れ方向と直角に供給される二次空気を絞ることにより、二次燃焼室39内の旋回上昇流を強めて火炎66を長くし、二次燃焼室39内の温度が局部的に上昇して窒素酸化物の発生量が多くなったり、二次燃焼室39内に燃焼灰が付着したりすることを防止することができるようにする。
【0078】
又、上記以外については、前記各実施の形態と同様の構成を備えており、同様の作用・効果を得ることができる。
【0079】
尚、本発明は、上述の実施の形態にのみ限定されるものではなく、上記した二次燃焼室を備えた廃棄物焼却炉などの燃焼装置に限らず、接線方向へ空気を供給して内部に旋回流を発生させるようにした旋回式燃焼装置一般に適用し得ること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0080】
【発明の効果】
以上説明したように、本発明の旋回式燃焼装置によれば、燃焼に必要な空気の配分を自動的に制御することができるという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明の実施の第一の形態の概略側断面図である。
【図2】図1のII方向矢視図である。
【図3】本発明の実施の第二の形態の概略側断面図である。
【図4】本発明の実施の第三の形態の概略側断面図である。
【図5】従来例の概略側断面図である。
【図6】図5の旋回上昇流が強い場合を示す部分拡大図である。
【図7】図6のVII−VII矢視図である。
【図8】図5の旋回上昇流が弱い場合を示す部分拡大図である。
【図9】図8のIX−IX矢視図である。
【符号の説明】
39 旋回式燃焼装置本体(二次燃焼室)
42 可燃ガス
46 接線方向接続部
53,54 流量制御弁
55,56 空気ノズル(二次空気ノズル)
57〜59 火炎検出器
60〜62 火炎検出信号
63,64 制御信号
65 演算制御装置
67 一酸化炭素濃度検出器
68 一酸化炭素濃度検出信号
69 一酸化炭素濃度設定器
70 一酸化炭素濃度設定信号
71 窒素酸化物濃度検出器
72 窒素酸化物濃度検出信号
73 窒素酸化物濃度設定器
74 窒素酸化物濃度設定信号
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a swirl type combustion device.
[0002]
[Prior art]
For example, a combustion device such as a waste incinerator generally throws municipal waste and other waste into a combustion chamber and burns the fuel. Inside the combustion chamber, the waste is thermally decomposed and generated by thermal decomposition. Waste is incinerated through two processes of combustible gas combustion.
[0003]
However, in the conventional combustion device, two types of reactions, that is, thermal decomposition of waste and combustion of combustible gas, were performed simultaneously in one combustion chamber, so both thermal decomposition of waste and combustion of combustible gas were sufficient. Did not tend to be done.
[0004]
For example, in the process of thermal decomposition of waste, it has been easy to maintain a constant thermal decomposition rate due to a temperature change caused by the combustion of combustible gas.
[0005]
In addition, in the combustion process of combustible gas, sufficient mixing of air cannot be obtained in the combustion chamber, the combustible gas causes incomplete combustion, and harmful substances are easily generated. There was a risk.
[0006]
Therefore, in recent years, the existing combustion chamber has been designated as a primary combustion chamber, and a secondary combustion chamber has been added to the primary combustion chamber. There has been proposed a combustion device that is guided to a chamber to perform exclusive combustion of combustible gas exclusively in a secondary combustion chamber.
[0007]
FIG. 5 shows a combustion device having a secondary combustion chamber (swirl-type combustion device main body) that is currently proposed.
[0008]
In the figure, reference numeral 1 denotes a primary combustion chamber having a waste supply port 2 formed at an upper portion and a hopper portion 3 formed at a lower portion, and 4 denotes a horizontal combustion chamber which is disposed at an interval above the hopper portion 3 of the primary combustion chamber 1. A plurality of diffuser tubes 5 are formed of a fluid medium such as fluidized sand and are fluidized by primary air ejected from the diffuser tubes 4. A fluidized bed 6 is directed to the fluidized bed 5 at an intermediate portion of the primary combustion chamber 1. It is a burner mounted.
[0009]
Reference numeral 7 denotes a fluid medium outlet provided at the lower end of the hopper 3, 8 denotes a fluid medium inlet formed in an intermediate portion of the primary combustion chamber 1, 9 denotes a bucket connecting between the fluid medium outlet 7 and the fluid medium inlet 8 A fluid medium circulation path 10 such as a conveyor is a fluid medium conveyor provided on the input side of the fluid medium circulation path 9, and 11 is a sieve device provided on the exit side of the fluid medium conveyor 10.
[0010]
Reference numeral 12 denotes a substantially cylindrical secondary combustion chamber which is disposed above the primary combustion chamber 1, has a combustion gas discharge port 13 at an upper end, has a hopper section 14 at a lower end, and extends vertically. A combustible gas 17 generated in the primary combustion chamber 1 and containing the solid unburned portion 16 is an ash outlet formed at the lower end of the hopper 14.
[0011]
Reference numeral 18 denotes a squeezing passage for sending the combustible gas 15 from the primary combustion chamber 1 to the secondary combustion chamber 12, and reference numeral 19 denotes a tangential connection connected to a lower part of the side wall of the secondary combustion chamber 12 in a tangential direction. Department.
[0012]
20 is an air supply path connected to an external ventilator 21; 22 is a primary air supply path branched from the air supply path 20 to supply primary air to the diffuser pipe 4; Secondary air supply passages 25, 26 and 27 adapted to supply secondary air to several positions of the tangential connection portion 19 are provided in the middle of the primary air supply passage 22 and the secondary air supply passages 23 and 24, respectively. It is a valve provided in.
[0013]
By operating the ventilator 21 to supply primary air to the diffuser pipe 4 of the primary combustion chamber 1 via the air supply path 20 and the primary air supply path 22, the fluidized bed 5 is caused to flow, and the burner 6 Thus, the fluidized bed 5 in the primary combustion chamber 1 is preheated, and in this state, the waste is supplied from the waste supply port 2 into the primary combustion chamber 1.
[0014]
Then, the waste put into the primary combustion chamber 1 is thermally decomposed in the preheated fluidized bed 5, and the pyrolysis generates combustible gas 15 and solid unburned components 16 such as char (charcoal). .
[0015]
Then, the solid unburned portion 16 such as char is burned by the primary air supplied from the diffuser pipe 4 to the primary combustion chamber 1, and the heat of combustion promotes the thermal decomposition of the waste.
[0016]
The combustible gas 15 generated by the thermal decomposition of the waste rises and escapes to the secondary combustion chamber 12 through the squeezing passage 18 and the tangential connection 19, so that the combustion of the combustible gas 15 in the primary combustion chamber 1 The waste can be pyrolyzed at a constant rate without being subjected to heat.
[0017]
On the other hand, the combustible gas 15 and a part of the solid unburned portion 16 sent to the secondary combustion chamber 12 through the squeezing passage 18 and the tangential connecting portion 19 are constricted in the squeezing passage 18 on the way, and After the secondary air is supplied from the secondary air supply passages 23 and 24 to the directional connection portion 19 and mixed to some extent, the secondary air is introduced into the substantially cylindrical secondary combustion chamber 12 in a tangential direction.
[0018]
Then, in the secondary combustion chamber 12, a swirling upward flow is formed by the combustible gas 15 mixed with the secondary air, and the swirling upward flow further promotes the mixing of the combustible gas 15 and the secondary air. In addition, the swirl secures a residence time in the furnace required for the combustion of the combustible gas 15 inside the secondary combustion chamber 12, so that the combustibility of the combustible gas 15 is improved during that time, and the harmfulness due to incomplete combustion is improved. Generation of substances is suppressed.
[0019]
Then, the combustion gas generated by the combustion is discharged from the combustion gas outlet 13 at the upper end of the secondary combustion chamber 12.
[0020]
Apart from the above, in the primary combustion chamber 1, a part of the fluid medium constituting the fluidized bed 5 is sent from the fluid medium outlet 7 at the lower end of the hopper 3 to the sieve device 11 via the fluid medium conveyor 10. After the incombustible substances are removed by the sieve device 11, the fluid is circulated from the fluid medium inlet 8 to the primary combustion chamber 1 via the fluid medium circulation path 9.
[0021]
Further, the solid unburned portion 16 that has been ascended by the combustible gas 15 and rises in the squeezing passage 18 is centrifugally separated by the swirling upward flow in the secondary combustion chamber 12, and becomes ash at the lower end of the hopper portion 14 of the secondary combustion chamber 12. It is discharged from the ash outlet 17.
[0022]
[Problems to be solved by the invention]
However, the secondary combustion chamber in the combustion device has the following problems.
[0023]
That is, the secondary air required for combustion of the combustible gas 15 is distributed and supplied from the secondary air supply passages 23 and 24 at the tangential connection portion 19. When the entire amount of the secondary air required for combustion is supplied from only from the tangential connection portion 19 toward the flow direction of the combustible gas 15, as shown in FIGS. Since the swirl rising flow of the gas 15 becomes too strong and the flame a becomes longer, the swirling rising flow blows out to the outside of the combustion gas outlet 13, so that the residence time of the combustible gas 15 in the furnace tends to be short. As a result, the effect of reducing the amount of carbon monoxide discharged from the combustion gas discharge port 13 to the outside cannot be obtained much.
[0024]
Conversely, when the entire amount of the secondary air required for combustion is supplied only from the secondary air supply path 24 in the direction perpendicular to the flow direction of the combustible gas 15 in the tangential connection portion 19, the secondary 8 and 9, the swirl upward flow of the combustible gas 15 in the secondary combustion chamber 12 is weakened and the flame a is shortened. The residence time tends to be long. For this reason, the amount of carbon monoxide discharged to the outside from the combustion gas discharge port 13 can be reduced, but this time, the temperature of the temperature is locally reduced in the secondary combustion chamber 12 by the short flame a. Since a high portion is formed, problems such as an increase in the amount of generated nitrogen oxides and combustion ash adhering in the secondary combustion chamber 12 occur.
[0025]
Therefore, conventionally, the distribution of the secondary air distributed and supplied from the secondary air supply passages 23 and 24 is manually changed by an operator to adjust the strength of the swirling upward flow and the length of the flame a. However, since the distribution of the secondary air has to be changed depending on the composition of the waste, the adjustment work is complicated.
[0026]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a swirl type combustion apparatus capable of automatically controlling the distribution of air required for combustion.
[0027]
[Means for Solving the Problems]
According to the first aspect of the present invention, a tangential connecting portion for supplying combustible gas from a tangential direction is connected to an intermediate portion of a revolving combustion device main body having a cylindrical side wall extending substantially vertically, and the tangential connecting portion is connected to the tangential connecting portion. Connection of the tangential connection part of the main body of the swirl type combustion device in the swirl type combustion device provided with an air nozzle for supplying air in the flow direction of the combustible gas and an air nozzle for supplying air in a direction perpendicular to the flow direction of the combustible gas At a position above the position, a plurality of flame detectors are provided at intervals in the circumferential direction of the swirl type combustion device main body, and based on a flame detection signal from the flame detector, a flow rate for distributing air to each of the air nozzles The present invention relates to a swirl type combustion apparatus characterized in that an arithmetic and control unit for sending a control signal for controlling an opening to a control valve is provided.
[0028]
According to a second aspect of the present invention, a tangential connection for supplying flammable gas from a tangential direction is connected to an intermediate portion of a revolving combustion device main body having a cylindrical side wall extending substantially vertically, and the tangential connection is connected to the tangential connection. In a swirl type combustion apparatus provided with an air nozzle for supplying air in the direction of flow of combustible gas and an air nozzle for supplying air in a direction perpendicular to the direction of flow of combustible gas, carbon monoxide is provided at the outlet side of the main body of the swirl type combustion apparatus. Providing a concentration detector, comparing the carbon monoxide concentration detection signal detected by the carbon monoxide concentration detector and the carbon monoxide concentration setting signal set in the carbon monoxide concentration setting device, to each of the air nozzles The invention relates to a swirl-type combustion device, which is provided with an arithmetic and control unit for sending a control signal for controlling an opening to a flow control valve for distributing air.
[0029]
According to a third aspect of the present invention, a tangential connecting portion for supplying combustible gas from a tangential direction is connected to an intermediate portion of a revolving combustion device main body having a cylindrical side wall extending substantially vertically, and the tangential connecting portion is connected to the tangential connecting portion. In a swirling type combustion apparatus provided with an air nozzle for supplying air in the direction of flow of combustible gas and an air nozzle for supplying air in a direction perpendicular to the direction of flow of combustible gas, nitrogen oxide is provided on the exit side of the main body of the swirling type combustion apparatus. Providing a concentration detector, comparing the nitrogen oxide concentration detection signal detected by the nitrogen oxide concentration detector and the nitrogen oxide concentration setting signal set in the nitrogen oxide concentration setting device, to each of the air nozzles The invention relates to a swirl-type combustion device, which is provided with an arithmetic and control unit for sending a control signal for controlling an opening to a flow control valve for distributing air.
[0030]
According to the above means, the following effects can be obtained.
[0031]
When the combustible gas is supplied from the tangential connection to the intermediate portion of the main body of the swirling type combustion device, a swirling flow of the combustible gas is formed inside the main body of the swirling type combustion device.
[0032]
In this state, if air is supplied from the air nozzle to the tangential connection in the flow direction of the combustible gas, the swirling flow becomes stronger, the flame becomes longer, and the amount of carbon monoxide discharged to the outside increases. Become.
[0033]
Conversely, when air is supplied from the air nozzle to the tangential connection in a direction perpendicular to the flow direction of the combustible gas, the swirling flow is weakened, the flame is shortened, and the amount of generated nitrogen oxides is increased. .
[0034]
Therefore, according to the first aspect of the present invention, a plurality of flame detectors are provided at a position above the connection position of the tangential connection portion of the swirl type combustion device main body at intervals in the circumferential direction of the swirl type combustion device main body. Based on the flame detection signal, the arithmetic and control unit sends a control signal to control the opening of a flow control valve that distributes the air to each of the air nozzles, thereby automatically distributing the air.
[0035]
Further, according to the invention of claim 2, the carbon monoxide concentration detection signal detected by the carbon monoxide concentration detector provided on the outlet side of the swirling type combustion device main body and the carbon monoxide concentration set by the carbon monoxide concentration setting device The arithmetic and control unit compares the concentration setting signal with the concentration control signal, and the arithmetic and control unit sends a control signal to control the opening degree of the flow control valve that distributes the air to each of the air nozzles, thereby automatically distributing the air. ing.
[0036]
Further, according to the third aspect of the present invention, the nitrogen oxide concentration detection signal detected by the nitrogen oxide concentration detector provided on the exit side of the swirl type combustion device main body, and the nitrogen oxide concentration set by the nitrogen oxide concentration setting device The arithmetic and control unit compares the concentration setting signal with the concentration control signal, and the arithmetic and control unit sends a control signal to control the opening degree of the flow control valve that distributes the air to each of the air nozzles, thereby automatically distributing the air. ing.
[0037]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0038]
1 and 2 show a first embodiment of the present invention.
[0039]
In the figure, reference numeral 28 denotes a primary combustion chamber in which a waste supply port 29 is formed in an upper portion and a hopper portion 30 is formed in a lower portion, and 31 is a horizontal combustion chamber which is arranged at an interval above the hopper portion 30 of the primary combustion chamber 28. A plurality of diffuser tubes 32 are formed of a fluid medium such as fluidized sand and are fluidized by primary air ejected from the diffuser tubes 31. A fluidized bed 33 is provided at an intermediate portion of the primary combustion chamber 28 toward the fluidized bed 32. It is a burner mounted.
[0040]
34 is a fluid medium outlet provided at the lower end of the hopper section 30, 35 is a fluid medium inlet formed in the middle part of the primary combustion chamber 28, 36 is a bucket connecting between the fluid medium outlet 34 and the fluid medium inlet 35 A fluid medium circulation path such as a conveyor, 37 is a fluid medium conveyor provided on the inlet side of the fluid medium circulation path 36, and 38 is a sieve device provided on the exit side of the fluid medium conveyor 37.
[0041]
A substantially cylindrical secondary combustion chamber 39 is disposed above the primary combustion chamber 28 and has a combustion gas discharge port 40 at an upper end and a hopper section 41 at a lower end and extends substantially vertically. 42 is a combustible gas generated in the primary combustion chamber 28 and containing a solid unburned portion 43, and 44 is an ash outlet formed at the lower end of the hopper 41.
[0042]
Reference numeral 45 denotes a squeezing passage for sending the combustible gas 42 from the primary combustion chamber 28 to the secondary combustion chamber 39, and reference numeral 46 denotes a tangential connection connected to a lower portion of the side wall of the secondary combustion chamber 39 in a tangential direction. Department.
[0043]
47 is an air supply path connected to an external ventilator 48, 49 is a primary air supply path branched from the air supply path 47 and supplies primary air to the diffuser 31, and 50 and 51 are branched from the air supply path 47. A secondary air nozzle 55 provided in the tangential connection portion 46 in the direction of flow of the combustible gas 42, and a secondary air nozzle provided in the tangential connection portion 46 in the direction perpendicular to the flow direction of the combustible gas 42. A secondary air supply passage capable of supplying secondary air to the nozzle 56, a valve 52 provided in the middle of the primary air supply passage 49, and 53 and 54 provided in the middle of the secondary air supply passages 50 and 51, respectively. It is a flow control valve provided.
[0044]
In the present embodiment, a plurality of flame detections are further provided on the peripheral surface of the secondary combustion chamber 39 at the same height as or higher than the connection position of the tangential connection portion 46 at intervals in the circumferential direction. The vessels 57 to 59 are mounted. It should be noted that three flame detectors 57 to 59 are drawn so that the phase in the circumferential direction is shifted by 90 degrees at a time, and the position of the flame detectors 57 to 59 becomes higher toward the downstream side. However, neither the number nor the mounting position is limited to this. However, when actually providing, it is sufficient to provide two units in total, one each at the upper limit position and the lower limit position of the allowable range of the length of the flame 66.
[0045]
The arithmetic and control unit receives the flame detection signals 60 to 62 from the flame detectors 57 to 59 and sends the control signals 63 and 64 to the flow control valves 53 and 54 so that the length of the flame 66 becomes appropriate. 65 are provided.
[0046]
Next, the operation of the present embodiment will be described.
[0047]
By operating the ventilator 48 and supplying the primary air to the diffuser 31 of the primary combustion chamber 28 through the air supply path 47 and the primary air supply path 49, the fluidized bed 32 is caused to flow, and the primary The fluidized bed 32 in the combustion chamber 28 is preheated, and in this state, the waste is supplied from the waste supply port 29 into the primary combustion chamber 28.
[0048]
Then, the waste put into the primary combustion chamber 28 is thermally decomposed in the preheated fluidized bed 32, and the pyrolysis generates combustible gas 42 and solid unburned components 43 such as char (charcoal). .
[0049]
Then, the solid unburned portion 43 such as char is burned by the primary air supplied from the air diffuser 31 to the primary combustion chamber 28, and the heat of combustion promotes the thermal decomposition of the waste.
[0050]
The combustible gas 42 generated by the pyrolysis of the waste rises and escapes to the secondary combustion chamber 39 through the squeezing passage 45 and the tangential connection 46, so that the combustion of the combustible gas 42 in the primary combustion chamber 28 The waste can be pyrolyzed at a constant rate without being subjected to heat.
[0051]
On the other hand, the combustible gas 42 and a part of the solid unburned portion 43 sent to the secondary combustion chamber 39 through the squeezing passage 45 and the tangential connecting portion 46 are constricted in the squeezing passage 45 on the way, After the secondary air is supplied from the secondary air supply passages 50 and 51 to the directional connection portion 46 and mixed to some extent, the secondary air is introduced tangentially into the substantially cylindrical secondary combustion chamber 39.
[0052]
Then, in the secondary combustion chamber 39, a swirling upward flow is formed by the combustible gas 42 mixed with the secondary air, and the swirling upward flow further promotes the mixing of the combustible gas 42 and the secondary air. In addition, the swirl secures the residence time in the furnace required for combustion of the combustible gas 42 inside the secondary combustion chamber 39, during which the combustibility of the combustible gas 42 is improved, and harmfulness due to incomplete combustion is obtained. Generation of substances is suppressed.
[0053]
Then, the combustion gas generated by the combustion is discharged from the combustion gas outlet 40 at the upper end of the secondary combustion chamber 39.
[0054]
Apart from the above, in the primary combustion chamber 28, a part of the fluid medium constituting the fluidized bed 32 is sent from the fluid medium outlet 34 at the lower end of the hopper 30 to the sieve device 38 via the fluid medium conveyor 37. After the incombustible substances are removed by the sieving device 38, the fuel is circulated from the fluid medium inlet 35 to the primary combustion chamber 28 via the fluid medium circulation path 36.
[0055]
Further, the solid unburned portion 43 that has risen in the squeezing passage 45 accompanied by the combustible gas 42 is centrifugally separated by the swirling upward flow in the secondary combustion chamber 39, and is ashed at the lower end of the hopper 41 of the secondary combustion chamber 39. It is discharged from the ash outlet 44.
[0056]
By the way, the secondary air necessary for combustion of the combustible gas 42 is distributed and supplied from the secondary air supply passages 50 and 51 at the tangential connection portion 46. When only the entire amount of the secondary air required for combustion is supplied from only the tangential connection portion 46 toward the flow direction of the combustible gas 42, the swirling upward flow of the combustible gas 42 in the secondary combustion chamber 39 becomes too strong. As the flame 66 becomes longer and the swirling upward flow blows out of the combustion gas outlet 40, the residence time of the combustible gas 42 in the furnace tends to be shorter. As a result, the effect of reducing the amount of carbon monoxide discharged from the combustion gas discharge port 40 to the outside cannot be obtained much.
[0057]
Conversely, when the entire amount of secondary air required for combustion is supplied from only the secondary air supply passage 51 in a direction perpendicular to the flow direction of the combustible gas 42 in the tangential connection portion 46, the secondary As the mixing property of the air is improved, the swirling upward flow of the combustible gas 42 in the secondary combustion chamber 39 is weakened and the flame 66 is shortened, so that the residence time of the combustible gas 42 in the furnace tends to be long. For this reason, the amount of carbon monoxide discharged to the outside from the combustion gas discharge port 40 can be reduced, but this time, the short flame 66 causes the temperature of the temperature to be locally increased in the secondary combustion chamber 39. Since a high portion is formed, problems such as an increase in the amount of generated nitrogen oxides and combustion ash adhering in the secondary combustion chamber 39 occur.
[0058]
Accordingly, in the present embodiment, a plurality of flame detections are provided at circumferential positions on the circumferential surface of the secondary combustion chamber 39 at the same height as or higher than the connection position of the tangential connection portion 46. The flames 66 are detected by the flame detectors 57 to 59 by attaching the detectors 57 to 59, respectively.
[0059]
Thus, the flame detection signals 60 to 62 detected by the flame detectors 57 to 59 are input to the arithmetic and control unit 65, and the arithmetic and control unit 65 calculates the flame 66 according to the number of the flame detectors 57 to 59 that have detected the flame 66. Is required.
[0060]
When the length of the flame 66 is obtained in this way, the arithmetic and control unit 65 sends control signals 63 and 64 to the flow control valves 53 and 54 to adjust the opening degrees of the flow control valves 53 and 54, thereby The distribution of the secondary air from the secondary air supply path 50 and the secondary air supply path 51 is automatically controlled so that the length of the flame 66 becomes appropriate.
[0061]
Thereby, when the flame 66 is long, the secondary air supplied from the secondary air supply passage 50 to the tangential connection portion 46 in the flow direction of the combustible gas 42 is throttled, and the flow from the secondary air supply passage 51 is reduced. By increasing the secondary air supplied at right angles to the direction, the swirl rising flow in the secondary combustion chamber 39 is weakened to shorten the flame 66, and the swirl rising flow blows out to the outside and is discharged to the outside. Can be reduced.
[0062]
Conversely, when the flame 66 is short, the secondary air supplied from the secondary air supply passage 50 to the tangential connection portion 46 in the flow direction of the combustible gas 42 is increased, and the flow from the secondary air supply passage 51 is increased. By restricting the secondary air supplied at right angles to the direction, the swirling upward flow in the secondary combustion chamber 39 is strengthened to lengthen the flame 66, and the temperature in the secondary combustion chamber 39 is locally increased and nitrogen is increased. It is possible to prevent the generation amount of the oxide from increasing and the combustion ash from adhering in the secondary combustion chamber 39.
[0063]
FIG. 3 shows a second embodiment of the present invention.
[0064]
In the present embodiment, instead of providing the flame detectors 57 to 59 in the secondary combustion chamber 39, a carbon monoxide concentration detector 67 is provided in the combustion gas outlet 40, and the monoxide from the carbon monoxide concentration detector 67 is detected. The carbon concentration detection signal 68 is input to the arithmetic and control unit 65, and the arithmetic and control unit 65 compares the signal with the carbon monoxide concentration setting signal 70 from the carbon monoxide concentration setting unit 69 so that the length of the flame 66 becomes appropriate. The control signals 63 and 64 are sent to the flow control valves 53 and 54 as described above.
[0065]
Incidentally, the carbon monoxide concentration setting device 69 may be a device capable of setting only one optimum value, but may be a device capable of setting an upper limit value and a lower limit value of an appropriate range. good.
[0066]
Then, a carbon monoxide concentration detector 67 provided at the combustion gas discharge port 40 detects the concentration of carbon monoxide discharged from the combustion gas discharge port 40, and sends a carbon monoxide concentration detection signal 68 to the arithmetic and control unit 65. send.
[0067]
The arithmetic and control unit 65 compares the carbon monoxide concentration detection signal 68 from the carbon monoxide concentration detector 67 with the carbon monoxide concentration setting signal 70 from the carbon monoxide concentration setter 69 to determine the flow control valve. By sending control signals 63 and 64 to 53 and 54 to adjust the opening of the flow control valves 53 and 54, the distribution of the secondary air from the secondary air supply passage 50 and the secondary air supply passage 51 is automatically adjusted. To make the length of the flame 66 appropriate.
[0068]
Thus, if the amount of carbon monoxide to be discharged is larger than the value of the carbon monoxide concentration setting signal 70, it indicates that the swirling upflow is too strong, and the tangential direction from the secondary air supply path 50 The secondary air supplied to the connection portion 46 in the flow direction of the combustible gas 42 is throttled, and the secondary air supplied at right angles to the flow direction from the secondary air supply passage 51 is increased to thereby increase the secondary combustion chamber 39. The swirling upward flow is weakened to shorten the flame 66, and the swirling upward flow blows out to reduce the amount of carbon monoxide discharged to the outside.
[0069]
Conversely, if the amount of carbon monoxide discharged is smaller than the value of the carbon monoxide concentration setting signal 70, it indicates that the swirling upflow is too weak, and the tangential direction from the secondary air supply passage 50 is The secondary air supplied to the connection portion 46 in the flow direction of the combustible gas 42 is increased, and the secondary air supplied at right angles to the flow direction from the secondary air supply passage 51 is throttled, so that the secondary combustion chamber 39 The flame 66 is lengthened by increasing the swirling upward flow in the inside, the temperature in the secondary combustion chamber 39 is locally increased, and the amount of generated nitrogen oxides is increased, or combustion ash is generated in the secondary combustion chamber 39. It is possible to prevent adhesion.
[0070]
Except for the above, the configuration is the same as that of the above-described embodiment, and the same operation and effect can be obtained.
[0071]
FIG. 4 shows a third embodiment of the present invention.
[0072]
In the present embodiment, instead of providing the flame detectors 57 to 59 in the secondary combustion chamber 39, a nitrogen oxide concentration detector 71 is provided in the combustion gas outlet 40, and the nitrogen oxide concentration from the nitrogen oxide concentration detector 71 is detected. The substance concentration detection signal 72 is input to the arithmetic and control unit 65, and the arithmetic and control unit 65 makes the length of the flame 66 appropriate as compared with the nitrogen oxide concentration setting signal 74 from the nitrogen oxide concentration setting unit 73. The control signals 63 and 64 are sent to the flow control valves 53 and 54 as described above.
[0073]
Incidentally, the nitrogen oxide concentration setting device 73 may be a device capable of setting only one optimum value, but may be a device capable of setting an upper limit value and a lower limit value of an appropriate range. good.
[0074]
Then, a nitrogen oxide concentration detector 71 provided at the combustion gas outlet 40 detects the concentration of nitrogen oxides discharged from the combustion gas outlet 40 and sends a nitrogen oxide concentration detection signal 72 to the arithmetic and control unit 65. send.
[0075]
The arithmetic and control unit 65 compares the nitrogen oxide concentration detection signal 72 from the nitrogen oxide concentration detector 71 with the nitrogen oxide concentration setting signal 74 from the nitrogen oxide concentration setter 73, and By sending control signals 63 and 64 to 53 and 54 to adjust the opening of the flow control valves 53 and 54, the distribution of the secondary air from the secondary air supply passage 50 and the secondary air supply passage 51 is automatically adjusted. To make the length of the flame 66 appropriate.
[0076]
Accordingly, if the amount of the nitrogen oxide discharged is smaller than the value of the nitrogen oxide concentration setting signal 74, it indicates that the swirling upward flow is too strong, and the tangential direction from the secondary air supply passage 50 is The secondary air supplied to the connection portion 46 in the flow direction of the combustible gas 42 is throttled, and the secondary air supplied at right angles to the flow direction from the secondary air supply passage 51 is increased to thereby increase the secondary combustion chamber 39. The swirling upward flow is weakened to shorten the flame 66, so that the amount of nitrogen oxides discharged outside due to the swirling upward flow blowing out is reduced.
[0077]
Conversely, if the amount of nitrogen oxide discharged is larger than the value of the nitrogen oxide concentration setting signal 74, it indicates that the swirling upflow is too weak, and the tangential direction from the secondary air supply passage 50 is The secondary air supplied to the connection portion 46 in the flow direction of the combustible gas 42 is increased, and the secondary air supplied at right angles to the flow direction from the secondary air supply passage 51 is throttled, so that the secondary combustion chamber 39 The flame 66 is lengthened by increasing the swirling upward flow in the inside, the temperature in the secondary combustion chamber 39 is locally increased, and the amount of generated nitrogen oxides is increased, or combustion ash is generated in the secondary combustion chamber 39. It is possible to prevent adhesion.
[0078]
Except for the above, the configuration is the same as that of each of the above embodiments, and the same operation and effect can be obtained.
[0079]
It should be noted that the present invention is not limited to the above-described embodiment, and is not limited to a combustion device such as a waste incinerator provided with the above-described secondary combustion chamber, and may supply air in a tangential direction to supply the internal air. Of course, various changes can be made without departing from the scope of the present invention, in addition to the general application of a swirling combustion apparatus that generates a swirling flow.
[0080]
【The invention's effect】
As described above, according to the swirl type combustion apparatus of the present invention, an excellent effect that the distribution of air required for combustion can be automatically controlled can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic side sectional view of a first embodiment of the present invention.
FIG. 2 is a view in the direction of arrow II in FIG. 1;
FIG. 3 is a schematic side sectional view of a second embodiment of the present invention.
FIG. 4 is a schematic side sectional view of a third embodiment of the present invention.
FIG. 5 is a schematic side sectional view of a conventional example.
FIG. 6 is a partially enlarged view showing a case where the swirling upward flow in FIG. 5 is strong.
FIG. 7 is a view taken along the line VII-VII in FIG. 6;
FIG. 8 is a partially enlarged view showing a case where the swirling upward flow of FIG. 5 is weak.
FIG. 9 is a view taken in the direction of arrows IX-IX in FIG. 8;
[Explanation of symbols]
39 Revolving combustion device main body (secondary combustion chamber)
42 flammable gas
46 Tangential connection
53, 54 Flow control valve
55,56 Air nozzle (secondary air nozzle)
57-59 Flame detector
60 to 62 Flame detection signal
63, 64 control signal
65 arithmetic and control unit
67 Carbon monoxide concentration detector
68 Carbon monoxide concentration detection signal
69 Carbon monoxide concentration setting device
70 Carbon monoxide concentration setting signal
71 Nitrogen oxide concentration detector
72 Nitrogen oxide concentration detection signal
73 Nitrogen oxide concentration setting device
74 Nitrogen oxide concentration setting signal

Claims (3)

ほぼ上下方向へ延びる円筒形の側壁を有する旋回式燃焼装置本体の中間部に、接線方向から可燃ガスを供給する接線方向接続部を接続し、該接線方向接続部に可燃ガスの流れ方向へ空気を供給する空気ノズルと、可燃ガスの流れ方向と直角方向へ空気を供給する空気ノズルを設けた旋回式燃焼装置において、旋回式燃焼装置本体の接線方向接続部の接続位置よりも上側の位置に、旋回式燃焼装置本体の周方向に間隔をおいて複数の火炎検出器を設け、火炎検出器からの火炎検出信号に基づき、前記各空気ノズルへ空気を分配する流量制御弁へ開度を制御するための制御信号を送る演算制御装置を設けたことを特徴とする旋回式燃焼装置。A tangential connection for supplying combustible gas from a tangential direction is connected to an intermediate portion of the main body of the revolving combustion device having a cylindrical side wall extending substantially vertically, and air is supplied to the tangential connection in the direction of flow of the combustible gas. Air nozzle that supplies air in the direction perpendicular to the flow direction of the combustible gas, and the air nozzle that supplies air in a direction perpendicular to the flow direction of the combustible gas. A plurality of flame detectors are provided at intervals in the circumferential direction of the main body of the swirling type combustion device, and the opening is controlled by a flow control valve which distributes air to each of the air nozzles based on a flame detection signal from the flame detector. A swirl-type combustion device, which is provided with an arithmetic and control unit for sending a control signal for performing the operation. ほぼ上下方向へ延びる円筒形の側壁を有する旋回式燃焼装置本体の中間部に、接線方向から可燃ガスを供給する接線方向接続部を接続し、該接線方向接続部に可燃ガスの流れ方向へ空気を供給する空気ノズルと、可燃ガスの流れ方向と直角方向へ空気を供給する空気ノズルを設けた旋回式燃焼装置において、旋回式燃焼装置本体の出側に一酸化炭素濃度検出器を設け、一酸化炭素濃度検出器で検出した一酸化炭素濃度検出信号と、一酸化炭素濃度設定器に設定された一酸化炭素濃度設定信号とを比較して、前記各空気ノズルへ空気を分配する流量制御弁へ開度を制御するための制御信号を送る演算制御装置を設けたことを特徴とする旋回式燃焼装置。A tangential connection for supplying combustible gas from a tangential direction is connected to an intermediate portion of the main body of the revolving combustion device having a cylindrical side wall extending substantially vertically, and air is supplied to the tangential connection in the direction of flow of the combustible gas. And an air nozzle for supplying air in a direction perpendicular to the flow direction of the combustible gas, a carbon monoxide concentration detector is provided on the outlet side of the main body of the swirl type combustion device. A flow control valve that compares a carbon monoxide concentration detection signal detected by the carbon monoxide concentration detector with a carbon monoxide concentration setting signal set in the carbon monoxide concentration setting device and distributes air to the air nozzles. A swirling type combustion apparatus, comprising an arithmetic and control unit for sending a control signal for controlling an opening degree of the rotary combustion apparatus. ほぼ上下方向へ延びる円筒形の側壁を有する旋回式燃焼装置本体の中間部に、接線方向から可燃ガスを供給する接線方向接続部を接続し、該接線方向接続部に可燃ガスの流れ方向へ空気を供給する空気ノズルと、可燃ガスの流れ方向と直角方向へ空気を供給する空気ノズルを設けた旋回式燃焼装置において、旋回式燃焼装置本体の出側に窒素酸化物濃度検出器を設け、窒素酸化物濃度検出器で検出した窒素酸化物濃度検出信号と、窒素酸化物濃度設定器に設定された窒素酸化物濃度設定信号とを比較して、前記各空気ノズルへ空気を分配する流量制御弁へ開度を制御するための制御信号を送る演算制御装置を設けたことを特徴とする旋回式燃焼装置。A tangential connection for supplying combustible gas from a tangential direction is connected to an intermediate portion of the main body of the revolving combustion device having a cylindrical side wall extending substantially vertically, and air is supplied to the tangential connection in the direction of flow of the combustible gas. And an air nozzle for supplying air in a direction perpendicular to the flow direction of the combustible gas, a nitrogen oxide concentration detector is provided on the outlet side of the main body of the orbiting combustor, and nitrogen is provided. A flow control valve that compares a nitrogen oxide concentration detection signal detected by an oxide concentration detector with a nitrogen oxide concentration setting signal set in a nitrogen oxide concentration setting device and distributes air to the air nozzles. A swirling type combustion apparatus, comprising an arithmetic and control unit for sending a control signal for controlling an opening degree of the rotary combustion apparatus.
JP26993395A 1995-10-18 1995-10-18 Revolving combustion device Expired - Fee Related JP3555281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26993395A JP3555281B2 (en) 1995-10-18 1995-10-18 Revolving combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26993395A JP3555281B2 (en) 1995-10-18 1995-10-18 Revolving combustion device

Publications (2)

Publication Number Publication Date
JPH09112861A JPH09112861A (en) 1997-05-02
JP3555281B2 true JP3555281B2 (en) 2004-08-18

Family

ID=17479225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26993395A Expired - Fee Related JP3555281B2 (en) 1995-10-18 1995-10-18 Revolving combustion device

Country Status (1)

Country Link
JP (1) JP3555281B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4108624B2 (en) * 2004-02-19 2008-06-25 三井造船株式会社 Combustion control method and waste treatment apparatus

Also Published As

Publication number Publication date
JPH09112861A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
AU620273B2 (en) Pulverized coal burner, pulverized coal boiler and method of burning pulverized coal
US6843185B1 (en) Burner with oxygen and fuel mixing apparatus
EP0626538B1 (en) Vibration-resistant low NOx burner
SK5112002A3 (en) Solid fuel burner and combustion method using solid fuel burner
JP2004205161A (en) Solid fuel boiler and boiler combustion method
KR100308428B1 (en) Dry Gas Gas Incineration Treatment System of Waste
KR20040035880A (en) Ash melting type u-firing combustion boiler and method of operating the boiler
JPH1182933A (en) Cyclone shaped combustion device
EP1726877B1 (en) Method and device for controlling injection of primary and secondary air in an incineration system
JP3555281B2 (en) Revolving combustion device
JPH04214102A (en) Pulverized coal boiler, pulverized coal boiler system, and pulverized coal burner
JP3848801B2 (en) Liquid fuel burner
JPH07180822A (en) Incinerator and incinerating method by incinerator
EP0499184B1 (en) Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion
JP2000193224A (en) Combustion device for exhaust gas including dust
JPH10232014A (en) Freeboard temperature control method of fluidized incinerator
JPH02254201A (en) Waste heat boiler
JP3622258B2 (en) Secondary combustion device
JP2001108220A (en) Waste incinerator
JPH07217843A (en) Incinerator and method of controlling flame in same
JPH0749222Y2 (en) Secondary air supply device for incinerator
JPH0498009A (en) Secondary air supply apparatus of fluidized bed incinerator
JP2000193225A (en) Combustion device for exhaust gas including dust
JPH1061929A (en) Control method for supplying secondary combustion air in combustion device
CN104807019B (en) The method of denitration of incinerator and the denitrating system of incinerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees